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It is shown that the method of unitary clothing transformations (UCT) developed in [1, 2] and applied to nuclear
physics problems [3, 4], gives a fresh look at constructing interactions between the “clothed” nucleons, these quasi-
particles with the properties of physical nucleons.
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1. SOME RECOLLECTIONS

Our departure point is the Hamiltonian of a system of
interacting mesons and nucleons that can be written
as

H =
∞∑

C=0

∞∑
A=0

HCA, (1)

HCA =
∫∑

HCA(1′, 2′, ..., n′
C ; 1,2,...,nA)

× a†(1′)a†(2′)...a†(n′
C)a(nA)...a(2)a(1), (2)

where the capital C(A) denotes particle-creation (an-
nihilation) number for operator substructure HCA

and

HCA(1′, ..., C; 1,..., A)
= δ(�p′1 + ...+ �p′C − �p1 − ...− �pA)
× hCA(p′1μ

′
1ξ

′
1...p

′
Cμ

′
Cξ

′
C ; p1μ1ξ1...pAμAξA), (3)

where c-number coefficients hCA do not contain delta
function and a†[a](n) = a†[a](�pn, μn, ξn) is a cre-
ation [annihilation] operator for particle of species ξn
with momentum �pn and polarization μn.

In turn,

HCA =
∫
HCA(�x)d�x ⇒ H =

∫
H(�x)d�x (4)

with density

H(�x) =
∞∑

C=0

∞∑
A=0

HCA(�x). (5)

For example, in case with C = A = 2 we have

H22(1′, 2′; 1, 2) = δ(�p′1 + �p′2 − �p1 − �p2)h(1′2′; 12) (6)

and

H22(�x) =
1

(2π)3

∫∑
exp[−i(�p′1 + �p′2 − �p1 − �p2)�x]

× h(1′2′; 12)a† (1′) a† (2′) a (2)a (1) . (7)

The operator H , being divided into the no-
interaction part HF and the interaction HI , owing
to its translational invariance allowsHI to be written
as

HI =
∫
HI(�x)d�x. (8)

Our consideration is focused upon various field mod-
els (local and nonlocal) in which the interaction den-
sity HI(�x) consists of scalar Hsc(�x) and nonscalar
Hnsc(�x) contributions:

HI(�x) = Hsc(�x) +Hnsc(�x), (9)

where the property to be a scalar means

UF (Λ, b)Hsc(x)U−1
F (Λ, b) = Hsc(Λx+ b),

∀ x = (t, �x) (10)

for all Lorentz transformations Λ and spacetime
shifts b.

As an illustration, in case of the vector mesons (ρ
and ω) we have

Vv = V (1)
v + V (2)

v ,

V (1)
v =

∫
d�xHsc(�x), V (2)

v =
∫
d�xHnsc(�x),

Hsc(�x) = gvψ̄(�x)γμψ(�x)ϕμ
v (�x)

+
fv
4m

ψ̄(�x)σμνψ(�x)ϕμν
v (�x),
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Hnonsc(�x) =
g2
v

2m2
v

ψ̄(�x)γ0ψ(�x)ψ̄(�x)γ0ψ(�x)

+
f2
v

4m2
ψ̄(�x)σ0iψ(�x)ψ̄(�x)σ0iψ(�x),

where ϕμν
v (�x) = ∂μϕν

v(�x) − ∂νϕμ
v (�x) is a tensor of a

vector field in Schrödinger (S) picture. Such a situ-
ation is typical of theories with derivative couplings
or spins j ≥ 1.

