Long-Time Asymptotic Behavior of an Integrable Model of the Stimulated Raman Scattering with Periodic Boundary Data

E.A. Moskovchenko and V.P. Kotlyarov
Mathematical Division, B. Verkin Institute for Low Temperature Physics and Engineering National Academy of Sciences of Ukraine 47 Lenin Ave., Kharkiv, 61103, Ukraine
E-mail:kuznetsova@ilt.kharkov.ua;
kotlyarov@ilt.kharkov.ua

Received July 6, 2009

The long-time asymptotic behavior of the initial-boundary value (IBV) problem in the quarter plane $(x>0, t>0)$ for nonlinear integrable equations of the stimulated Raman scattering is studied. Considered is the case of zero initial condition and single-phase boundary data ($p \mathrm{e}^{\mathrm{i} \omega t}$). By using the steepest descent method for oscillatory matrix Riemann-Hilbert problems it is shown that the solution of the IBV problem has different asymptotic behavior in different regions, namely:

- the selfsimilar vanishing (as $t \rightarrow \infty$) wave, when $x>\omega^{2} t$;
- the modulated elliptic wave of finite amplitude, when $\omega_{0}^{2} t<x<\omega^{2} t$;
- the plane wave of finite amplitude, when $0<x<\omega_{0}^{2} t$.

The similar results are true for the same IBV problem with nonzero initial condition vanishing as $t \rightarrow \infty$.

Key words: nonlinear equations, Riemann-Hilbert problem, asymptotics. Mathematics Subject Classification 2000: 37K15, 35Q15, 35B40.

1. Introduction

We consider the initial boundary value problem for integrable model of the stimulated Raman scattering (SRS equations):

$$
\begin{equation*}
2 \mathrm{i} q_{t}=\mu, \quad \mu_{x}=2 \mathrm{i} \nu q, \quad \nu_{x}=\mathrm{i}(\bar{q} \mu-q \bar{\mu}), \quad x \in(0, \infty), \quad t \in(0, \infty) \tag{1}
\end{equation*}
$$

with the vanishing (as $x \rightarrow \infty$) initial function and periodic boundary conditions:

$$
\begin{equation*}
q(x, 0)=u(x), \quad \mu(0, t)=p \mathrm{e}^{\mathrm{i} \omega t}, \quad p>0, \quad \nu(0, t)=l=\text { const. } \tag{2}
\end{equation*}
$$

Since (1) implies $\frac{\partial}{\partial x}\left(\nu^{2}(x, t)+|\mu(x, t)|^{2}\right)=0$, in what follows we assume that $\nu^{2}(x, t)+|\mu(x, t)|^{2} \equiv 1$ and, particularly, $p^{2}+l^{2}=1$. For definiteness we assume that $p=|\mu(0, t)|>0$ and $\omega>0$, while $l<0$. The case $\omega<0 l>0$ is obtained by passing to the complex conjugated SRS equations.

The phenomenon of the stimulated Raman scattering is described by three coupled PDEs [1]. Initial boundary value problems for these equations in the domain $x \in(0, L), t \in(0, T)$ are well posed [2] for any $L>0$ and $T>0$. The SRS equations (1) are integrable reduction of them in a special case of the transient limit [1, 3]. In other words, the SRS equations admit the Lax pair, and the inverse scattering transform can be applied. We will use the version [4] of this transform when simultaneous spectral analysis of both the Lax equations is involved. The IBV problem for the SRS equations is a nice model of PDEs, which can be solved by using the method of simultaneous spectral analysis and the matrix Riemann-Hilbert problem without a restriction caused by the so-called global relation $[4,5]$ between spectral functions. Such a restriction takes place for the most of integrable equations because the method [4] involves more boundary values than in the corresponding well-posed IBV problem. Such an overdetermination of the boundary data implies the mentioned above global relation.

