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The clothed particle approach is applied to express the total Hamiltonian of interacting fields in terms of clothed

particles. In order to avoid ultraviolet divergences typical of many field theories we introduce some covariant cutoff

functions in momentum space in the Wentzel field model. We will show how in the framework of the nonlocal

meson-boson field model one can build interactions between the clothed mesons and bosons. Moreover, the mass

renormalization terms, that are compulsory to ensure the relativistic invariance of the theory as a whole (in Dirac’s

sense), turn out to be expressed through certain covariant integrals. They are convergent in the field model with

appropriate cutoff factors.
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1. INTRODUCTION

Following our recent work [1] we will show how an
algebraic approach proposed there for constructing
the generators of the Poincaré group can be realized
within a nonlocal extension of the so-called Wentzel
model. Our departure point is a nonlocal Hamil-
tonian for interacting fields, that can be built up
by introducing some “cutoff” function (shortly the
g-factor) in every vertex which is associated with par-
ticle creation and/or annihilation. As usually, such
g-factors are needed, first of all, to carry out finite in-
termediate calculations trying to remove ultraviolet
divergences inherent in local field models. However,
in the instant form of relativistic dynamics used here
it is very important to take into account certain con-
straints imposed upon such cutoffs to meet require-
ments of special relativity and other symmetries, e.g.,
with respect to charge conjugation, space inversion
and time reversal.

We have managed to do it [1] by defining a covari-
ant generating function for the cutoffs in case of trilin-
ear Yukawa-type couplings. The function, being de-
pendent on some Lorentz scalars composed of the par-
ticle three-momenta, plays a central role when inte-
grating the Poincaré commutators to derive then the
clothed-particle representation (CPR) expressions for
the Hamiltonian, the boost operators, the mass renor-
malization terms and so on accordingly [2].

Moreover, it is expected that by choosing the g-
factors in a proper way (for instance, as square inte-
grable functions of particle momenta) one can get rid
of certain drawback of field models with local inter-
actions (see [1]).

2. METHOD OF UNITARY CLOTHING
TRANSFORMATIONS

As before (see, e.g., [3]), let us remind that the UCT
method exposed in [1–4] is aimed to express a given
field Hamiltonian

H ≡ H(α) = HF (α) + HI(α)

= W (αc)H(αc)W †(αc) ≡ K(αc), (1)

primarily dependent on the α set of “bare” parti-
cle creation and annihilation operators, through their
“clothed” counterparts αc via the unitary transfor-
mation W . The latter removes from the interaction
V (α) that enters HI(α) = V (α) + Vren(α) the so-
called “bad” terms. By definition, such terms prevent
the physical vacuum |Ω〉 (the H lowest eigenstate)
and the one-clothed-particle states |n〉c = a†

c(n)|Ω〉
to be the H eigenvectors for all n included. The bad
terms occur every time when any normally ordered
product

a†(1′)a†(2′)...a†(n′
C)a(nA)...a(2)a(1)

of the class [C.A] embodies, at least, one substructure
which belongs to one of the classes [k.0] (k = 1, 2, ...)
and [k.1] (k = 0, 1, ...). Our consideration is focused
upon various field models (local and nonlocal) in
which the interaction density HI(x) consists of scalar
Hsc(x) and nonscalar Hnsc(x) contributions:

HI(x) = Hsc(x) + Hnsc(x), (2)

where the property to be a scalar means

UF (Λ)Hsc(x)U−1
F = Hsc(Λx), ∀x = (t,x) (3)

for all Lorentz transformations Λ.
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Therefore, we have

HI(α) =
∫

HI(x)dx = Hsc(α) + Hnsc(α), (4)

Hsc(nsc)(α) =
∫

Hsc(nsc)(x)dx,

Hsc(α) = Vbad(α) + Vgood(α)

to eliminate the bad part Vbad from the similarity
transformation

K(αc) = W (αc)[HF (αc) + HI(αc)]W †(αc)
= W (αc)[HF (αc) + Vbad(αc) (5)

+Vgood(αc) + Hnsc(αc)]W †(αc).