2. BOOST GENERATORS. RELATIVISTIC
INVARIANCE (RI) AS A WHOLE

To free ourselves from any dependence on pre-
existing field theories, the three boost operators �N =
(N1, N2, N3) can be written as:

�N =
∞∑

C=0

∞∑
A=0

�NCA, (11)

�NCA =
∫∑

�NCA(1′, 2′, ..., n′
C ; 1, 2, ..., nA)

× a†(1′)a†(2′)...a†(n′
C)a(nA)...a(2)a(1). (12)

We have developed an algebraic procedure to find
links between coefficients HCA and �NCA, compatible
with commutations

[Pi, Pj ] = 0, [Ji, Jj ] = iεijkJk, [Ji, Pj ] = iεijkPk,

[�P ,H ] = 0, [ �J,H ] = 0, [Ji, Nj] = iεijkNk,

[Pi, Nj] = iδijH, [H, �N ] = i �P , [Ni,Nj ] = −iεijkJk,

(i, j, k = 1, 2, 3),

where �P = (P 1, P 2, P 3) and �J = (J1, J2, J3) are lin-
ear and angular momentum operators.

For instant form of the relativistic dynamics after
Dirac only Hamiltonian and boost operators carry in-
teractions, viz.,

H = HF +HI , �N = �NF + �NI ,

while �P = �PF and �J = �JF .
How one can build up operators HI and �NI is

shown in [4]. Here we would like to present only a
free part of the fermion boost operator

�Nferm = �Norb
ferm + �Nspin

ferm,

where

�Norb
ferm =

i

2

∫∑
d�pE�p

(
∂b†(�pμ)
∂�p

b(�pμ)

−b†(�pμ)
∂b(�pμ)
∂�p

∂d†(�pμ)
∂�p

d(�pμ) − d†(�pμ)
∂d(�pμ)
∂�p

)
,

�Nspin
ferm = −1

2

∫∑
d�p �p× χ†(μ)�σχ(μ)

E�p +m

× (
b†(�pμ)b(�pμ) + d†(�pμ)d(�pμ)

)
.

Here E�p =
√
�p2 +m2 is the nucleon energy and χ(μ)

is the Pauli spinor.

3. METHOD OF UCTs IN ACTION

Method in question is aimed at expressing a field
Hamiltonian through the so-called clothed-particle
creation (annihilation) operators αc, e.g., a†c(ac),
b†c(bc) and d†c(dc) via UCTs W (αc) = W (α) =
expR, R = −R† in similarity transformation

α = W (αc)αcW
†(αc) (13)

that connect primary set α in bare-particle represen-
tation (BPR) with the new operators in CPR.

A key point of the clothing procedure is to remove
the so-called bad terms from Hamiltonian

H ≡ H(α) = HF (α) +HI(α)

= W (αc)H(αc)W †(αc) ≡ K(αc). (14)

By definition, such terms prevent physical vacuum
|Ω〉 (H lowest eigenstate) and one-clothed-particle
states |n〉c = a†c(n)|Ω〉 to be H eigenvectors for all
n included. Bad terms occur every time when any
normally ordered product

a†(1′)a†(2′)...a†(n′
C)a(nA)...a(2)a(1)

of class [C.A] embodies, at least, one substructure ∈
[k.0] (k = 1, 2...) or/and [k.1] (k = 2, 3, ...). In this
context all primary Yukawa-type (trilinear) couplings
shown above should be eliminated.

Respectively, let us write for boson–fermion sys-
tem

HI(α) = V (α) + Vren(α) (15)

with primary (trial) interaction V (α) = Vbad + Vgood

“good” (e.g., ∈ [k.2]) as antithesis of “bad” while
Vren(α) ∼ [1.1] + [0.2] + [2.0] “mass renormalization
counterterms”. It turns out that latter are important
to ensure RI as a whole, i.e., in Dirac sense.

In order to compare our calculations with those
by Bonn group [5] we have employed V (α) = Vs +
Vps + Vv. Then clothing itself is prompted by

H(α) = K(αc)

≡W (αc)[HF (αc) + Vv(αc) + Vren(αc)]W †(αc)
(16)

or

K(αc) = HF (αc) + V (1)
v (αc) + [R,HF ] + V (2)

v (αc)

+ [R, V (1)
v ] +

1
2
[R, [R,HF ]] + [R, V (2)

v ]

+
1
2
[R, [R, V (1)

v ] + ... (17)

and requiring [R,HF ] = −V (1)
v for the operator R of

interest to get

H = K(αc) = KF +KI (18)
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with a new free part KF = HF (αc) ∼ a†cac and inter-
action