If $q(x, t)$ is real and $2 q=v_{x}, \mu=\mathrm{i} \sin v, \nu=\cos v$, then the SRS equations are reduced to the sine-Gordon equation: $v_{x t}=\sin v$. The long-time asymptotic behavior of the rapidly decreasing (as $|x| \rightarrow \infty$) solution of this equation was studied in [6].

The IBV problem in the finite domain $[0, L] \mathrm{x}[0, \mathrm{~T}]$ was studied in [1], where the long-distance behavior of the system was established via the third Painleve transcendent. The problem in the finite domain was also considered in [7], where rigorous analysis of the Riemann-Hilbert problem was done. In the present paper, the IBV problem for the SRS equations is studied in the domain $(x>0, t>0)$ with zero initial function and simple periodic boundary data. The similar problem with nonzero initial function, vanishing at infinity, was studied in [8]. Using the steepest descent method of P. Deift and X. Zhou [9] for the oscillatory matrix RH problem, introduced in [8], there was obtained the asymptotics of the solution of the IBV problem in the form of a selfsimilar vanishing wave travelling in the region $x>\omega^{2} t$. By using the ideas of [10] we obtained the explicit formula for the asymptotics of the solution of the IBV problem in the complementary region
$0<x<\omega^{2} t$. In the region $\omega_{0}^{2} t<x<\omega^{2} t$, where

$$
\omega_{0}^{2}=\frac{-8 l^{3} \omega^{2}}{27-18 l^{2}-l^{4}+\sqrt{\left(1-l^{2}\right)\left(9-l^{2}\right)^{3}}}, \quad-1<l<0
$$

the solution takes the form of a modulated elliptic wave of finite amplitude while in the region $0<x<\omega_{0}^{2} t$ it takes the form of a plane wave. To make the asymptotic analysis more transparent, we consider the case when the initial function $u(x) \equiv 0$.

2. Riemann-Hilbert Problem

To formulate the Riemann-Hilbert problem, related to the IBV problem (1)-(2), we introduce the spectral functions corresponding to initial and boundary conditions. We consider the case $u(x) \equiv 0$. Therefore spectral functions are defined by boundary data only. The boundary values $\mu(0, t)=p e^{\mathrm{i} \omega t}$ and $\nu(0, t)=$ $l\left(p^{2}+l^{2}=1\right)$ give the t-equation from the Lax pair:

$$
\frac{\mathcal{E}(t, k)}{d t}=\frac{\mathrm{i}}{4 k}\left(\begin{array}{cc}
l & \mathrm{i} p \mathrm{e}^{\mathrm{i} \omega t} \tag{3}\\
-\mathrm{i} p \mathrm{e}^{-\mathrm{i} \omega t} & -l
\end{array}\right) \mathcal{E}(t, k)
$$

We choose the solution of (3) in the form

$$
\mathcal{E}(t, k)=\frac{1}{2} \mathrm{e}^{\mathrm{i} \omega \sigma_{3} t / 2}\left(\begin{array}{ll}
\varkappa(k)+\frac{1}{\varkappa(k)} & \varkappa(k)-\frac{1}{\varkappa(k)} \tag{4}\\
\varkappa(k)-\frac{1}{\varkappa(k)} & \varkappa(k)+\frac{1}{\varkappa(k)}
\end{array}\right) \mathrm{e}^{-\mathrm{i} \Omega(k) \sigma_{3} t},
$$

where

$$
\varkappa(k)=\sqrt[4]{\frac{k-\bar{E}}{k-E}}, \quad \Omega(k)=\frac{\omega}{2 k} X(k), \quad X(k):=\sqrt{(k-E)(k-\bar{E})},
$$

and

$$
E=\frac{l+\mathrm{i} p}{2 \omega}=E_{1}+\mathrm{i} E_{2}, \quad \bar{E}=E_{1}-\mathrm{i} E_{2}
$$

