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1. Introduction

In the present paper, we study the linear relations generated by a weight non-

negative operator function and a di�erential expression with variable unbounded

positively de�nite operator coe�cient degenerating on one of the ends of the in-

terval. For the case when there is no operator weight, the spaces of boundary

values (SBV) for maximal operator generated by this di�erential operator expres-

sion were constructed in [1�5]. The SBV allows to describe various classes of

restrictions of maximal operator. (The results of papers [1�3] can be found in

monograph [6].)

Di�erential expressions with operator weight generate linear relations that, in

general, are not operators. In the present paper we construct the SBV for a maxi-

mal relation. We study various restrictions of maximal relation and describe the
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spectrum of these restrictions by using SBV. We prove that if the relation (L(�)�
�E)�1 is a bounded everywhere de�ned operator, then it is an integral operator.

In this case we determine the criterion of holomorphicity for the operator function

� ! (L(�) � �E)�1 (here L(�) is a restriction of maximal relation, � 2 C , E is

the identity operator). To simplify the proofs the main theorems are proved with

abstract spaces of boundary values being used. A description of the generalized

resolvents of minimal relation is based on the obtained results. Notice that the

formula of generalized resolvents of minimal relation generated by nonnegative

operator function and di�erential expression with bounded operator coe�cients

was obtained in [7, 8]. Our formula di�ers from that given in [7, 8], because we

consider a di�erential elliptic-type expression with unbounded operator coe�cient.

One of the di�culties in the studying of operators and relations generated by

di�erential operator expression of elliptic-type is the constructing of the Green

function in one of the boundary value problems. We construct this function in

Sect. 3.

2. Main Assumptions, Notation

Let H be a separable Hilbert space with the scalar product (�; �) and the norm

k�k. On a compact interval [0; b], we consider the di�erential expression

l[y] = �y00 + t�A1(t)y;

where � > 0, and the operator function A1(t) satis�es the following conditions:

1) A1(t) is a positively de�nite selfadjoint operator in H for any �xed t 2 [0; b];
2) the operators A1(t) have the constant domain D(A1(t)) = D(A1); 3) A1(t)x
is a function strongly continuously di�erentiable on [0; b] for any x 2 D(A1).

We �x a point t0 2 [0; b]. Let fĤ�g, �1 6 � 6 1, be a Hilbert scale of the

spaces [6, Ch. 2; 9, Ch. 1] generated by A1(t0). Notice that the de�nition of the

Hilbert scale implies Ĥ0 = H. It follows from the properties of A1(t) that the
scale fĤ�g does not depend on the choice of point t0 2 [0; b] in the sense below.

If t00 2 [0; b] is any other point and fĤ 0

�g is a scale of the spaces generated by

operator A1(t
0

0), then the sets Ĥ� and Ĥ
0

� coincide and their norms are equivalent.

For �xed t 2 [0; b], the operator A1(t) is a continuous one-to-one mapping of Ĥ+1

onto H. Then its adjoint operator A+
1 (t) is a continuous one-to-one mapping of

H onto Ĥ
�1, and A

+
1 (t) is an extension of A1(t) [6, Ch. 2; 9, Ch. 1]. Further, we

denote l+[y] = �y00 + t�A+
1 (t)y.

Let A(t) be a function strongly measurable on [0; b] whose values are bounded
selfadjoint operators in H. Suppose the norm kA(t)k is integrable on [0; b]. More-

over, we assume that the inequality

(A(t)x; x) > 0 (1)
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holds for any x 2 H and for almost all t 2 [0; b]. Generally, it is assumed that

a set of points t 2 [0; b] satisfying (1) depends on x.

We claim that there exists a set I0 � [0; b] of measure zero such that the set

I = [0; b]nI0 has the following property: for all t 2 I and for all x 2 H inequality

(1) holds. Indeed, due to separability of the space H there exists a countable set

fxng (n 2 N) dense in H. Let In be a set of t 2 [0; b] such that inequality (1)

holds, where x is replaced by xn. We denote I0;n = [0; b]nIn, I0 =
S

n
I0;n. Then

the measure of the set I0 is equal to zero, and for all t 2 I = [0; b] n I0 and for

all n 2 N inequality (1) holds, where x is replaced by xn. Since the operator A(t)
is bounded and the set fxng is dense in H, we obtain the desired statement. So,

inequality (1) holds on some set I such that I does not depend on x 2 H, and

the measure of the set [0; b] n I is equal to zero.

