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The character of elastic forces of relativistic membranes and p-branes encoded in their nonlinear equations is studied.
The toroidal brane equations are reduced to the classical equations of anharmonic elastic media described by monomial
potentials. Integrability of the equations is discussed and some of their exact solutions are constructed.
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1. INTRODUCTION

A.I. Akhiezer paid much attention to search for ef-
fects connected with elastic wave propagation in con-
densed matter physics [1]. Relativistic membranes
(p=2) and p-branes in higher dimensional space-time
are fundamental objects of string theory [2], and their
macroscopic physics is also controlled by effective
elastic forces of fluxes of elementary particle fields,
like QCD tubes in string theory. However, quantiza-
tion of branes is blocked up by nonlinearity of their
equations (see e.g. [3-15] and many others). The
classical and quantum problems of the brane physics
deserve great attention and stimulate investigation of
elastic forces associated with relativistic branes.

Here we search the physics of closed p-
branes (with p = 2, 3, ...) evolving in D = (2p + 1)-
dimensional Minkowski space, and find their exact so-
lutions. The brane shape is chosen to be invariant un-
der the global symmetry O(2)×O(2)×...×O(2). The
p-brane equations are reduced to nonlinear ones of an
elastic anharmonic medium with a symmetric stress
tensor generated by the interaction Hamiltonian pro-
portional to a monomial potential of the degree 2p.
Exact solvability of degenerate p-brane shaped as p-
torus with equal radii, is established. The found solu-
tions are presented by (hyper)elliptic functions that
describe p-branes contracting during the time defined
by their energy density and the dimension p.

2. p-BRANES AS ELASTIC MEDIA

In the orthogonal gauge (�̇x ·∂r�x) = 0, with the in-
dex r numerating the space-like p-brane parameters
σr (r = 1, 2, .., p), the equations of p-brane in D-
dimensional Minkowski space are transformed into

the second-order PDE for its (D − 1)-dimensional
Euclidean vector �x (see [16-18] and refs. therein)

�̈x =
T

P0
∂r

(
T

P0
|g|grs∂s�x

)
, Ṗ0 = 0, (1)

where �̇x ≡ ∂t�x, the energy density P0 = T
√

|g|
1−�̇x2

with g = det(grs), the induced metric grs = ∂r�x · ∂s�x
on the p-brane hypersurface Σp, and the brane ten-
sion T . The system (1) is rather complicated and its
general solution is not known. Thus, to get an in-
formation on brane physics one can study particular
solutions of (1). To find such solutions for branes
with a fixed dimension p (p = 2, 3, ...) we fix the
Minkowski space dimension to be odd D = 2p + 1.
Moreover, we suppose that the closed brane hyper-
surface Σp is invariant under the global symmetry
O(2) × O(2) × ... × O(2). Then, using the residual
gauge symmetry of the orthogonal gauge

t̃ = t, σ̃r = f r(σs), (2)

we present the Euclidean p-brane vector �x(t, σr) as

�xT = (q1 cosσ1, q1 sin σ1, . . . , qp cosσp, qp sinσp), (3)

using the polar coordinate pairs (qr(t), σr). It results
in the diagonalized metric grs(t) independent of σr

grs(t) = q2
r(t)δrs, g = (q1q2...qp)2. (4)

The anzats (3) shows that the coordinates q(t) =
(q1, q2, . . . , qp) are the time-dependent radii R(t) =
(R1, R2, . . . , Rp) of the flat p-torus Σp. As a conse-
quence, the energy density P0 becomes independent
of the p-torus parameters σr and reduces to a con-
stant C chosen to be positive

P0 ≡ T

√
(q1q2 . . . qp)2

1 − q̇2
= C. (5)
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It means that the Hamiltonian density H0 corre-
sponding to �x (3) equals the constant C

H0 = P0 =
√

π2 + T 2(q1q2...qp)2, (6)

where π(t) = (π1, π1, ..., πp) is canonical momentum
conjugate to q(t). Then Eqs. (1) are reduced to the
PDE equations for the world vector �x(t, σr)