To fix the branches of the roots, we choose the cut in the complex k-plane along the curve $\gamma \cup \bar{\gamma}$, where $\operatorname{Im} \Omega(k)=0$, and define $\varkappa(k)$ and $\Omega(k)$ in such a way that

$$
\varkappa(k)=1+O\left(k^{-1}\right), \quad \Omega(k)=\frac{\omega}{2}+O\left(k^{-1}\right) \quad \text { as } \quad k \rightarrow \infty
$$

The set $\Sigma:=\{k \in \mathbb{C} \mid \operatorname{Im} \Omega(k)=0\}$ (Fig.) consists of the real line $\operatorname{Im} k=0$ and the circle arc $\hat{\gamma}=\gamma \cup \bar{\gamma}$, which is defined by

$$
\left(k_{1}-\frac{|E|^{2}}{2 E_{1}}\right)^{2}+k_{2}^{2}=\left(\frac{|E|^{2}}{2 E_{1}}\right)^{2}, \quad k_{1}^{2}+k_{2}^{2} \geq|E|^{2}
$$

Let us define the oriented contour Γ as follows: $\Gamma=\mathbb{R} \cup \gamma \cup \bar{\gamma}$. Denoting $\Omega_{ \pm}(k), \varkappa_{ \pm}(k)$ the boundary values of $\Omega(k), \varkappa(k)$ on the cut $\hat{\gamma}$ from the right (+) and left (-) sides of the cut (see Fig. 1), we have

$$
\Omega_{+}(k)=-\Omega_{-}(k), \quad \varkappa_{-}(k)=\mathrm{i} \varkappa_{+}(k) .
$$

The matrix-valued function $\mathcal{E}(t, k)$ in (4) is analytic in $\mathbb{C} \backslash\{\hat{\gamma} \cup\{0\}\}$ and it has an essential singularity at the point 0 . The spectral data corresponding to the boundary values $\mu(0, t)=p e^{\mathrm{i} \omega t}$ and $\nu(0, t)=l\left(p^{2}+l^{2}=1\right)$ are defined as follows:

$$
\begin{equation*}
A(k)=\frac{1}{2}\left(\varkappa(k)+\frac{1}{\varkappa(k)}\right), \quad B(k)=\frac{1}{2}\left(\varkappa(k)-\frac{1}{\varkappa(k)}\right) \quad k \in \mathbb{C} \backslash \hat{\gamma} . \tag{5}
\end{equation*}
$$

Fig. The set Σ and contour Γ.
Define the following functions:

$$
\begin{equation*}
\rho(k):=\frac{B(k)}{A(k)}, \quad k \in \mathbb{C} \backslash \hat{\gamma} ; \quad f(k):=\frac{\mathrm{i}}{A_{+}(k) A_{-}(k)}, \quad k \in \gamma, \tag{6}
\end{equation*}
$$

where the sign \pm denotes boundary value of $\mathrm{A}(\mathrm{k})$ from the left $(+)$ and from the right (-) of the arc $\hat{\gamma}=\gamma \cup \bar{\gamma}$.

Consider the matrix Riemann-Hilbert problem on the contour Γ proposed in [8].

Find a 2×2 matrix-valued function $M(x, t, k)$ such that:

- $M(x, t, k)$ is sectionally analytic for $k \in \mathbb{C} \backslash \Gamma$;
- $M(x, t, k)$ is bounded in neighborhoods of the end points E and \bar{E};
- $M(x, t, k)=I+O\left(k^{-1}\right), \quad k \rightarrow \infty$;
- $M(x, t, k)=\tilde{m}_{0}(x, t)+O(k), \quad k \rightarrow 0 ;$
- $M_{-}(x, t, k)=M_{+}(x, t, k) J(x, t, k), \quad k \in \Gamma$, where