Since the norm kA(t)k is integrable on [0; b], we have
A1=p(t)

 2 Lp(0; b).
On the set of functions continuous on the interval [0; b] and ranging in H, we

introduce the norm

kyk
p
=

0
@

bZ

0

A1=p(t)y(t)
p dt

1
A

1=p

; 1 6 p <1:

Identifying the functions y such that kyk
p
= 0 with zero, then performing the

completion, we obtain a Banach space denoted by B=Lp(H;A(t); 0; b). The ele-
ments of B are the classes of functions identi�ed with each other in the norm k�k

p
.

In what follows, ~y denotes a class of functions with representative y. To avoid a

complicated terminology we say that the function y belongs to B.
Let G0(t) be a set of elements x 2 H such that A(t)x = 0, H(t) = H 	G0(t),

and A0(t) be a restriction of A(t) to H(t). Then the operator A0(t) acting in

H(t) has the inverse A�1
0 (t) (which, in general, is unbounded). By fH�(t)g,

�1 < � <1, we denote a Hilbert scale of spaces generated by operator A�1
0 (t).

As known from [6, Ch. 2; 9, Ch. 1], the operator A0(t) can be extended to the

operator ~A0(t) = ~A0;�(t) that continuously and bijectively maps H
��(t) onto

H1��(t), 0 6 � 6 1. Further, in ~A0;�(t) we will omit the symbol � characterizing

the domain of operator ~A0;�(t)). By ~A(t) we denote the operator that is de�ned on
H
��(t)�G0(t) and is equal to ~A0(t) on H��(t) and to zero on G0(t). Obviously,

the operator ~A(t) is an extension of A(t).
The description of the space B for p > 1 was given in [8] and the case of p = 2

was considered in [10]. The space B consists of elements (i.e., function classes)

with representatives of the form ~A
�1=p
0 (t)P (t)h(t), where P (t) is an orthogonal

projection of H onto H(t), h(t) 2 Lp(H; 0; b). Without changing considerably

the proof given in [8], we obtain the above statements for p = 1. The space

L1(H;A(t); 0; b) is used only when constructing the Green function in Sect. 3.
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For p >1, the dual space of B is the space B� = Lq(H;A(t); 0; b)(p
�1+q�1 = 1)

(see [8]). A sesquilinear form (i.e., the form that is linear in the �rst argument and

antilinear in the second one) determined by duality between B and B� is denoted

by h�; �i, and the action of the functional ~g 2 B� on the element ~f 2 B is given by

the equality

h ~f; ~gi =

bZ

0

( ~A(t)f(t); g(t))dt;

which is independent of the choice of representatives f 2 ~f , g 2 ~g.

2. The Green Function

In this section, we construct the Green function G(t; s; �) of the Neumann

problem for the expression l+[y] � �A(t)y. The construction is based on the

Green function G(t; s) (see [5]).
By [5], the operator function G(t; s) is called the Green function of

the Neumann problem for the expression l[y], i.e., of the problem

l[y] = �y00 + t�A1(t)y = g(t); (2)

y0(0) = y0(b) = 0; (3)

if the integral y(t) =

Z
b

0

G(t; s)g(s)ds is a strong solution (see [11]) of equation

(2) and it satis�es conditions (3) for any strongly continuous function g(t) in the

space Ĥ+1. By [11], the function y(t) (t 2 [0; b]) is called a strong solution of

equation (2) if y(t) 2 D(A1) for any t, and y(t) is twice di�erentiable in H, and

y(t) satis�es (2). It was proved in [5] that for su�ciently large k there exists

a Green function Gk(t; s) of the Neumann problem for the expression

lk[y] = �y00 + t�A1(t)y + k2t�y:

Lemma 1. There exists a Green function of problem (2), (3).

