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On the basis of a generalization of the Chapman-Enskog method a new approach to derivation of hydrodynamic
equations for weak density polaron gas has been elaborated taking into account the relaxation of temperature and
velocity in the system. Non-locality of the collision integral of the used kinetic equation was taken into account also.

Both circumstances lead to some modification of the standard transport theory.

PACS: 72.10.Bg, 72.15.Eb, 72.15.Lh

1. INTRODUCTION

In our paper [1] relaxation phenomena in spatially
uniform low density polaron gas have been investi-
gated. The consideration was conducted in standard
model in which phonons form an ideal equilibrium gas
with the temperature Tj. Electron spin, phonon po-
larization and zone structure of electron spectrum are
neglected; energy of electron is chosen as ¢, = p*/2m.

In [1] kinetic equation for strong non-uniform
states of polaron (low density polaron gas) in weak
electric field has been obtained too and has the form
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Here collision integral I,(z, f) is given by the formula
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where ny = (eTiok —1)7! is the Planck distribution
for phonons, e is module of electron charge, hwy is
energy of a phonon. This result does not amply that
gradients of the polaron distribution function f,(x,t)
are small. In present paper on the basis of this ki-
netic equation and with the help of a generalization of
the Chapman-Enskog method transport phenomena
in polaron gas are discussed. In contrast to the stan-
dard theory we use kinetic equation with the collision
integral which is expanded in a series in gradients of
the polaron distribution function
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Also we do not assume that the distribution function
fp(z,t) in hydrodynamic states in zero order in gradi-
ents approximation coincides with the local Maxwell
distribution.

2. BASIC EQUATIONS

Transport phenomena in the polaron gas are dis-
cussed in the framework of its hydrodynamics. Ac-
cording to the kinetic equation laws of conservation
(variation) of the gas mass, energy and momentum
have the form
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where mass, energy and momentum densities are de-
fined by the formulas

orzm/algpfp7 = /dspplfpa
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Flux densities of energy ¢, (x, f), momentum t,;(x, f)
and sources Ro(z, f), Ri(x, f) are given by expres-
sions:
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Basic hydrodynamic parameters, temperature

T (z,t), velocity u;(z,t) and number of particles den-
sity n(z,t) of the system, are defined by usual formu-
las

3
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Equations (4) give hydrodynamic equations if their
right sides are expressed through these variables
g,u(x»t) So(x,t) = T(x,t), &(z,t) = w(w,),
&4(z,t) = n(x,t). This is possible if after some time
7o the polaron distribution function has the structure

Jo(2, 1) ——— fp(z, £(1)), (®)
t>710

where f,(x,€) is a functional of the variables &, (z).
This relation (called the functional hypothesis) is
the basis of the Chapman-Enskog method which is
a special case of the Bogolyubov reduced descrip-
tion method (see, for example, [2]). Time 7y in
our consideration is assumed satisfying the condition
70 < TT,T Where 7,7, are relaxation times of the
temperature and velocity of the polaron gas. As a
result, the hydrodynamic equations can be written

as
0 (z,t)
— Q5 = Lu(z, f(&(1))), 9)

where L, (z, f) are some functionals of f,(x). For the
distribution function fy(z,€) from the kinetic equa-
tion (1) with (8) we obtain the equation

Z/dg /5f1’ x§ L', f(§)) = — ];:afg(xig)
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Definitions (6) of the parameters &, (z) which describe
state of the system give additional conditions to this
equation

/fpﬂm0m=mmwm@%/an%O=n®%
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(1)
The solution of the equation (10) taking into ac-
count conditions (11) we found in the form of a double
series in the gradients of the parameters £, (x) (g is
their small parameter) and small parameter & defined
by the estimations
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which describes the proximity of the system to equi-
librium (A is contribution of the order g™ to A,
A1) is contribution of the order g™e” to A).

Zero order in gradients approximation f,EO) has
been investigated in our paper [1]. It was established
that the main contributions to this distribution func-
tion have the form
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Functions A(p), B(p), C(p) satisfy the equations
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is introduced. In Eqgs. (14)—(16) instead of the kernel
M (p, p') defined by the formula (3) the kernel K (p, p’)
is used

(16)

where the notation

M(p,p')wy = —wp K (p,p'). (17)
In standard approach (see, for example, [3, 4]) the

distribution function f.° )(m,g) is not calculated but
assumed to be equal to the local Maxwell distribution
wp(&(x)) where
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The main in € contributions to the distribution func-
tion of the first order in gradients f,S” have the struc-
ture
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This expression describes dissipative processes in the
system. Function D(p) gives the main contribution

to f,gl) and functions

G(p), Fo(p) = F1(p)om + Fo(p)Ani(p)  (20)

(Ani(p) = papr — %p25ng) allow to calculate viscosity

and heat conductivity of the system. They satisfy the
integral equations with additional conditions:
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Here functions a(p), A1(p), B1(p) are defined by the
formulas

(24)
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and are absent in the standard theory because they
take into account non-locality of our collision inte-
gral (see (1), (2)). Taking into account additional
conditions for functions A(p), B(p) (see (14), (15),
scalar values p (mobility of the polaron in a steady
state), a,a1,b; in equations (16), (21)-(23) are ex-
pressed through solutions of these equations. There-
fore, these expressions are not needed for solution of
integral equations (16), (21)—(23).