$$
J(x, t, k)=\left\{\begin{array}{l}
\left(\begin{array}{cc}
1 & \rho(k) \mathrm{e}^{-2 \mathrm{it} \theta(k)} \\
-\rho(k) \mathrm{e}^{2 \mathrm{i} t \theta(k)} & 1-\rho^{2}(k)
\end{array}\right), \quad k \in \mathbb{R}, \tag{7}\\
\left(\begin{array}{cc}
1 & 0 \\
f(k) \mathrm{e}^{2 i t \theta(k)} & 1
\end{array}\right), \quad k \in \gamma, \\
\left(\begin{array}{cc}
1 & f(k) \mathrm{e}^{-2 i t \theta(k)} \\
0 & 1
\end{array}\right), \quad k \in \bar{\gamma},
\end{array}\right.
$$

with $\theta(k)=\theta(k, \xi)=1 / 4 k-k / 4 \xi^{2}, \xi^{2}:=t / 4 x$.
Theorem 2.1. Let $\rho(k)$ and $f(k)$ be given as (6) and (5). Then the RiemannHilbert problem (7) has a unique solution $M(x, t, k)$. The functions $q(x, t), \mu(x, t)$ and $\nu(x, t)$, defined by the equations

$$
\begin{gathered}
q(x, t):=2 \mathrm{i} \lim _{k \rightarrow \infty}[k M(x, t, k)]_{12}, \\
\left(\begin{array}{cc}
\nu(x, t) & \mathrm{i} \mu(x, t) \\
-\mathrm{i} \mu(x, t) & -\nu(x, t)
\end{array}\right):=-M(x, t, 0) \sigma_{3} M^{-1}(x, t, 0),
\end{gathered}
$$

are the solution of the IBV problem (1)-(2) with zero initial function $u(x)$.
This theorem is a corollary of the more general $(u(x) \neq 0)$ theorem proved in [8].

3. Asymptotic Behavior of the Solution of the IBV Problem

In this section we study the long-time asymptotic behavior of the solution to the IBV problem (1)-(2). We show that there exist three different asymptotic formulas which describe the long-time behavior of the solution $q(x, t)$ of the IBV problem in the three different regions of the domain $x>0, t>0$.

The asymptotics of the solution in the region $x>\omega^{2} t$ was obtained in [8]:

Theorem 3.1. Let $q(x, t), \mu(x, t)$ and $\nu(x, t)$ be the solution of the IBV problem (1)-(2). Then in the region $x>\omega^{2} t$ the solution takes the form

$$
\begin{gathered}
q(x, t)=2 \sqrt{\frac{\xi^{3} \eta(\xi)}{t}} \exp \{2 \mathrm{i} \sqrt{x t}-\mathrm{i} \eta(\xi) \log \sqrt{x t}+i \varphi(\xi)\} \\
+2 \sqrt{\frac{\xi^{3} \eta(-\xi)}{t}} \exp \{-2 \mathrm{i} \sqrt{x t}+\mathrm{i} \eta(-\xi) \log \sqrt{x t}+i \varphi(-\xi)\}+o\left(t^{-1 / 2}\right), \quad t \rightarrow \infty
\end{gathered}
$$

where the functions $\eta(k)$ and $\varphi(k)$ are given by the equations:
$\eta(k)=\frac{1}{2 \pi} \log \left(1-\rho^{2}(k)\right), \quad \xi^{2}=\frac{t}{4 x}$,
$\varphi(k)=\frac{\pi}{4}-3 \eta(k) \log 2-\arg \rho(k)-\arg \Gamma(-\mathrm{i} \eta(k))+\frac{1}{\pi} \int_{-\xi}^{\xi} \log |s-k| d \log \left[1-\rho^{2}(s)\right]$.
Here $\Gamma(-\mathrm{i} \eta(k))$ is the Euler gamma-function, and $\rho(k)=\frac{\varkappa^{2}(k)-1}{\varkappa^{2}(k)+1}$.
In the region $\omega_{0}^{2} t<x<\omega^{2} t$ the solution of the IBV problem takes the form of a modulated elliptic wave. In this region we use the new phase function instead of the function $\theta(k, \xi)(7)$