P r o o f. By L0 (L0
k
) denote an operator generated by the expression l[y]

(lk[y]) on the functions y(t) that are strongly continuous in Ĥ+1 on [0; b], twice
di�erentiable in H on [0; b] and they satisfy boundary conditions of the Neumann

problem (3). Let L (Lk) be a closure of L
0 as well as of L0

k
in the space L2(H; 0; b).

It was proved in [5] that for su�ciently large k the operator L�1
k

exists, it is

continuous in L2(H; 0; b) and is an integral operator with the kernel Gk(t; s).
Since L di�ers from Lk by a bounded selfadjoint operator and Lk is selfadjoint,

we see that L is also selfadjoint. Obviously, L is nonnegative. We claim that the

operator L�1 exists and it is bounded in L2(H; 0; b).
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Indeed, let fyng be a sequence of functions yn from the domain of L0 such that

(L0yn; yn)L2(H;0;b) ! 0

as n!1 and kynkL2(H;0;b) = 1. Therefore,

(L0yn; yn)L2(H;0;b) =

bZ

0

y0n(t)2 dt+
bZ

0

t�(A1(t)yn(t); yn(t))dt

>

bZ

0

y0n(t)2 dt+ c1

bZ

0

t�(yn(t); yn(t))dt! 0 as n!1;

where c1 > 0 does not depend on t. (Here and further, the symbols c1; c2; : : :

denote positive constants that are di�erent in various inequalities.) Hence,

bZ

0

y0n(t)2 dt! 0

and

bZ

0

t�(yn(t); yn(t))dt = (�+ 1)�1b�+1
kyn(b)k

2
�

bZ

0

t�+1Re(y0n(t); yn(t))dt! 0

as n ! 1. (Here the formula of integration by parts is used.) This yields that

kyn(b)k ! 0: Therefore, as n!1,

yn(t) = yn(b)�

Z
b

t

y0n(t)dt! 0

uniformly on [0; b]. The above contradicts the equality kynkL2(H;0;b) = 1. Thus

the existence and boundedness of the operator L�1 are proved. Consequently, the

operator L is positively de�nite in L2(H; 0; b).
We denote Gk = L

�1
k
. As noted above, Gk is an integral operator with the

kernel Gk(t; s). By T denote the operator of multiplication on t� in L2(H; 0; b).
Suppose G

T
= T

1=2
GkT

1=2. The operator G
T
is selfadjoint. Moreover, G

T
is

an integral operator with the kernel t�=2Gk(t; s)s
�=2. We will prove that the opera-

tor k2G
T
�E has an everywhere de�ned inverse operator in the space L2(H; 0; b).

Let vn 2 L2(H; 0; b), where n 2 N. We denote T 1=2vn = un, Gkun = wn.

Then Lkwn = un and T
�1=2

Lkwn = vn. It follows from the equality Lk =
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L + k2T that Lwn belongs to the domain of operator T �1=2, and T �1=2
Lwn =

vn � k2T 1=2wn. Hence, by direct calculation we obtain

(vn; (E � k2G
T
)vn) = (vn; vn)� k2(T 1=2

GkT
1=2vn; vn)

= (T �1=2(L+ k2T )wn;T
�1=2(L+ k2T )wn)� k2(wn; (L+ k2T )wn)

= k2(Lwn; wn) + (T �1=2
Lwn;T

�1=2
Lwn)

= k2(Lwn; wn) + (vn � k2T 1=2wn; vn � k2T 1=2wn)

(in this equality, (�; �) is a scalar product in L2(H; 0; b)). Suppose (vn; (E �

k2G
T
)vn)! 0 as n!1. It follows from the last equalities that

(Lwn; wn)! 0; (vn � T
1=2wn; vn � T

1=2wn)! 0:

Since L is a positive de�nite operator, we have wn ! 0 in L2(H; 0; b)). Therefore,
vn ! 0 in L2(H; 0; b) as n!1. Thus the operator (k2G

T
�E)�1 exists and it

is everywhere de�ned.