For the unitary clothing transformation (UCT) W =
expR with R = −R† it is implied that we will elimi-
nate the bad terms Vbad in the r.h.s. of

K(αc) = HF (αc) + Vbad(αc) + [R, HF ]

+[R, Vbad] +
1
2
[R, [R, HF ]] (6)

+
1
2
[R, [R, Vbad]] + ... + eRVgoode

−R + eRHnsce
−R

by requiring that

[HF , R] = Vbad (7)

for the operator R of interest.
One should note that unlike the original clothing

procedure we eliminate here the bad terms only from
Hsc interaction in spite of such terms can appear in
the nonscalar interaction as well (details in [5]).

Now, we get the division

H = K(αc) = KF + KI (8)

with a new free part KF = HF (αc) ∼ a†
cac and inter-

action

KI = Vgood(αc) + Hnsc(αc) + [R, Vgood]

+
1
2
[R, Vbad] + [R, Hnsc] +

1
3
[R, [R, Vbad]] + ..., (9)

where the r.h.s. involves along with good terms other
bad terms to be removed via subsequent UCTs.

3. A NONLOCAL EXTENSION OF THE
WENTZEL FIELD MODEL

As an illustration, let us consider the field model of
“scalar nucleons” (more precisely, charged spinless
bosons) and neutral scalar bosons, in which

HI = Vnloc + Ms + Mb (10)

with the normally ordered interaction

Vnloc =
1

2[2(2π)3]1/2

∫
dp′

Ep′

∫
dp
Ep

∫
dk
ωk

×{δ(p′ − p − k)g11(p′, p, k)b†(p′)b(p)a(k)

+ δ(p′ + p − k)g12(p′, p, k)b†(p′)d†(p)a(k) (11)
+ δ(p′ + p + k)g21(p′, p, k)d(p′)b(p)a(k)

+ δ(p′ − p− k)g22(p′, p, k)d†(p′)d(p)a(k)} + H.c.

Adopting the convention

[b†(p′), d(p′)]
[

X11(p′, p) X12(p′, p)
X21(p′, p) X22(p′, p)

] [
b(p)
d†(p)

]

= F †
ε′(p′)Xε′ε(p′, p)Fε(p) ≡ F †

b (p′)X(p′, p)Fb(p)
(12)

we can write in more compact form

Vnloc = Vb + V †
b , Vb =

∫
dk
ωk

: F †
b G(k)Fb : a(k).

Matrix G(k) is composed of elements

Gε′ε(p′, p, k) =
1

2[2(2π)3]1/2
ḡε′ε(p′, p, k)

× δ(k− (−1)εp + (−1)ε′
p′), (ε′, ε = 1, 2), (13)

where ḡε′ε(p′, p, k) coincide with gε′ε(p′, p, k) except
ḡ22(p′, p, k) = g22(p, p′, k).

It is implied that operators a(a†), b(b†) and d(d†)
meet commutation relations

[a(k), a†(k′)] = k0δ(k − k′), (14)

[b(p), b†(p′)] = [d(p), d†(p′)] = p0δ(p − p′), (15)

with all the remaining ones being zero. Here k0 =
ωk =

√
k2 + μ2

s (p0 = Ep =
√

p2 + μ2
b) is the energy

of the neutral (charged) particle with mass μs(μb).
For our nonlocal model we will retain the property to
be Lorentz scalar assuming

UF (Λ)Vnloc(x)U−1
F (Λ) = Vnloc(Λx). (16)

It is readily seen that this relation holds if the coeffi-
cients gε′ε meet the condition

gε′ε(Λp′, Λp, Λk) = gε′ε(p′, p, k). (17)

On the mass shell with p′2 = p2 = μ2
b and k2 = μ2

s

the latter means that functions gε′ε(p′, p, k) can de-
pend only upon invariants p′p, p′k, pk.

