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It is shown that the method of unitary clothing transformations (UCT) developed in [1, 2] and applied to nuclear
physics problems [3, 4], gives a fresh look at constructing interactions between the “clothed” nucleons, these quasi-

particles with the properties of physical nucleons.
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1. SOME RECOLLECTIONS

Our departure point is the Hamiltonian of a system of
interacting mesons and nucleons that can be written

as o oo
H=Y > Hoa,

C=0A=0

(1)

Hca = i: Hea(1',2', . ingi1.2,0n4)

x a'(1)a'(2))...aT (nf)a(na)...a(2)a(1),

2)

where the capital C'(A) denotes particle-creation (an-
nihilation) number for operator substructure Hea
and

Hoa(l,...,C51,..., A)

=6} + ... +Pe — P1 — ... — DA)

< hoa(py €1 Pone€oi primé . papala),  (3)

where c-number coefficients hc 4 do not contain delta
function and afla](n) = a'la](P, pn, &) is a cre-
ation [annihilation] operator for particle of species &,
with momentum p,, and polarization p,,.

In turn,

mmz/mmwﬁ?ﬁ‘H:/M@ﬁ

with density
H@ =YY Hoald)
C=0A=0

For example, in case with C' = A = 2 we have

Hoyo(1',2';1,2) = 6(p) + py — p1 — p2)h(1'2;12) (6)

1 . L
o et + 5 — i~ 7))

x h(1'2:12)a’ (1') a’ (2') a (2)a (1).

Hy (%) =

(7)

The operator H, being divided into the no-
interaction part Hp and the interaction H; , owing
to its translational invariance allows Hy to be written
as

(®)

Our consideration is focused upon various field mod-
els (local and nonlocal) in which the interaction den-
sity Hy(Z) consists of scalar H.(Z) and nonscalar
H,,s.(Z) contributions:

m:/m@@

HI(f) = Hsc(f) + HnSC(f)v (9)

where the property to be a scalar means
Ur(A, b)Hsc(x)Ugl(A, b) = Hse(Ax 4+ 1),
vV x=(t,7) (10)

for all Lorentz transformations A and spacetime
shifts b.

As an illustration, in case of the vector mesons (p
and w) we have

Ve =V v,

Vv(l) :/d.str(f)v ‘/\7(2) :/deTLSF(f)7

Hyo(Z) = vt (D)7, 10(2) 4 (T)

I ()0, (),

T m
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where @Y (Z) = O ¥ (Z) — 0"k (Z) is a tensor of a
vector field in Schrédinger (S) picture. Such a situ-
ation is typical of theories with derivative couplings
or spins j > 1.

Hnonsc (f) - 2

+

2. BOOST GENERATORS. RELATIVISTIC
INVARIANCE (RI) AS A WHOLE

To free ourselves from any dependence on pre-
existing field theories, the three boost operators N =
(N', N2 N3) can be written as:

F=3S New

C=0 A=0

(11)

NCA = X:]\_ch(ll, 2 ne 1,2, na)

x a'(1)a’(2))...a’(np)a(na)...a(2)a(l). (12)

We have developed an algebraic procedure to find
links between coefficients Ho4 and N¢ 4, compatible
with commutations

[P, P;] =0, [Ji,J;] =icijxdr, [Jis Pj] =icijuPr,

[P,H|=0, [J,H] =0, [Ji,N;]=icixNx,
[P, N;] = i6ijH, [H,N]=iP, [Ni,N;]= —icijuli,
(4,4, k =1,2,3),
where P = (P!, P2, P3) and J = (J*, J2, J?) are lin-
ear and angular momentum operators.
For instant form of the relativistic dynamics after

Dirac only Hamiltonian and boost operators carry in-
teractions, viz.,

H=Hp+H;, N=Np+N,
Whileﬁ:ﬁp and f:fp. B
How one can build up operators H; and Ny is
shown in [4]. Here we would like to present only a
free part of the fermion boost operator
Nferm = No;lfm + ﬁspin

ferm>

where

\Forb 1 o i abT(ﬁ:U’) —
N erm 9 idp EP ( aﬁ b(p:u’)

_ Ob(pp) 0dt (pu) _ 0d(pu)
_pt(a ) QOPH) gt
b' (pp) o5 0p d(pp) — d' (pp) o5 )
NTSpin 1 g XT(M)EX(N)

4 _ _ = A NPTZANTT

ferm = gi:dppx Ez+m

x (bY (p)b(pue) + d¥ () d(pu)) -

Here Ey = /p? + m? is the nucleon energy and x(u)
is the Pauli spinor.