In the space L2(H; 0; b), we consider the integral equation

K(t; s)x = t�=2Gk(t; s)x+ k2
bZ

0

t�=2Gk(t; �)�
�=2

K(�; s)xd� (4)

with the unknown function K(t; s)x, where x 2 H. Since the operator

k2G
T
�E has the everywhere de�ned inverse operator, we see that the equation

(4) is solvable. In [5], it was proved that

kGk(t; s)k 6 c1; (5)

where c1 does not depend on s, t. Using (4), (5), we obtain

bZ

0

kK(t; s)xk2 dt 6
(k2G

T
�E)�1

2
bZ

0

t�=2Gk(t; s)x
2 dt 6 c2 kxk

2 ; (6)

where c2 does not depend on s. Using (4)�(6), we get

kK(t; s)k 6 c3; (7)

where c3 does not depend on t, s.

We de�ne the function G(t; s) by the formula

G(t; s)x = Gk(t; s)x+ k2
bZ

0

Gk(t; �)�
�=2

K(�; s)xd�: (8)
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It follows from (4), (8) that t1=2G(t; s) = K(t; s). Hence, taking into account (8),

we obtain

G(t; s)x = Gk(t; s)x+ k2
bZ

0

Gk(t; �)�
�G(�; s)xd�: (9)

The function G(t; s) satis�es the boundary conditions

G0

t(0; s) = G0

t(b; s) = 0; s 6= 0; s 6= b;

G0

t(0; 0) = �E; G0

t(b; 0) = G0

t(0; b) = 0; G0

t(b; b) = E: (10)

These equalities follow from (9) and from the fact that the function Gk(t; s)
satis�es the same conditions (see [5]).

Formulas (5), (7), (8) imply

kG(t; s)k 6 c1; (11)

where c1 does not depend on t, s. In [5], the operator Gk(t; s) is proved to

extend to Ĝk(t; s) in Ĥ
�1 such that it is a continuous mapping of each space

Ĥ� , �1 6 � 6 1, of the scale fĤ�g into itself. The operator function Ĝk(t; s) is
uniformly bounded on [0; b] � [0; b] with respect to the norm in each space Ĥ� .

By the construction, the operator function G(t; s) possesses the same properties.

Suppose the function g(t) is strongly continuous in Ĥ+1. We denote

z(t) =

bZ

0

G(t; s)g(s)ds; zk(t) =

bZ

0

Gk(t; s)g(s)ds:

It follows from (9), (10) that z(t) takes the values in D(A1), it is twice strongly

di�erentiable in H, and z0(0) = z0(b) = 0. Since the function zk(t) is a strong

solution of the equation lk[y] = g, we see that (9) implies the equality lk[z] =
lk[zk] + k2t�z = g + k2t�z. Hence l[z] = g. Lemma 1 is proved.

We notice some more properties of the function G(t; s). Let G be an operator

de�ned by the formula Gv =

Z
b

0

G(t; s)v(s)ds in L2(H; 0; b). Then L
�1 = G.

Since the operator L is selfadjoint, we have G�(t; s) = G(s; t). The function

G(t; s) is strongly continuous with respect to t for each �xed s 2 [0; b] what
follows from (7), (8) and the fact that the function Gk(t; s) possesses the same

property (see [4, 5]).

Lemma 2. Suppose h(t) 2 L1(H; 0; b). Then the function

y(t) =

bZ

0

G(t; s)h(s)ds (12)
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has the following properties:

(a) y is continuous on [0; b] in the space H and strongly di�erentiable on [0; b]
in the space Ĥ

�1;

(b) y0 is absolutely continuous in the space Ĥ
�1;

(c) y satis�es the equation

l+[y] = �y00 + t�A+
1 (t)y = h(t) (13)

and boundary conditions (3).