These cutoffs are subject to other constraints im-
posed by different symmetries. For example, invari-
ance of the hermitian operator Vnloc with respect to:
i) space inversion; ii) time reversal and iii) charge
conjugation yields the relations:

gε′ε(p′, p, k) = gε′ε(p, p′, k), ε′ �= ε (18)

gε′ε(p′, p, k) = gε′ε(p′−, p−, k−), (19)

g11(p′, p, k) = g22(p′, p, k). (20)

“Mass renormalization” terms Ms and Mb can be rep-
resented in the form:

Ms =
∫

dk
ω2

k

{m1(k)a†(k)a(k)

+ m2(k)[a†(k)a†(k−) + a(k)a(k−)]} (21)

and

Mb =
∫

dp
E2

p

{m11(p)b†(p)b(p) + m12(p)b†(p)d†(p−)

+ m21(p)b(p)d(p−) + m22(p)d†(p)d(p)}, (22)

where the coefficients m1,2(k) and mε′ε(p′, p), being
for the time unknown, may be momentum dependent.
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4. GENERATORS FOR CLOTHED
PARTICLES. ELIMINATION OF BAD

TERMS

At this point we will come back to our model with
Vbad = Vnloc, Vgood = 0 and R = Rnloc to calculate
the simplest commutator [Rnloc, Vnloc] in which the
clothing operator Rnloc is determined by

[HF , Rnloc] = Vnloc. (23)

From the equation it follows that its solution can be
given by

Rnloc =
∫

dk
ωk

: F †
b R(k)Fb : a(k) − H.c.

= Rnloc −R†
nloc. (24)

The matrix R(k) is composed of the elements:

Rε′ε(p′, p, k) = − ḡε′ε(p′, p, k)
ωk + (−1)ε′Ep′ − (−1)εEp

× δ(k + (−1)ε′
p′ − (−1)εp) (ε′, ε = 1, 2). (25)

Such a solution is valid if μs < 2μb. In other words,
under such an inequality the operator Rnloc has the
same structure as Vnloc itself. After the normal or-
dering of meson and boson operators in commutator
[Rnloc, Vnloc] one can obtain the 2 → 2 interactions
of the type b†a†ba, d†a†da, b†d†aa, a†a†bd and b†b†bb,
b†d†bd, d†d†dd.

For example, the boson-boson interaction opera-
tor can be represented as

1
2
[Rnloc, Vnloc](bb → bb)

= −1
4

∫
dp′

2

Ep′
2

∫
dp2

Ep2

∫
dp′

1

Ep′
1

∫
dp1

Ep1

× δ(p′
1 + p′

2 − p1 − p2)
× g11(p′1, p1, k)g11(p′2, p2, k)

×
{

1
(p1 − p′1)2 − μ2

s

+
1

(p2 − p′2)2 − μ2
s

}

× b†c(p
′
2)b

†
c(p

′
1)bc(p2)bc(p1) (26)

with k = p′
1 − p1. In these equations we meet a

covariant (Feynman-like) “propagator”

1
2

{
1

(p1 − p′1)2 − μ2
s

+
1

(p2 − p′2)2 − μ2
s

}
, (27)

which on the energy shell

Ep1 + Ep1 = Ep′
1
+ Ep′

2
(28)

is converted into the genuine Feynman propagator for
the corresponding S matrix.

5. MASS RENORMALIZATION AND
RELATIVISTIC INVARIANCE

We have seen how in the framework of the nonlo-
cal meson-boson model one can build the 2 → 2 in-
teractions between the clothed mesons and bosons.

They appear in a natural way from the commuta-
tor 1

2 [Rnloc, Vnloc] as the operators b†a†ba, d†a†da,
b†b†bb, b†d†bd, d†d†dd, b†d†aa, a†a†bd of the class
[2.2]. Moreover, this commutator is a spring of the
good operators a†a, b†b and d†d of the class [1.1] to-
gether with the bad operators aa and bd of the class
[0.2] and their hermitian conjugates a†a† and b†d† of
the class [2.0]. These operators may be cancelled by
the respective counterterms from

Hnsc(α) = Ms(α) + Mb(α). (29)

Let us show that such a cancellation gives rise to cer-
tain definitions of the mass coefficients. Indeed, one
can show that

1
2
[Rnloc, Vnloc](a†a)

= −1
2

∫
dk
ω2

k

∫
dp

EpEp−k
[

g2
21(p, q−, k−)