�̈x −
(

T

C

)2

ggrs∂rs�x = 0, (7)

which are equivalent to the algorithmic chain of p
nonlinear equations for the components q1, q2, . . . , qp

q̈r +
(

T

C

)2

(q1 . . . qr−1qr+1 . . . qp)2qr = 0, (8)

where the component index r runs from 1 to p. The
first integral of the system (8) is given by the relation
(5) presented in the form

q̇2 +
(

T

C

)2

(q1q2...qp)2 = 1. (9)

Eqs. (8) are presented in a compact form as

Cq̈ = −∂V

∂q
, (10)

with the elastic energy density V (q) proportional to
the determinant g of the metric tensor of Σp

V (q) =
T 2

2C
g ≡ T 2

2C
(q1...qp)2. (11)

The equations of motion of an elastic nonrelativis-
tic medium [19] with the mass density ρ

ρüi =
∂σik

∂xk
, (12)

where üi and σik are the medium acceleration and
the stress tensor, respectively. Then one can see that
Eqs. (10) are presented in the form of Eqs. (12):

Cq̈r = − T 2

2C
δrs

∂g

∂qs
(13)

with the symmetric stress tensor σrs defined as

σrs = −pδrs, p =
T 2

2C
g ≡ T 2

2C

p∏
s=1

q2
s . (14)

The relations (14) show that p = V , p is an isotropic
pressure per unit (hyper)area of the p-brane (hy-
per)volume, and the constant C is a relativistic gen-
eralization of the mass density ρ. The pressure p is
created by the elastic force Fr

Fr = − ∂V

∂qr
≡ −T 2

C
(q1 . . . qr−1qr+1 . . . qp)2qr. (15)

The relation (15) yields an anharmonic generalization
of Hooke law for for the toroidal p-branes.

Taking into account that the Hamiltonian den-
sity (6) reduces to the constant C in the totally fixed
gauge, one can introduce a new Hamiltonian density

H =
H2

0

2C
= C/2,

quadratic in the brane momentum π. The brane
Hamiltonian H associated with the density H is

H =
∫

dpσH, H =
1

2C
(π2 + T 2(q1...qp)2). (16)

Then Eqs. (8) are presented in the Hamiltonian form
using the PB’s:

{πa, qb} = δab, {qa, qb} = 0, {πa, πb} = 0.

The Hamiltonians (16) contain the potential energy
terms quartic in q for membranes (p = 2) and higher
monomials for p > 2, respectively.

The anharmonic Hooke force (15) implemented
with the conservation law (9)

√
1 − q̇2 =

T

C
|q1q2...qp|, (17)

restricts the character of the p-brane motion by

0 ≤ |q̇| ≤ 1, 0 ≤ T

C
|q1q2...qp| ≤ 1. (18)

The inequalities (18) imply that the velocity value |q̇|
grows when the p-brane (hyper)volume ∼ |q1q2...qp|
diminishes, and reaches the velocity of light (|q̇| = 1)
while the (hyper)volume vanishes. Thus, the mini-
mal velocity q̇ = 0 corresponds to the maximal (hy-
per)volume ∼ |q1q2...qp| equal to C/T . For T = 0,
associated with the tensionless p-branes [9, 11], Eqs.
(8) take the linear form

q̈ = 0, |q̇| = 1, (19)

similar to the equation of free massless particle in the
effective space formed by the p-torus radii.

For the tension T different from zero the system
(8) is rather complicated, and its general solution is
unknown. However, one can observe a case when
equations (8) may be exactly solved.

3. ON INTEGRABILITY OF p-BRANE
EQUATIONS

Here we show the exact solvability of the
non-linear p-brane equations (8) for a degener-
ate case when all the components are equal:
q1 = q2 = ... = qp ≡ q. In this case the system (8)
is reduced to the nonlinear differential equation

q̈ + (
T

C
)2q(2p−1) = 0, (20)

which integration results in the first integral

pq̇2 + (
T

C
)2q2p = 1. (21)
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After the change of q by y ≡ Ω
1
p
√

pq, with Ω ≡
T
C p−

p
2 , Eq. (21) takes the form(

dy

dt̃

)2

=
1
2
(1 − yp)(1 + yp) (22)

with the new time variable t̃ ≡ √
2Ω

1
p t.