KI =
1
2
[R, V (1)

v ] + V (2)
v +

1
3
[R, [R, V (1)

v ]] + ... (19)

between clothed particles.
Moreover, after modest effort we have

1
2

[
R, V (1)

v

]
(NN → NN)

= Kv(NN → NN) +Kcont(NN → NN), (20)

where the operator Kcont(NN → NN) may be as-
sociated with a contact interaction since it does not
contain any propagators (details see in Refs. [3]). It
has turned out that this operator cancels completely
non-scalar operator V (2).

In parallel, we have

�N(α) = �B(αc)

= W (αc){ �NF (α) + �NI(α) + �Nren(α)}W †(αc) (21)

with

�NI = −
∫
�xVv(�x)d�x =

−
∫
�x{V (1)

v (�x) + V (2)
v (�x)}d�x = �N

(1)
I + �N

(2)
I . (22)

As before (see Refs. [2,3]) we find that the boost
generator in CPR acquires the structure similar to
K(αc):

�B(αc) = �BF + �BI . (23)

Here �BF = �NF (αc) boost operator for noninteract-
ing clothed particles (in our case fermions and vector
mesons) and �BI incorporates contributions induced
by interactions between them

�BI = +
1
2
[R, �N (1)

I ] +
1
3
[R, [R, �N (1)

I ]] + ...

4. RELATIVISTIC INTERACTIONS

Operator KI contains only interactions responsible
for physical processes, these quasipotentials between
the clothed particles, e.g.,

KI ∼ a†cb
†
cacbc(πN → πN)+ b†cb

†
cbcbc(NN → NN)

+ d†cd
†
cdcdc(N̄N̄ → N̄N̄) + ...

+ [a†ca
†
cbcdc +H.c.](NN̄ ↔ 2π) + ...

+ [a†cb
†
cb

†
cbcbc +H.c.](NN ↔ πNN) + ... (24)

After normal ordering of fermion operators we de-
rive NN → NN interaction operator (mediated, for
instance, by pions)

KNN =
∫
d�p1d�p2d�p

′
1d�p

′
2VNN (�p ′

1, �p
′
2; �p1, �p2)

× b†c(�p
′
1)b

†
c(�p

′
2)bc(�p1)bc(�p2), (25)

VNN (�p ′
1, �p

′
2; �p1, �p2) = −1

2
g2

(2π)3
m2√

E�p1E�p2E�p ′
1
E�p ′

2

× δ(�p ′
1 + �p ′

2 − �p1 − �p2)

× ū(�p ′
1)γ5u(�p1)

1
(p1 − p′1)2 − μ2

ū(�p ′
2)γ5u(�p2). (26)

The corresponding relativistic and properly sym-
metrized NN quasipotential is

ṼNN (�p ′
1, �p

′
2; �p1, �p2)

=
〈
b†c(�p

′
1)b

†
c(�p

′
2)Ω | KNN | b†c(�p1)b†c(�p2)Ω

〉
, (27)

or through covariant (Feynman-like) “propagators”:

ṼNN (�p ′
1, �p

′
2; �p1, �p2) = −1

2
g2

(2π)3
m2

2
√
E�p1E�p2E�p ′

1
E�p ′

2

× δ(�p ′
1 + �p ′

2 − �p1 − �p2)

× ū(�p ′
1)γ5u(�p1)

1
2

{
1

(p1 − p′1)2 − μ2

+
1

(p2 − p′2)2 − μ2

}
ū(�p ′

2)γ5u(�p2) − (1 ↔ 2). (28)

Distinctive feature of potential (28) is the pres-
ence of covariant (Feynman-like) “propagator”:

1
2

{
1

(p1 − p′1)2 − μ2
+

1
(p2 − p′2)2 − μ2

}
.

On the energy shell for NN scattering, that is

Ei ≡ E�p1 + E�p2 = E�p ′
1

+ E�p ′
2
≡ Ef ,

this expression is converted into the genuine Feynman
propagator.