Ep + Ep−k + ωk

+
g2
12(p, q−, k)

Ep + Ep−k − ωk
]a†(k)a(k), (30)

where q = (Ep−k,p−k). In the same way we obtain

1
2
[Rnloc, Vnloc](aa)

=
∫

dk
ω2

k

∫
dp
Ep

g12(p, q−, k)g21(p, q−, k−)

×[
1

μ2
s + 2p−k

+
1

μ2
s − 2pk

]a(k)a(k−). (31)

Furthermore, assuming that

M (2)
s (α) +

1
2
[Rnloc, Vnloc]2mes = 0 (32)

with

[Rnloc, Vnloc]2mes = [Rnloc, Vnloc](a†a)

+[Rnloc, Vnloc](aa) + [Rnloc, Vnloc](a†a†),

we find

m
(2)
1 (k) =

1
2

∫
dp

EpEp−k
[

g2
21(p, q−, k−)

Ep + Ep−k + ωk

+
g2
12(p, q−, k)

Ep + Ep−k − ωk
], (33)

m
(2)
2 (k) = −

∫
dp
Ep

g12(p, q−, k)g21(p, q−, k−)

×[
1

μ2
s + 2p−k

+
1

μ2
s − 2pk

]. (34)

The operators that conserve the boson (antiboson)
number can be written as:

1
2
[Rnloc, Vnloc](b†b)

=
∫

dk
ωk

∫
dp

E2
pEp−k

[
g2
11(p, q, k)

Ep − Ep−k − ωk

− g2
21(p, q−, k−)

Ep + Ep−k + ωk
]b†(p)b(p), (35)
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1
2
[Rnloc, Vnloc](d†d)

=
∫

dk
ωk

∫
dp

E2
pEp−k

[
g2
22(p, q, k)

Ep − Ep−k − ωk

− g2
21(p, q−, k−)

Ep + Ep−k + ωk
]d†(p)d(p). (36)

One can show that from the condition

M
(2)
b (α) +

1
2
[Rnloc, Vnloc]2bos = 0, (37)

where
[Rnloc, Vnloc]2bos

= [Rnloc, Vnloc](b†b) + [Rnloc, Vnloc](b†d†)

+[Rnloc, Vnloc](db) + [Rnloc, Vnloc](d†d),

it follows

m
(2)
11 (p) = −

∫
dk

ωkEp−k
[

g2
11(p, q, k)

Ep − Ep−k − ωk

− g2
21(p, q−, k−)

Ep + Ep−k + ωk
], (38)

m
(2)
22 (p) = −

∫
dk

ωkEp−k
[

g2
11(p, q, k)

Ep − Ep−k − ωk

− g2
21(p, q−, k−)

Ep + Ep−k + ωk
]. (39)

Similarly one can obtain the non-diagonal coefficients

m
(2)
12 (p) = m

(2)
21 (p)

= −
∫

dk
ωkEp−k

g11(p, q, k)g21(p, q−, k−)

×[
1

Ep − Ep−k − ωk
− 1

Ep + Ep−k + ωk
] (40)

or
m

(2)
12 (p) = m

(2)
21 (p)

= −
∫

dk
ωk

g11(p, q, k)g21(p, q−, k−)

×[
1

μ2
s − 2pk

+
1

μ2
s + 2p−k

]

−
∫

dq
Eq

g11(p, q, u)g21(p, q−, u−)

×(
1

2[μ2
b − pq] − μ2

s

+
1

2[μ2
b + pq−] − μ2

s

), (41)

where u = (Ep−q,p− q).
Thus the clothing procedure has allowed us to get

analytical expressions for the interaction operators
between the clothed particles. Moreover, we have
obtained some prescriptions when finding the coef-
ficients in the “mass renormalization” operators.