3. METHOD OF UCTs IN ACTION

Method in question is aimed at expressing a field
Hamiltonian through the so-called clothed-particle
creation (annihilation) operators a., e.g., al(a.),
bi(b.) and di(d.) via UCTs W(a.) = W(a) =
exp R, R = —R' in similarity transformation
a=Wla)a.W () (13)
that connect primary set « in bare-particle represen-
tation (BPR) with the new operators in CPR.
A key point of the clothing procedure is to remove
the so-called bad terms from Hamiltonian

H=H(a)=Hp(a) + Hi ()

= W(ae)H(a)Wi(ae) = K(ag). (14)
By definition, such terms prevent physical vacuum
|2) (H lowest eigenstate) and one-clothed-particle
states |n). = al(n)|Q2) to be H eigenvectors for all
n included. Bad terms occur every time when any
normally ordered product

af(1)al(2))...a (nk)a(na)...a(2)a(1)

of class [C.A] embodies, at least, one substructure €
[£.0] (k = 1,2...) or/and [k.1] (k = 2,3,...). In this
context all primary Yukawa-type (trilinear) couplings
shown above should be eliminated.

Respectively, let us write for boson—fermion sys-
tem

HI(O‘) = V(a) + ‘/;en(a) (15)

with primary (trial) interaction V() = Voaa + Vgood
“good” (e.g., € [k.2]) as antithesis of “bad” while
Vren(c) ~ [1.1] 4+ [0.2] + [2.0] “mass renormalization
counterterms”. It turns out that latter are important
to ensure RI as a whole, i.e., in Dirac sense.

In order to compare our calculations with those
by Bonn group [5] we have employed V(o) = Vi +
Vps + V4. Then clothing itself is prompted by

H(a) = K(ac)

= W (ae)[Hr(ae) + Va(ae) + Vien(ae)]W(ar)
(16)

or

K(ac) = Hp(ac) + Vv(l)(CVC) + [R, Hp] + VV(Q) (are)
+ (R VO] + SR (R Hel] + R, V)
- %[R, R,V +... (17)

and requiring [R, Hp] = — Y for the operator R of

interest to get

H=K(a)=Kr+K;| (18)
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with a new free part Kr = Hp (o) ~ ala. and inter-
action

1 1
Ky = SIR VO +VE + SRR VO] + .. (19)
between clothed particles.
Moreover, after modest effort we have
1 (1)
- [R,VV } (NN — NN)
= K(NN = NN) + Keons(NN — NN), (20)

where the operator Kooni(NN — NN) may be as-
sociated with a contact interaction since it does not
contain any propagators (details see in Refs. [3]). It
has turned out that this operator cancels completely
non-scalar operator V().

In parallel, we have

—

N(a) = B(a)
= W(O‘C){NF(C“) + ]\71(&) + Nren(a)}WT(QC) (21)

with
Ny=— /:Evv(f)df =
_ / V(@) + VO @)hdi = N + NP, (22)

As before (see Refs. [2,3]) we find that the boost
generator in CPR acquires the structure similar to
K(a.):

B(a.) = Bp + By. (23)

Here Bp = N r(a.) boost operator for noninteract-
ing clothed particles (in our case fermions and vector

mesons) and B incorporates contributions induced
by interactions between them

1

§I=+2

R 1 R
(R, N{] + IR, [R NI +

4. RELATIVISTIC INTERACTIONS

Operator K contains only interactions responsible
for physical processes, these quasipotentials between
the clothed particles, e.g.,

Kr ~ alblach.(nN — wN)+biblb.b.(NN — NN)
+didid.d, (NN — NN) + ...
+ [alalbed, + H.c](NN < 27) + ...
+ [albibibebe + H.c](NN < TNN) + ...

c cc

(24)

After normal ordering of fermion operators we de-
rive NN — NN interaction operator (mediated, for
instance, by pions)

Knn = / dp1dpadpy dps Vi (P, Pa; D1y D2)

X bL (P )b (55)be(P1)be(P2),  (25)
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V) A T -
NN(plap27p1ap2) 2 (27’1’)3 EﬁlEﬁgEﬁ{Eﬁé
X 8(p + Py — Pr — Pa)

><ﬂ(ﬁ{)%u(ﬁl)mﬂ(ﬁé)%u(@)- (26)

The corresponding relativistic and properly sym-
metrized NN quasipotential is

‘N/NN(ﬁllaﬁQI;ﬁlaﬁé)
= (BLENL([E)N | Knn | bE(00)bE(52)2), (27)
or through covariant (Feynman-like) “propagators”:

1 g2 m?
2 (27T)3 2 Eﬁl Eﬁz EﬁfEﬁz/

VNN(ﬁ{,ﬁzl;ﬁhﬁz) =
X 6(py + Py — p1 — P2)
1 1
x u(p] su(p) = {—
(P)rsu(p1); =P = 2

1 o
+m}u(p2)%u(pz) (1<2). (28

Distinctive feature of potential (28) is the pres-
ence of covariant (Feynman-like) “propagator”:

1 { 1 N 1 }
2 (o1 —p1)? =1 (p2—ph)?—p2)
On the energy shell for NN scattering, that is
FE;, = Eﬁl + E52 = Eﬁl/ —+ Eﬁz/ = Ef,

this expression is converted into the genuine Feynman
propagator.