Neglecting of the dissipative processes, time equa-
tions for temperature and velocity can be written in
the form
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where a1, ...,a4,b1,b2, u are scalar values some of
which can be calculated from equations (16), (21)—
(23). The kernel K(p,p’) of the integral equations
(14)—(16), (21)—(24) has important properties which
can be expressed in the terms of the bilinear form

{9(p),h(p)} = / d*pd®p'wyg(p) K (p,p)h(p'), (27)
that gives

{9(p), h(p)} = {h(p), 9(»)},{9(p), 9(p)} > 0.

These formulas show that eigenvalues Ar, A, of op-
erator with the kernel K(p,p’) are positive. Ac-
cording to (26) they describe relaxation phenomena
in the system in the spatially homogeneous states
(the above mentioned relaxation times 7p = )\;1,
Tu =AY,

Expressions for energy and momentum fluxes tak-
ing into account dissipative contributions have the
form

(28)
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where 7,( are viscosities, x is heat conductivity;
c1,Ca,c3, di,ds, ds, ds are some coefficients;

2
=0niAmm.
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3. CONCLUSIONS

(A’ﬂl)s =Ap + A —

On the basis of a generalization of the Chapman-
Enskog method a new approach to derivation of hy-
drodynamic equations for weak density polaron gas
has been elaborated taking into account the relax-
ation of temperature and velocity in the system. Non-
locality of the collision integral of the used kinetic
equation was taken into account also. Both circum-
stances lead to some modification of the standard the-
ory [3, 4]. Solution of the obtained integral equation
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with the help of expansion in the Sonine polynomial retical and Mathematical Physics. 2011, v. 168 (2),
series will be discussed in another paper (in spatially p- 1150-1164.
uniform states this was done in [1]).

This work was supported by the State Foundation
for Fundamental Research of Ukraine under project
No. 25.2/102.

2. A1 Akhiezer, S.V. Peletminsky. Methods of Sta-
tistical Physics. Oxford: Pergamon Press, 1981,
368 p.

3. A.IL. Akhiezer, V.F. Aleksin, and V.D. Khodusov.
Gas dynamics of quasi-parlicles. I. General the-

ory // Low Temperature Physics. 1994, v. 20 (12),
References p. 1199-1238.

1. S.A. Sokolovsky. Toward polaron kinetics in the 4. E.M. Lifshitz, L.P. Pitaevskii. Physical Kinetics.
Bogoliubov reduced description method // Theo- Oxford: Pergamon Press, 1981, 452 p.

K I'MIAPOOMHAMMKE ITOJIAPOHHOTO I'A3A B METOJE COKPAIITEHHOTI'O
OIINCAHNS BOTOJIFOBOBA

C.A. Coxonoscruti

Ha ocrose 06001enus Merosa Yenvena-dHckora pa3paboTad HOBbLA II0AX0/ K BbIBOAY YPABHEHUI I'MAPOI-
HaMUKU JJIsl IOJIAPOHHOIO Ia3a MAJIOH IJIOTHOCTH C YY€TOM PEJAKCALMA CKOPOCTH U TEMIIEPATY Pbl CUCTEMbI.
Varena Tak:Ke HEJOKAJbHOCTbh WHTErPAJIA CTOJKHOBEHHUI WMCIOJIb3yeMOr0 KUHETHYIECKOro ypaBuenus. 006a
00CTOATETHCTBA BEAYT K MOAMMDUKAIINY CTAHIAPTHON TEOPUH MEPEHOCA.

A0 T'TAPOJIMHAMIKMUT ITOJIAPOHHOTI'O TA3Y B METOII CKOPOYEHOT O
OITNCY BOTI'OJIOBOBA

C.0. Coxonoscoruti
Ha ocnoBi y3araipuents merona Yemmena-Emckora po3pobsieHo HOBHiT TiaXid 10 BUBEIEHHS PIBHAHB TiIpO-
JWHAMIKY TIOJISTPOHHOTO Ta3y MaJIOl IyCTHHE 3 ypaxyBaHHSM PEJIAKCAIIl MBUIKOCTI Ta TeMmeparypu. Takoxk

BPaxOBaHA HEJIOKAJIbHICTH 1HTErpaJjia 3ITKHEeHHb KiHETUYHOTO PIBHSHHS, [0 BUKOPUCTOBY€EThCsA. OOuIBI 00-
CTaBUHH BEIYTh A0 MoAudikarii craHgapTHOI Teopil mepeHocy.
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