At last, one should emphasize that if one starts
from expansion

Hnsc(x) =
∞∑

p=2

H(p)
nsc(x) (42)

with the second-order contribution H
(2)
nsc = M

(2)
s +

M
(2)
s = 0, then the RI would be violated at the be-

ginning because of the obvious discrepancy between

[HF ,D(2)] = [NF , H(2)
nsc] + [NB, Hsc], (43)

and

[Pk, D
(p)
j ] = iδkjH

(p)
nsc, (p = 2, 3, ...). (44)

By using previous equations, we obtain

−
∫

x[HF , Hsc(x)]dx

= [HF ,NI ] + [HI ,NI ] + [Hnsc,NF ]. (45)

Evidently, this equation is fulfilled if we put

NI = NB ≡ −
∫

xHsc(x)dx, (46)

[Hsc,NI ] = −
∫

xdx
∫

dx′[Hsc(x′), Hsc(x)]

= [NF + NI , Hnsc]. (47)

In a model with Hnsc = 0 the latter reduces to∫
e−iPXIeiPXdX = 0, (48)

where

I =
1
2

∫
rdr[Hsc(

1
2
r), Hsc(−1

2
r)]. (49)

One should note that we have arrived to previous
equation being inside the Poincaré algebra itself with-
out addressing the Noether integrals.

At this point, we put NI = NB + D,

[HF ,D] = [NB + D, Hsc] + [NF + NB + D, Hnsc],
(50)

that replaces commutator [H,N] = iP and deter-
mines displacement D. Assuming that scalar density
Hsc(x) is of the first order in coupling constants in-
volved and putting

Hnsc(x) =
∞∑

p=2

H(p)
nsc(x), (51)

we will search operator D in the form:

D =
∞∑

p=2

D(p), (52)

i.e., as a perturbation expansion in powers of the in-
teraction Hsc. Here label (p) denotes the p-th order
in these constants. One should keep in mind that
higher (p ≥ 2) terms are usually associated with per-
turbation series for mass and vertex counterterms.

By substituting Hnsc and D we get the chain of
relations:

[HF ,D(2)] = [NB, Hsc] + [NF , H(2)
nsc], (53)

[HF ,D(3)] = [D(2), Hsc] + [NF , H(3)
nsc] + [NB, H(2)

nsc],
(54)
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[P k, D(p)j ] = 0, (p = 2, 3, . . .) (55)

. . . . . . . . . . . .

Further, after such substitutions into the commuta-
tors

[Pk, Nj ] = iδkjH, [Jk, Nj ] = iεkjlNl,

[Nk, Nj ] = −iεkjlJl

we deduce, respectively, the following relations:

[Pk, D
(p)
j ] = iδkjH

(p)
nsc, (p = 2, 3, ...) (56)

[Jk, D
(p)
j ] = iεkjlD

(p)
l , (57)

[NFk, NBj ] + [NBk, NFj] = 0, (58)

[NFk, D
(2)
j ] + [D(2)

k , NFj] + [NBk, NBj ] = 0, (59)

[NFk, D
(3)
j ] + [D(3)

k , NFj ]

+ [NBk, D
(2)
j ] + [D(2)

k , NBj ] = 0,
(60)

(p = 2, 3, . . .).

6. DISCUSSION. TOWARDS WORKING
FORMULAE

We see that our algebraic approach in combination
with the UCT method makes our consideration more
and more appropriate for practical applications (in
particular, as one has to work with the vertex cut-
offs). The formulae for the 2 → 2 interactions become
more tractable if we assume that

gε′ε(p′, p, k)

= vε′ε([k+(−1)ε′
p′− (−1)εp][k− (−1)ε′

p′+(−1)εp]).
(61)

One can verify the nonlocal model with such cutoffs
possesses necessary properties. In terms of the vε′ε
functions we get

m
(2)
1 (k) =

1
2

∫
dp

EpEp−k
[
v2
21(ω

2
k − (Ep + Ep−k)2)

Ep + Ep−k + ωk

+
v2
12(ω

2
k − (Ep + Ep−k)2)

Ep + Ep−k − ωk
], (62)

m
(2)
2 (k) = −

∫
dp
Ep

v21(ω2
k − (Ep + Ep−k)2)

× v12(ω2
k − (Ep + Ep−k)2)

× [
1

μ2
s + 2p−k

+
1

μ2
s − 2pk

]. (63)

Now, by handling the charge-independent cutoffs,

v12(x) = v21(x) = f(x), (64)

we obtain
m

(2)
1 (k) = m

(2)
2 (k)

= −
∫

dp
Ep

f2(ω2
k − (Ep + Ep+k)2)

μ2
s + 2pk

−
∫

dp
Ep

f2(ω2
k − (Ep + Ep−k)2)

μ2
s − 2pk

. (65)

In other words, the option (64) yields the momentum-
independent coefficients m

(2)
1 (k) = m

(2)
2 (k) ≡ m

(2)
s .