These quasipotentials form the kernel of the in-
tegral equation for the nucleon-nucleon scattering R-
matrix:

(2| R(E) [12) = (1'2'| Knn [12)

+I 12| R 34) SALEE) [12)

2
E—-FE3—FE4 (29)
34

with R(E) = R(E)/2 (KNN = KNN/Q), SymbOlE
34

implies the p.v. integration.

5. DEUTERON PROPERTIES

The deuteron state |U4(P)) € Hay in the CPR sat-
isfies the eigenvalue equation

[Kr(ae) + Ki(ao)|Pa(P)) = Eq|¥a(P))  (30)

with By = \/mfl + }32, where P is the total deuteron
momentum, mg = M, +m, —&q is the deuteron mass

and g4 represents the binding energy of the deuteron.

Using the approximation with Kr(a.) =
K(NN — NN) = Kyy we arrive to a simpler eigen-
value problem

(K} + Knn]|P; M) = Eq|P; M) (31)



in the subspace Han spanned onto the basis bb!|Q)
with Kyny ~ bibibcbc. Here M denotes the deuteron
spin projection on the quantization axis.

The solution of this equation can be represented
as

|P; M) = /dﬁldﬁ2DM(ﬁ§ﬁlﬂlvﬁQ/~L2)

x bl (p1pa )bl (Papn) |€2)

with the coefficients DM(ﬁ;ﬁlul,ﬁQMQ) = 5(13 —
p1 — P2)Ym(Pip, Pape) that have the property
Yum(1,2) = —m(2,1).

In the deuteron rest frame the equation (31) takes
the form

(32)

lar) = [ma — wav]ﬂ Knn|Yar), (33)

where
[Yar) = |P = 0; M)
- / dins (Frir, —Bua)bl (P B (—Pua)| ). (34)

Using the basis vectors |p(1S)J M, T M) introduced
in our previous paper [3] (see Appendix B) the vector
|thar) can be written as

[on, i)
_ % 3 / p2dp [p(1S) 1M, TMz)ihisr(p),  (35)

since the deuteron has the invariant spin equal J = 1.
In Eq. (35) the permissible values of the quantum
numbers [, S and T are restricted to the property

Prerm|¥srmr) = |Un ) (36)

with respect to the space inversion (see Appendix B
in [1], where one can find formula (114) for the parity
operator Pferm of the nucleon field in the CPR). In
fact, there are only the two combinations of T', S and
[, namely, T'=0, S =1 and [ = 0, 2. Respectively,

[Yar,00) = [¥ar)
=5 3 [Pwpenane). @7
1=0,2

At this point, we accept the normalization condi-
tion
(Unr[Yar) = Omrm (38)
that implies

o0

/dep (8 (p) + ¥3(p)] = 1.

0

(39)

Substituting the decomposition (37) into the
equation (33) we get the set of homogeneous integral
equations for “radial” components ¢;(p) (I =0, 2):

1

- mgq —2Eﬁ

<3 / K2RV, ]S, k) (k). (40)
Z/

Yi(p)

In a moving frame the corresponding eigenvector
\/ P2 + m? can be de-
termined either by solving directly the equation (31)
or using the relation

| Py M) = explifB(oc)][var)-

The boost operator B(a.) = Bp(ae) + Bi(ae), de-
termined in the CPR by

that belongs to the value Ey =

(41)

é(ac) = W(O(C)N(O(C)WT(O(C), (42)
cg)nsists of the free B r and interaction B 1 parts. Here
N is the total boost operator for interacting fields.
Perhaps, one should note that the required
PH|P; M) = P*|P; M) (43)
follows from the property of the energy-momentum
operator P* = (H, P, P2, P?) to be the four-vector.
The parameters (38,2, 3%) = ﬁ for the Lorentz
transformation mg4(1,0,0,0) = (P°, P!, P2 P3) =P
are related to the “velocity” o = P/P° of the moving
frame as

B = pn,
As in our previous paper [3] we continue compar-
ison of UCT approach with results of the Bonn
group [5]. In particular, the low-energy pa-
rameters of NN scattering and deuteron prop-

erties are presented in Tablel and the fig-
ure.The best-fit parameters are collected in Table 2.

i =7/v, tanh( =w. (44)

Table 1. Deuteron and low-energy parameters. The
experimental values are from Table 4.2 of Ref. [5]

Parameter | Bonn B | UCT Experiment
as (fm) —23.71 | —23.57 | —23.7484+0.010
rs (fm) 2.71 2.65 2.7540.05
a; (fm) 5.426 5.44 5.419+0.007
7y (fm) 1.761 1.79 1.75440.008

eq (MeV) 2.223 2.224 2.224575
Pp (%) 4.99 4.89

1 0'4 s 1 s 1 s 1 s 1 s
0 1 2 3 4 5
p [fm’]

Deuteron wave function components d(p) = u(p)

and Y4(p) = w(p). Solid (dotted) curves calculated
for the Bonn B (UCT) potential
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Table 2. The best-fit parameters for the two models.