P r o o f. We take a sequence of functions hn(t) such that the sequence

fhn(t)g converges to h(t) in L1(H; 0; b) as n ! 1 and the functions hn(t) are

strongly continuous in the space Ĥ+1. Then, by Lemma 1, the functions yn(t) =Z
b

0

G(t; s)hn(s)ds are strong solutions of the problem (13), (3), where h(t) is

replaced by hn(t). Thus the equality

�y00n(t) + t�A+
1 (t)yn(t) = hn(t) (14)

holds. From (11), (12), it follows that the sequence fyn(t)g converges to y(t)
uniformly in H. Therefore the sequence fA+

1 (t)yn(t)g uniformly converges to

A
+
1 (t)y(t) in the space Ĥ

�1. Then (14) implies the convergence of the sequence

fy00n(t)g in L1(Ĥ�1; 0; b). From this and (3) it follows that fy0n(t)g converges

uniformly in Ĥ
�1. Now all assertions of Lemma 2 are obtained from the above in

a standard way. The proof of Lemma 2 is complete.

Lemma 3. For any function h(t) 2 L1(H; 0; b) and any elements x1; x2 2 H

there exists a unique solution y(t) of equation (13) such that y(t) has the properties
(a), (b) of Lemma 2 and satis�es the boundary conditions

y0(0) = �x1; y0(b) = x2: (15)

This solution has the form y(t) = G(t; 0)x1 +G(t; b)x2 +

Z
b

0

G(t; s)h(s)ds.

P r o o f. First, we notice that the invertibility of operator L yields the unique-

ness of solution. Further, as follows from [5], the function zk(t) = Gk(t; 0)x1 +
Gk(t; b)x2 has the properties (a), (b) and satis�es the equation l+

k
[y] = 0 and

conditions (15). Hence, taking into account (9), (10), we obtain that the function

z(t) = G(t; 0)x1 + G(t; b)x2 has the properties (a), (b), it is a solution of the

equation l+[y] = 0 and it satis�es the conditions (15). Now, applying Lemma 2,

we complete the proof of Lemma 3.

To construct the Green function G(t; s; �) we consider the equation

l+[y]� �A(t)y = �y00 + t�A+
1 (t)y(t)� �A(t)y(t) = ~A(t)f(t): (16)
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Let G(t; s; �) be an operator function whose values are bounded operators

in H. We say that G(t; s; �) is the Green function of problem (16), (3) if for any

function f 2 L1(H;A(t); 0; b) the integral

z1(t) =

bZ

0

G(t; s; �) ~A(s)f(s)ds

possesses the properties (a), (b) of Lemma 2 and satis�es equation (16) and the

boundary conditions (3).

As shown in the proof of Lemma 1, the operator L is positively de�nite in

L2(H; 0; b). From the equality G = L
�1 it follows that G is a positively de�nite

operator. Consequently, the kernel A1=2(t)G(t; s)A1=2(s) determines the bounded

nonnegative operator

GAv =

bZ

0

A1=2(t)G(t; s)A1=2(s)v(s)ds (v 2 L2(H; 0; b))

in the space L2(H; 0; b).
By �0(GA) we denote a set � 2 C such that the operator �GA � E has

a bounded everywhere de�ned inverse operator. The set �0(GA) contains all

nonreal numbers, the negative ones and zero. Further, we will assume that � 2

�0(GA).

Theorem 1. For any � 2 �0(GA), there exists a Green function G(t; s; �) of

problem (16), (3).

P r o o f. We consider the integral equation

K(t; s; �)x = A1=2(t)G(t; s)x+ �

bZ

0

A1=2(t)G(t; �)A1=2(�)K(�; s; �)xd� (17)

with the unknown function K(t; s; �)x, where x 2 H. Equation (17) can be solved

in L2(H; 0; b) for � 2 �0(GA).
We introduce the function G(t; s; �) by the equality

G(t; s; �)x = G(t; s)x+ �

bZ

0

G(t; �)A1=2(�)K(�; s; �)xd�: (18)

For �xed s 2 [0; b], the function A1=2(t)K(t; s; �)x (x 2 H) belongs to L1(H; 0; b).
Consequently, G(t; s; �) is a strongly continuous function with respect to t in the

space H. It follows from (17), (18) that

A1=2(t)G(t; s; �) = K(t; s; �):
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Hence, using (18), we get