$$
g(k, \xi)=\left(\int_{E}^{k}+\int_{\bar{E}}^{k}\right)\left(1-\frac{\lambda_{-}(\xi)}{z}\right)\left(1-\frac{\lambda_{+}(\xi)}{z}\right) \sqrt{\frac{(z-d(\xi))(z-\bar{d}(\xi))}{(z-E)(z-\bar{E})}} \frac{d z}{8 \xi^{2}}
$$

where real $\lambda_{-}(\xi), \lambda_{+}(\xi)$ and complex $d(\xi)=d_{1}(\xi)+\mathrm{i} d_{2}(\xi)$ parameters are determined by the equations

$$
\lambda_{-}=-\lambda_{+}+E_{1} \frac{1-\xi^{4} \lambda_{-}^{-2} \lambda_{+}^{-2}}{1-\xi^{4}|E|^{2} \lambda_{-}^{-3} \lambda_{+}^{-3}}, \quad \lambda_{+}=\frac{I_{0}\left(\lambda_{-}, d_{1}, d_{2}\right)}{I_{-1}\left(\lambda_{-}, d_{1}, d_{2}\right)}
$$

where

$$
d_{1}=E_{1}-\lambda_{-}-\lambda_{+}, \quad d_{2}=\sqrt{\frac{\xi^{4}|E|^{2}}{\lambda_{-}^{2} \lambda_{+}^{2}}-\left(E_{1}-\lambda_{-}-\lambda_{+}\right)^{2}}
$$

and

$$
I_{m}\left(\lambda_{-}, d_{1}, d_{2}\right)=\int_{d_{1}-\mathrm{i} d_{2}}^{d_{1}+\mathrm{i} d_{2}}\left(1-\frac{\lambda_{-}}{z}\right) \sqrt{\frac{\left(z-d_{1}\right)^{2}+d_{2}^{2}}{\left(z-E_{1}\right)^{2}+E_{2}^{2}}} \frac{d z}{z^{m}}, \quad m=0,-1
$$

Let $w(k)=\sqrt{(k-E)(k-\bar{E})(k-d(\xi))(k-\bar{d}(\xi))}$ define the Riemann surface and $U(k)$ be the normalized Abelian integral

$$
U(k)=\frac{1}{c} \int_{E}^{k} \frac{d z}{w(z)}, \quad c=2 \int_{\bar{d}}^{d} \frac{d z}{w(z)}, \quad \tau=\frac{2}{c} \int_{E}^{d} \frac{d z}{w(z)}
$$

Introduce the following Riemann theta functions:

$$
\begin{aligned}
& \Theta_{11}(t, \xi, k)=\frac{1}{2}\left[\tilde{\varkappa}(k)+\frac{1}{\tilde{\varkappa}(k)}\right] \frac{\theta_{3}\left[U(k)+U\left(E_{0}^{-}\right)-\tau / 2-\alpha(\xi) t-\beta(\xi)\right]}{\theta_{3}\left[U(k)+U\left(E_{0}^{-}\right)-1 / 2-\tau / 2\right]}, \\
& \Theta_{12}(t, \xi, k)=\frac{1}{2}\left[\tilde{\varkappa}(k)-\frac{1}{\tilde{\varkappa}(k)}\right] \frac{\theta_{3}\left[U(k)-U\left(E_{0}^{-}\right)+\tau / 2+\alpha(\xi) t+\beta(\xi)\right]}{\theta_{3}\left[U(k)-U\left(E_{0}^{-}\right)+1 / 2+\tau / 2\right]}, \\
& \Theta_{22}(t, \xi, k)=\frac{1}{2}\left[\tilde{\varkappa}(k)+\frac{1}{\tilde{\varkappa}(k)}\right] \frac{\theta_{3}\left[U(k)+U\left(E_{0}^{-}\right)+\tau / 2+\alpha(\xi) t+\beta(\xi)\right]}{\theta_{3}\left[U(k)+U\left(E_{0}^{-}\right)+1 / 2+\tau / 2\right]} .
\end{aligned}
$$