These quasipotentials form the kernel of the in-
tegral equation for the nucleon-nucleon scattering R-
matrix:

〈1′2′| R̄(E) |12〉 = 〈1′2′| K̄NN |12〉

+
∫
34

∑
〈1′2′| K̄NN |34〉 〈34| R̄(E) |12〉

E − E3 − E4
(29)

with R̄(E) = R(E)/2 (K̄NN = KNN/2), symbol
∫
34

∑
implies the p.v. integration.

5. DEUTERON PROPERTIES

The deuteron state |Ψd(�P )〉 ∈ H2N in the CPR sat-
isfies the eigenvalue equation

[KF (αc) +KI(αc)]|Ψd(�P )〉 = Ed|Ψd(�P )〉 (30)

with Ed =
√
m2

d + �P 2, where �P is the total deuteron
momentum, md = mp +mn−εd is the deuteron mass
and εd represents the binding energy of the deuteron.

Using the approximation with KI(αc) =
K(NN → NN) = KNN we arrive to a simpler eigen-
value problem

[
KN

F +KNN

] |�P ;M〉 = Ed|�P ;M〉 (31)
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in the subspace H2N spanned onto the basis b†cb†c|Ω〉
with KNN ∼ b†cb

†
cbcbc. Here M denotes the deuteron

spin projection on the quantization axis.
The solution of this equation can be represented

as

|�P ;M〉 =
∫
d�p1d�p2DM (�P ; �p1μ1, �p2μ2)

× b†c(�p1μ1)b†c(�p2μ2)|Ω〉 (32)

with the coefficients DM (�P ; �p1μ1, �p2μ2) = δ(�P −
�p1 − �p2)ψM (�p1μ1, �p2μ2) that have the property
ψM (1, 2) = −ψM (2, 1).

In the deuteron rest frame the equation (31) takes
the form

|ψM 〉 =
[
md −KN

F

]−1
KNN |ψM 〉, (33)

where

|ψM 〉 ≡ |�P = 0;M〉
=

∫
d�pψM (�pμ1,−�pμ2)b†c(�pμ1)b†c(−�pμ2)|Ω〉. (34)

Using the basis vectors |p(lS)JMJ , TMT 〉 introduced
in our previous paper [3] (see Appendix B) the vector
|ψM 〉 can be written as

|ψM,TMT 〉
=

1√
2

∑∫
p2dp |p(lS)1M,TMT 〉ψlST (p), (35)

since the deuteron has the invariant spin equal J = 1.
In Eq. (35) the permissible values of the quantum
numbers l, S and T are restricted to the property

Pferm|ψM,TMT 〉 = |ψM,TMT 〉 (36)

with respect to the space inversion (see Appendix B
in [1], where one can find formula (114) for the parity
operator Pferm of the nucleon field in the CPR). In
fact, there are only the two combinations of T , S and
l, namely, T = 0, S = 1 and l = 0, 2. Respectively,

|ψM,00〉 ≡ |ψM 〉
=

1√
2

∑
l=0,2

∫
p2dp |p(l1)1M〉ψl(p). (37)

At this point, we accept the normalization condi-
tion

〈ψM ′ |ψM 〉 = δM ′M (38)

that implies
∞∫
0

p2dp
[
ψ2

0(p) + ψ2
2(p)

]
= 1. (39)

Substituting the decomposition (37) into the
equation (33) we get the set of homogeneous integral
equations for “radial” components ψl(p) (l = 0, 2):

ψl(p) =
1

md − 2E�p

×
∑
l′

∫
k2dkV J=S=1,T=0

l l′ (p, k)ψl′(k). (40)

In a moving frame the corresponding eigenvector

that belongs to the value Ed =
√
�P 2 +m2

d can be de-
termined either by solving directly the equation (31)
or using the relation

|�P ;M〉 = exp[i�β �B(αc)]|ψM 〉. (41)

The boost operator �B(αc) = �BF (αc) + �BI(αc), de-
termined in the CPR by

�B(αc) = W (αc) �N (αc)W †(αc), (42)

consists of the free �BF and interaction �BI parts. Here
�N is the total boost operator for interacting fields.
Perhaps, one should note that the required

P̂μ|�P ;M〉 = Pμ|�P ;M〉 (43)

follows from the property of the energy-momentum
operator P̂μ = (H, P̂ 1, P̂ 2, P̂ 3) to be the four-vector.