The row Potential B (UCT ) taken from Table A.1

in [5] (obtained by least squares fitting to OBEP wvalues in Table 1 of Ref. [3] including deuteron binding
energy and low-energy parameters). All masses are in MeV, and n, =1 except for n, = n, = 2

Model Meson ™ 7 P w 0 o, T=0(T=1)
/(] | 144 | 3 | 00[6.1] | 245 | 2488 | 18.3773 (8.9437)
Potential B A 1700 1500 1850 1850 2000 2000 (1900)
m 138.03 | 548.8 769 782.6 938 720 (550)
/A [f/g] | 13395 | 5.0 | 1.2[6.1] | 17.349 | 5.0 | 22.015 (5.514)
UCT A 2500 1219 1593 2494 | 2169 1200 (2500)
m 138.03 | 548.8 769 782.6 938 720 (550)

6. CONCLUSIONS

Starting from a total Hamiltonian for interacting me-
son and nucleon fields, we come to the Hamiltonian
and boost generator in the CPR whose interaction
parts consist of new relativistic interactions responsi-
ble for physical (not virtual) processes, particularly,
in the system of bosons (7—, n—, p—, w—, 6— and
o—mesons) and fermions (nucleons and antinucle-
ons).

Using the unitary equivalence of CPR to BPR,
we have seen how the NN scattering problem in
QFT can be reduced to the three-dimensional LS-
type equation for the T-matrix in momentum space.
The equation kernel is given by clothed two-nucleon
interaction of class [2.2].

Special attention has been paid to the elimina-
tion of auxiliary field components. We encounter such
a necessity for interacting vector and fermion fields
when in accordance with the canonical formalism the
interaction Hamiltonian density embodies not only a
scalar contribution but nonscalar terms too.

Being concerned with constructing two-nucleon
states and their angular-momentum decomposition
we have not used the so-called separable ansatz. The
clothed two-nucleon partial waves have been built
up as common eigenstates of the field total angular-
momentum generator and its polarization (fermionic)
part.

As a whole, persistent clouds of virtual particles
are no longer explicitly contained in CPR, and their

influence is included in properties of clothed particles
(these quasiparticles of the UCT method). In addi-
tion, we would like to stress that problem of the mass
and vertex renormalizations is intimately interwoven
with constructing the interactions between clothed
nucleons.
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PEJIATUBUCTCKUE B3AUMO/JIENCTBUS B ME3OH-HYKJIOHHBIX CUCTEMAX:
ITPUMMEHEHUE B TEOPUN AJEPHBIX PEAKIINUA

A.B. Illebexo, II.A. ®ponos, E.A. /lybosux

ITokazano, 9TO METOJ| YHUTAPHBIX ofeBaromux npeobpaszosanuii (YOII), passuTsrii B paborax [1,2] u npume-
HEHHBIN K 3a/1a9aM si7epHOil Gusuky [3,4], mO3BOIsIET T0-HOBOMY B3IJISHYTh HA TIOCTPOEHNE B3anMO/IeHCTBHI
MexKay “omeTbiMu’ HYKJIOHAME, STUMHA KBA3WIACTUIIAMHU CO CBOHCTBAMU (PUIUIECKUX HYKJIOHOB.

PEJIATUBICTCBHKI BBAEMO/III B ME3OH-HYKJIOHHUX CUCTEMAX:
3BACTOCYBAHHS B TEOPII AJEPHUX PEAKIIIN

O.B. Illebexo, II.0. @Pponos, €.0. Jybosux

IMokazawo, 1m0 MeTos yHiTapHUX ofsraydnx nepersopenb (YOII), pospobiennii B mpansx [1,2] ta 3acroco-
BaHMil 110 33724 AnepHoi bisukn [3,4], 103BOJIsE MO-HOBOMY MOTJISHYTH Ha MOOYIOBY B3a€MOJIT MixK “omsir-
HEeHUMK HYKJIOHAMU, UMK KBAa31YaCTUHKAMU 3 BJIACTUBOCTAMU (DI3MYHUX HYKJIOHIB.
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