GRASSMANN DYNAMICS OF CLASSICAL SPIN
IN NONABELIAN GAUGE FIELDS
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Using Grassmann variant of classical mechanics, we construct Lagrangian dynamics of classical spinning particle in
(possibly non-abelian) gauge fields. Quantization of this model is briefly discussed.
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In [1] the Lagrangian theory of pseudoclassical
particle moving in electromagnetic field was con-
structed and its quantization leading to Dirac equa-
tion was considered. In the present note, we gen-
eralize this theory onto the case of arbitrary gauge
group. Quantization and the case of nonzero anom-
alous magnetic momentum are discussed in last two
paragraphs.

Let z* be even ”space-time” coordinated of our
particle, £# odd spin variables, A# even gauge poten-
tial, and J, generators of certain finite-dimensional
anti-hermitian representation of our gauge group (e.g.
spinor representation of SO(3)), so [Jq, Jp] = if,,°Je.
Let ¢, @ be even coordinates of internal gauge degrees
of freedom of our particle (their indexes will not be
written explicitly). Define their covariant derivatives
as:
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where s is even coordinate of a worldline and overdot
means derivative w.r.t. s. Note that ##%, # 1 in
general, see [2] for discussion. Define gauge charge as
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Consider the following lagrangian
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where p/ = e is the magnetic moment of a particle
(see last paragraph however), S, = %fufl, is spin
tensor and
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is gauge field tensor. Note that unfolding the brack-
ets in r.h.s. of (3) we obtain usual interaction term
—eAli"Q, due to (1). Varying the action J Lds
w.r.t. ¢ and ¢ we obtain:
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so using (2) we obtain equations of motion of gauge

charge
DQa :u/ b
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Varying w.r.t. £ we obtain spin equations of motion

mé" =y FS Q. (6)

Finally, varying w.r.t. z* we have to consider @,
as geodesically constant: DQ,/Ds = 0 but not
Q. = 0 contrary to ordinary variational calcu-
lus. Then using (2), (4) we obtain:

/

mit = eF*"1,Q, + ;_m(D/LFpU)aSpUQa’ (7)

where D* is ordinary covariant derivative w.r.t. Af,

so d(EL,Qu)/ds = (DyFy)*Quir? + Ff,DQ,/Ds.
Egs. (5)-(7) are just the ones obtained by Heinz [3]
by classicalizing the ordinary QCD hamiltonian (cf.
also [4]).

Due to nonabelian Bianchi identity

('D[#Fﬂﬂ])a =0

we see that the following quantities are conserved:

Cl = gufbu‘v

Mmoo F e
02 = 5.13’1 JT# + %FMVS# Qa, (8)
Cs =qq.

Since orbits of coadjoint representation are distin-
guished by C5 values, we see that different types of
gauge charges arise in the sense of [5].
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To quantize our theory, we turn ¢, g into bosonic
creation-destruction operators, then different values
of occupation number operator Cs correspond to dif-
ferent representations of gauge group, £* turn into
v-matrices, and canonical momentum p,, = 1,, " —
eAf. Q. [6] turns into —i0,. Thus C1 becomes Dirac

operator (cf. [1] in the abelian case) and Cs becomes
Hamiltonian. If coadjoint representation of gauge
group is chosen, then Qa turn into Gell-Mann ma-
trices of ordinary QCD.

If 1/ # e, we obtain theory with anomalous mag-
netic momentum. Considering C; as a Lagrangian
constraint, we see that all the above considerations
go without substantial change, so we obtain BMT-
type [7] equations (cf. [2] for abelian case):

m(@ri,)SM = ' (i%d) F*Y S 1 Qo+
(W = )P S 1iQ,,

and some additional terms in the r.h.s. of eq. (7)
arise. For the case of U(1) gauge group, the quan-
tized version of Cy for an arbitrary value of y' was
considered in [8].
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TPACCMAHOBA /IMHAMUKA KJIACCUYECKOTI'O CIITMHA B HEABEJIEBBIX
KAJINMBPOBOYHBIX ITOJIAX

C.A. Hoavwun

Ha ocnoBe rpaccMaHOBa BapraHTa KJIACCHIECKON MEXaHWKN MOCTPOEHA JArPAHXKeBa NUHAMUKA KJIACCHIe-
CKO 4aCTHUIbl CO CHMHOM B KaJubPOBOYHbIX HOJIAX (B T.4. HeabeseBbix). Kparko paccMOTPEHO KBaHTOBAHUE

OpPeJIOzKeHHON MOJeJu.

TPACMAHOBA /IJMHAMIKA KJIACUYHOTO CIIIHY Y HEABEJIEBIX
KAJIIBPYBAJIBHUX IIOJIAX

C.0. IIoavwur

Ha ocnoBi rpacmanoBa BapiaHTa KJIACHIHOI MEXaHIKH TOOYI0BAHO JIATPAHZKEBY JUHAMIKY KIACHIHOI YaCTHH-
Ku 31 cuinoMm y KasibpyBasibHux nossx (B 1.4. neabeseBux). Koporko posriisiHyTo KBaHTYBaHHS 3al[POIIOHO-

BaHOI MOJIEJTi.

38