The parameters (β1, β2, β3) = �β for the Lorentz
transformation md(1, 0, 0, 0) ⇒ (P 0, P 1, P 2, P 3) = P

are related to the “velocity” �v = �P/P 0 of the moving
frame as

�β = β�n, �n = �v/v, tanhβ = v. (44)

As in our previous paper [3] we continue compar-
ison of UCT approach with results of the Bonn
group [5]. In particular, the low-energy pa-
rameters of NN scattering and deuteron prop-
erties are presented in Table 1 and the fig-
ure.The best-fit parameters are collected in Table 2.

Table 1. Deuteron and low-energy parameters. The
experimental values are from Table 4.2 of Ref. [5]

Parameter Bonn B UCT Experiment
as (fm) −23.71 −23.57 −23.748±0.010
rs (fm) 2.71 2.65 2.75±0.05
at (fm) 5.426 5.44 5.419±0.007
rt (fm) 1.761 1.79 1.754±0.008
εd (MeV) 2.223 2.224 2.224575
PD (%) 4.99 4.89

Deuteron wave function components ψd
0(p) = u(p)

and ψd
2(p) = w(p). Solid (dotted) curves calculated

for the Bonn B (UCT) potential

191



Table 2. The best-fit parameters for the two models. The row Potential B (UCT ) taken from Table A.1
in [5] (obtained by least squares fitting to OBEP values in Table 1 of Ref. [3] including deuteron binding

energy and low-energy parameters). All masses are in MeV , and nb = 1 except for nρ = nω = 2

Model Meson π η ρ ω δ σ, T = 0 (T = 1)
g2/4π [f/g] 14.4 3 0.9 [6.1] 24.5 2.488 18.3773 (8.9437)

Potential B Λ 1700 1500 1850 1850 2000 2000 (1900)
m 138.03 548.8 769 782.6 938 720 (550)

g2/4π [f/g] 13.395 5.0 1.2 [6.1] 17.349 5.0 22.015 (5.514)
UCT Λ 2500 1219 1593 2494 2169 1200 (2500)

m 138.03 548.8 769 782.6 938 720 (550)

6. CONCLUSIONS

Starting from a total Hamiltonian for interacting me-
son and nucleon fields, we come to the Hamiltonian
and boost generator in the CPR whose interaction
parts consist of new relativistic interactions responsi-
ble for physical (not virtual) processes, particularly,
in the system of bosons (π−, η−, ρ−, ω−, δ− and
σ−mesons) and fermions (nucleons and antinucle-
ons).

Using the unitary equivalence of CPR to BPR,
we have seen how the NN scattering problem in
QFT can be reduced to the three-dimensional LS-
type equation for the T -matrix in momentum space.
The equation kernel is given by clothed two-nucleon
interaction of class [2.2].

Special attention has been paid to the elimina-
tion of auxiliary field components. We encounter such
a necessity for interacting vector and fermion fields
when in accordance with the canonical formalism the
interaction Hamiltonian density embodies not only a
scalar contribution but nonscalar terms too.

Being concerned with constructing two-nucleon
states and their angular-momentum decomposition
we have not used the so-called separable ansatz. The
clothed two-nucleon partial waves have been built
up as common eigenstates of the field total angular-
momentum generator and its polarization (fermionic)
part.

As a whole, persistent clouds of virtual particles
are no longer explicitly contained in CPR, and their

influence is included in properties of clothed particles
(these quasiparticles of the UCT method). In addi-
tion, we would like to stress that problem of the mass
and vertex renormalizations is intimately interwoven
with constructing the interactions between clothed
nucleons.
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