Here

$$
\theta_{3}(z)=\sum_{m \in \mathbb{Z}} e^{\pi \mathrm{i} \tau m^{2}+2 \pi \mathrm{i} m z}, \quad \operatorname{Im} \tau=\operatorname{Im} \tau(\xi)>0
$$

is theta function. The branch of $\tilde{\varkappa}(k)=\left[\frac{(k-\bar{E})(k-\bar{d}(\xi))}{(k-E)(k-d(\xi))}\right]^{1 / 4}$ is fixed by its asymptotics

$$
\tilde{\varkappa}(k)=1-\frac{d_{2}(\xi)+E_{2}}{2 \mathrm{i} k}+\mathrm{O}\left(k^{-2}\right), \quad k \rightarrow \infty .
$$

The point E_{0}^{-}is the preimage of the complex number

$$
E_{0}=\frac{E d(\xi)-\bar{E} \bar{d}(\xi)}{E-\bar{E}+d(\xi)-\bar{d}(\xi)}
$$

on the second sheet of the Riemann surface of the function $w(k)$. Parameters $\alpha=\alpha(\xi)$ and $\beta=\beta(\xi)$ are periods of the normalized Abelian integrals of the second kind $g(k)$ and

$$
\zeta(k)=\frac{1}{2}\left(\int_{E}^{k}+\int_{\bar{E}}^{k}\right) \frac{z^{2}-e_{1} z+e_{0}}{w(z)} d z
$$

i.e.,

$$
\alpha(\xi)=\frac{1}{\pi} \int_{E}^{d(\xi)} d g(k), \int_{\bar{d}(\xi)}^{d(\xi)} d g(k)=0, \quad \beta(\xi)=\frac{1}{\pi} \int_{E}^{d(\xi)} d \zeta(k), \int_{\bar{d}(\xi)}^{d(\xi)} d \zeta(k)=0 .
$$

The definition of the Abelian integral $\zeta(k)$ implies

$$
e_{1}=\frac{E+\bar{E}+d(\xi)+d \overline{(\xi)}}{2}, \quad e_{0}=-\left(\int_{d}^{\bar{d}}\left(z^{2}-e_{1} z\right) \frac{d z}{w(z)}\right)\left(\int_{d}^{\bar{d}} \frac{d z}{w(z)}\right)^{-1} .
$$

The large k expansion of $\zeta(k)$ is of the form

$$
\zeta(k)=k+\zeta_{\infty}(\xi)+O\left(k^{-1}\right), \quad k \rightarrow \infty,
$$

where

$$
\zeta_{\infty}=\frac{1}{2}\left(\int_{E}^{\infty}+\int_{\bar{E}}^{\infty}\right)\left[\frac{z^{2}-e_{1} z+e_{0}}{w(z)}-1\right] d z+E_{2}
$$

is a real function of ξ.
Theorem 3.2. If $\omega_{0}^{2} t<x<\omega^{2} t$, then for $t \rightarrow \infty$ the solution of the IBV problem (1)-(2) takes the form of a modulated elliptic wave:

$$
\begin{aligned}
& q(x, t)=2 \mathrm{i} \frac{\Theta_{12}(t, \xi, \infty)}{\Theta_{11}(t, \xi, \infty)} \exp \left[2 \mathrm{i} t g_{\infty}(\xi)-2 \mathrm{i} \phi(\xi)\right]+\mathrm{O}\left(t^{-1 / 2}\right) \\
& \nu(x, t)=-1+2 \frac{\Theta_{11}(t, \xi, 0) \Theta_{22}(t, \xi, 0)}{\Theta_{11}(t, \xi, \infty) \Theta_{22}(t, \xi, \infty)}+\mathrm{O}\left(t^{-1 / 2}\right) \\
& \mu(x, t)=2 \mathrm{i} \frac{\Theta_{11}(t, \xi, 0) \Theta_{12}(t, \xi, 0)}{\Theta_{11}^{2}(t, \xi, \infty)} \exp \left[2 \mathrm{i} t g_{\infty}(\xi)-2 \mathrm{i} \phi(\xi)\right]+\mathrm{O}\left(t^{-1 / 2}\right),
\end{aligned}
$$

where

$$
\begin{gathered}
g_{\infty}(\xi)=\left(\int_{E}^{\infty}+\int_{\bar{E}}^{\infty}\right) \\
\times\left[\left(1-\frac{\lambda_{-}(\xi)}{z}\right)\left(1-\frac{\lambda_{+}(\xi)}{z}\right) \sqrt{\frac{(z-d(\xi))(z-\bar{d}(\xi))}{(z-E)(z-\bar{E})}}-1\right] \frac{d z}{8 \xi^{2}}-\frac{l}{8 \omega \xi^{2}}
\end{gathered}
$$

and the phase shift $\phi(\xi)$ is defined by
$\phi(\xi)=\int_{\gamma_{d} \cup \bar{\gamma}_{d}}\left(k-k_{0}(\xi)\right) \log \left[\frac{h(k)}{\delta^{2}(k, \xi)}\right] \frac{d k}{2 \pi w_{+}(k)}, \quad h(k)=\left\{\begin{array}{l}{\left[A_{-}(k) A_{+}(k)\right]^{-1}, k \in \gamma_{d}} \\ A_{-}(k) A_{+}(k), k \in \bar{\gamma}_{d} ;\end{array}\right.$
$\delta(k)=\exp \left\{\frac{1}{2 \pi \mathrm{i}} \int_{\lambda_{-}(\xi)}^{\lambda_{+}(\xi)} \frac{\log \left(1-\rho^{2}(s)\right) d s}{s-k}\right\}, k \in \mathbb{C} \backslash\left[\lambda_{-}(\xi), \lambda_{+}(\xi)\right],|E| \leq \xi \leq \frac{1}{2 \omega_{0}}$,
where $A(k), \rho(k)$ are spectral functions (5), (6), and $k_{0}(\xi)=e_{1}(\xi)+\zeta_{\infty}(\xi)$, $\lambda_{ \pm}(\xi)$ are stationary points of the phase functions $g(k, \xi)$, and $\gamma_{d}\left(\bar{\gamma}_{d}\right)$ is an arc connecting E and $d(\xi)(\bar{E}$ and $\bar{d}(\xi))$, where $\operatorname{Im} g(k)=0$.

In the region $0<x<\omega_{0}^{2} t$ the phase g-function takes the form:

$$
\hat{g}(k, \xi):=\left(\frac{\omega}{4 k}+\frac{1}{4 \xi^{2}}\right) \sqrt{(k-E)(k-\bar{E})} .
$$

This function allows us to prove the following

Theorem 3.3. The solution of the IBV problem (1)-(2) for $t \rightarrow \infty$ takes the form of a plane wave:

$$
\begin{aligned}
q(x, t) & =-\frac{p}{2 \omega} \exp \left[\mathrm{i} \omega t-\mathrm{i} \frac{l}{\omega} x-2 \mathrm{i} \hat{\phi}(\xi)\right]+O\left(t^{-1 / 2}\right) \\
\mu(x, t) & =p \exp \left[\mathrm{i} \omega t-\mathrm{i} \frac{l}{\omega} x-2 \mathrm{i} \hat{\phi}(\xi)\right]+O\left(t^{-1 / 2}\right) \\
\nu(x, t) & =l+O\left(t^{-1 / 2}\right)
\end{aligned}
$$

where

$$
\hat{\phi}(\xi)=\frac{1}{2 \pi}\left(\int_{-\infty}^{\lambda_{-}(\xi)}+\int_{\lambda_{+}(\xi)}^{\infty}\right) \log A^{2}(k) \frac{d k}{X(k)}
$$