Indeed, along with the Lorentz invariant denomina-
tors the integrand in the r.h.s. of (65) contains func-
tion f(I) whose argument

I(p,k) ≡ ω2
k − (Ep + Ep−k)2

= μ2
s − 2μ2

b − 2EpEp−k − 2p(p − k)

does not change under the simultaneous transforma-
tion p ⇒ p′ = Λp and p−k ⇒ Λ(p− k) on the mass
shells p2 = μ2

b and k2 = μ2
s. Now, we can reduce the

triple integral to the simple one:

m(2)
s = 8π

∫ ∞

0

t2dt√
t2 + μ2

b

f2(μ2
s − 4t2 − 4μ2

b)
4t2 + 4μ2

b − μ2
s

. (66)

Furthermore, it has turned out:

m
(2)
11 (p) = m

(2)
22 (p)

= −
∫

dk
ωkEp−k

[
v2
11(ω

2
k − (Ep − Ep−k)2)

Ep − Ep−k − ωk

−v2
21(ω

2
k − (Ep + Ep−k)2)

Ep + Ep−k + ωk
], (67)

m
(2)
12 (p) = m

(2)
21 (p)

= −
∫

dk
ωkEp−k

v11(ω2
k − (Ep − Ep−k)2)

×v21(ω2
k − (Ep + Ep−k)2)

×[
1

Ep − Ep−k − ωk
− 1

Ep + Ep−k + ωk
]. (68)

Evaluation of these coefficients is simplified once we
put

v11(ω2
k − (Ep − Ep−k)2) = v21(ω2

k − (Ep + Ep−k)2)

= f(ω2
k − (Ep + Ep−k)2), (69)

m
(2)
b (p) ≡ m

(2)
11 (p) = m

(2)
21 (p)

= 2
∫

dk
ωk

f2(ω2
k − (Ep + Ep−k)2)

E2
p−k − (Ep − ωk)2

+2
∫

dk
Ep−k

f2(ω2
k − (Ep + Ep−k)2)

ω2
k − (Ep + Ep−k)2

(70)

or
m

(2)
b (p) = C1(p) + C2(p),

C1(p) = 2
∫

dk
ωk

f2(ω2
k − (Ep + Ep−k)2)

2pk − μ2
s

,

C2(p) = 2
∫

dq
Eq

f2(μ2
s − 2μ2

b − 2pq)
μ2

s − 2μ2
b − 2pq

.

Evidently, the second integral does not depend upon
p so

C2(p) = C2(0) = 2
∫

dq
Eq

f2(μ2
s − 2μ2

b − 2μbEq)
μ2

s − 2μ2
b − 2μbEq
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= 8π

∫ ∞

0

q2dq

Eq

f2(μ2
s − 2μ2

b − 2μbEq)
μ2

s − 2μ2
b − 2μbEq

. (71)

It is not the case for integral C1(p). Thus the boson
“mass renormalization” coefficients may be momen-
tum dependent.

7. CONCLUSIONS

In order to avoid ultraviolet divergences typical of
many field theories we have introduced some co-
variant cutoff functions in momentum space in the
Wentzel field model, that makes our model nonlocal.
For this model we retain the property of the interac-
tion density to be Lorentz-scalar.

We have shown how in the framework of the non-
local meson-boson field model one can build interac-
tions between the clothed mesons and bosons. More-
over, the mass renormalization terms, that are com-
pulsory to ensure the relativistic invariance of the the-
ory as a whole (in Dirac’s sense), turn out to be ex-
pressed through certain covariant integrals. They are
convergent in the field model with appropriate cutoff
factors.
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