For p = 2, corresponding to the degenerate
toroidal membrane, Eq. (22) coincides with the
canonical equation defining the Jacobi elliptic cosine
cn(x; k) (

dy

dx

)2

= (1 − y2)(1 − k2 + k2y2), (23)

with the elliptic modulus k = 1√
2
.

Thus, the general solution of (23) is

y(t) = cn
(√

2ωt;
1√
2

)

with 2ω = T/C. After using the relation q ≡ y/
√

2ω
we obtain the solution for the desired coordinate q(t)

q(t) =

√
C

T
cn(

√
T

C
(t + t0);

1√
2
). (24)

This solution is similar to the elliptic one earlier ob-
tained in [17, 18] and describing the U(1) invari-
ant membrane in the five-dimensional (i.e. D = 5)
Minkowski space. If the initial velocity q̇(t0) > 0,
the solution (24) describes an expanding torus which

reaches the maximal size qmax =
√

C
T at some mo-

ment t, and then contracts to a point after a finite

time K(1/
√

2)
√

C
T (where K(1/

√
2) = 1.8451) is the

quarter period of elliptic cosine).
An explicit equation of the surface Σ2(t) of the

contracting torus (24) is

x2
1 + x2

2 + x2
3 + x2

4 =
4C

T
cn

(√
T

C
(t + t0),

1√
2

)2

,

x1x4 = x2x3. (25)

For the case p > 2 integration of Eq. (22) results in
the solution

t̃ = ±
√

2
∫

dy√
1 − y2p

+ const (26)

that contains hyperelliptic integral and defines im-
plicit dependence of q on the time. Thus, the general
solution of Eq. (21) is expressed in terms of hyperel-
liptic functions generalizing elliptic functions.

The variable change z = y2p transforms the solu-
tion (26) into the integral

t̃ − t̃0 = ± 1√
2p

∫ z
1
2p

0

dzz( 1
2p−1)(1 − z)−

1
2 (27)

similar to the integral discussed in [20].
The use of the representation (27) allows to find

the contraction time Δt̃c of the degenerate p-torus

from its maximal size qmax = (C
T )

1
p to qmin = 0. This

time turns out to be proportional to the well-known
integral

Δt̃c =
1√
2p

∫ 1

0

dzz( 1
2p−1)(1− z)

1
2−1 =

1√
2p

B(
1
2p

,
1
2
)

which defines the Euler beta function B( 1
2p , 1

2 ).
Coming back to the original time t and taking into

account that C = 2E we obtain

Δtc ≡ 1√
2
Ω− 1

p Δt̃c =
1

2
√

p
(
2E

T
)

1
p B(

1
2p

,
1
2
). (28)

The representation (28) gives the explicit dependence
of the contraction time in terms of the p-brane dimen-
sion p and its energy density E.

So, we conclude that the case of degenerate
toroidal p-branes with coinciding radii is exactly in-
tegrable and connects the solutions of the p-brane
equations with (hyper)elliptic functions.

4. CONCLUSIONS

• A special class of relativistic p-branes embed-
ded in the D = (2p+1)-dimensional Minkowski
space is introduced for studying the elastic
forces associated with branes. The compact
hypersurfaces of these p-branes are chosen to
be invariant under the transformations of the
O(2)×O(2)× . . .×O(2) subgroup of the rota-
tions of the 2p-dimensional Euclidean space.

• The brane equations are found to be reduced
to a relativistic generalization of equations of
the elastic media subjected to isotropic pres-
sure dependent of time. Their Hamiltonians
including monomial potentials of the degree 2p
(p = 2, 3, ..., (D − 1)/2) and yielding anhar-
monic Hooke forces of branes are constructed.

• The p-brane equations are proved to be inte-
grable if the brane shapes are similar to p-
tori with equal radii. The constructed (hy-
per)elliptic solutions describe contracting p-
tori. The exact formula for the contraction time
of these p-branes is derived.
In particular, these results give a new infor-
mation on the nonlinear elastic potentials as-
sociated with five-branes (p = 5) of mysterious
M/string theory supposed to exist in the space-
time with the exclusive dimension D = 11.
Interestingly, a breakdown of the linear Hooke
elasticity and its replacement by a nonlinear an-
harmonic law, similar to the ones revealed by
us, were earlier discovered in 2d and 3d smectics
A (see, e.g., [21, 22]).
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