$\lambda_{ \pm}(\xi)$ are the stationary points of the function $\hat{g}(k, \xi)\left(\frac{1}{2 \omega_{0}} \leq \xi \leq \infty\right)$, and $A(k)$ is defined by (5). Here the contour $\gamma_{g} \cup \bar{\gamma}_{g}$ connects E and \bar{E} along the arc, where $\operatorname{Im} \hat{g}(k)=0$.

R e m ark 3.1. If $x=0(\xi=\infty)$, then $\lambda_{-}(\infty)=-\infty$ and $\lambda_{+}(\infty)=+\infty$. Hence

$$
\hat{\phi}(\infty)=0 .
$$

Therefore the plane wave $\mu(0, t)$ and $\nu(0, t)$ match with the boundary conditions.
Since $g_{\infty}\left(\xi_{0}\right)=\hat{g}_{\infty}\left(\xi_{0}\right)=\omega / 2-l / 8 \omega \xi_{0}^{2}, \phi\left(\xi_{0}\right)=\hat{\phi}\left(\xi_{0}\right), \operatorname{Im} d\left(\xi_{0}\right)=0$, where $\xi_{0}=\frac{1}{2 \omega_{0}}$, and theta-function $\left.\theta_{3}(*)\right|_{\xi=\xi_{0}} \equiv 1$, we have that elliptic waves match with the plane waves at $\xi=\xi_{0}$.

References

[1] A.S. Fokas and C.R. Menyuk, Integrability and Self-Similarity in Transient Stimulated Raman Scattering. - J. Nonlinear Sci. 9 (1999), 1-31.
[2] C.R. Menyuk and T. Seidman, Transient Stimulated Raman Scattering. - SIAM J. Math. Anal. 23 (1992), 346-363.
[3] J. Leon and A.V. Mikhailov, Raman Soliton Generation from Laser Inputs in SRS. - Phys. Lett. A 253 (1999), 33-40.
[4] A.S. Fokas, A Unified Transform Method for Solving Linear and Certain Nonlinear PDEs. - Proc. R. Soc. Lond. A 453 (1997), 1411-1443.
[5] A.Boutet de Monvel, A.S. Fokas, and D.G. Shepelsky, The mKdV Equation on the Half-Line. - J. Inst. Math. 3 (2004), No. 2, 139-164.
[6] A.R. Its and V.E. Petrov, "Isomonodromic" Solutions of the Sine-Gordon Equation and the Time Asymptotics of its Rapidly Decreasing Solutions. - Dokl. Akad. Nauk SSSR 265 (1982), No. 6, 1302-1306. (Russian)
[7] E.A. Moscovchenko and V.P. Kotlyarov, A New Riemann-Hilbert Problem in a Model of Stimulated Raman Scattering. - J. Phys. A.: Math. Gen. 39 (2006), 14591-14610.
[8] E.A. Moskovchenko, Simple Periodic Boundary Data and Riemann-Hilbert Problem for Integrable Model of the Stimulated Raman Scattering. - J. Math. Phys., Anal., Geom. 5 (2009), No. 1, 82-103.
[9] P. Deift and X. Zhou, A Steepest Descent Method for Oscillatory Riemann-Hilbert Problems. Asymptotics for the MKdV Equation. - Ann. Math. 137 (1993), 295368.
[10] A. Boutet de Monvel, A. Its, and V.P. Kotlyarov, Long-Time Asymptotics for the Focusing NLS Equation with Time-Periodic Boundary Condition. - C.R. Math. Acad. Sci. Paris 345/11 (2007), Preprint BiBoS 08-04-287.