G(t; s; �)x = G(t; s)x+ �

bZ

0

G(t; �)A(�)G(�; s; �)xd�: (19)

Moreover, by (10), it follows that

G0

t(0; s; �)x = G0

t(b; s; �)x = 0; s 6= 0; s 6= b;

G0

t(0; 0; �)x = �x; G0

t(b; 0; �)x = G0

t(0; b; �)x = 0; G0

t(b; b; �)x = x: (20)

Further proof is done analogously to that of [12], where the case of � = 0
was considered. In particular, similarly as in [12], we obtain that for any element

d1 2 H
�1(s)�G0(s) the equality

G�(s; t; ��) ~A(s)d1 = G(t; s; �) ~A(s)d1

holds. Therefore,

G�(s; t; ��) ~A(s)f(s) = G(t; s; �) ~A(s)f(s) (21)

for any function f 2 L1(H;A(t); 0; b).
For � 2 �0(GA), the function G(t; s; �) is bounded with respect to the �rst

argument. Therefore the function G�(t; s; �) has the same property. From this

and from (21) there follows the equality

bZ

0

G(t; s; �) ~A(s)f(s)ds =

bZ

0

G�(s; t; ��) ~A(s)f(s)ds

and the existence of integrals in it. Using (19), (20) and the properties of function

G(t; s), we complete the proof.

In [12], the Green function for the expression l+[y] � �A(t) was constructed
in the case of � = 0. If � = 0 and � = 0, then G(t; s; 0) = G(t; s) coincides with
the Green function constructed in [13].

By U(t; �), denote the operator one-row matrix U(t; �) = (U1(t; �); U2(t; �)),
where

U1(t; �) = G(t; 0; �); U2(t; �) = G(t; b; �): (22)

Lemma 4. Let � 2 �0(GA). For any elements x1; x2 2 H and any function

f 2 L1(H;A(t); 0; b) there exists a unique function y having the properties (a),

(b) of Lemma 2 and satisfying equation (16) and boundary conditions (15). This

function has the form

y(t) = U1(t; �)x1 + U2(t; �)x2 + F (t); (23)
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where

F (t) =

bZ

0

G(t; s; �) ~A(s)f(s)ds =

bZ

0

G�(s; t; ��) ~A(s)f(s)ds: (24)

P r o o f. It follows from Lemma 3 and equalities (19), (20), (22) that the

function y0(t) = U1(t; �)x1 + U2(t; �)x2 has the properties (a), (b) of Lemma 2,

and y0(t) satis�es the boundary conditions (15) and the equation

�y00 + t�A+
1 (t)y � �A(t)y = 0: (25)

Hence, taking into account Theorem 1, we obtain that (23) has all the properties

indicated in the lemma. To prove that problem (25), (15) has a unique solution is

to prove the uniqueness of the solution of problem (16), (15). Let the function u0,

having the properties (a), (b), be a solution of equation (25) with homogeneous

conditions (3). We put u(t) = �

Z
b

0

G(t; s)A(s)y0(s)ds. Using Lemma 3, we get

u0(t) = u(t). Hence,

A1=2(t)u0(t) = �

bZ

0

A1=2(t)G(t; s)A(s)y0(s)ds:

Since � 2 �0(GA), we have A1=2(t)u0(t) = 0 for almost all t 2 [0; b]. Therefore,

u0(t) = u(t) = 0 for all t 2 [0; b]. So, the uniqueness of the solution of problem

(25), (15) is established. Lemma 4 is proved.

R e m a r k 1. Suppose the function y has the properties (a), (b), and it

satis�es equation (16) and boundary conditions (15), where x1; x2 2 H. Then

y0(t) 2 H for all t 2 [0; b].
Indeed, the function y is a solution of nondegenerate equation on each interval

[�; b] (� > 0). Consequently, y0(t) 2 H for all t 2 [�; b] (see [12]). Hence, taking
into account (15), we obtain the desired statement.

Lemma 5. Suppose F is de�ned by equality (24); then the operator ~f ! F =
F (t; ~f; �) is a continuous mapping of the space B into the space C(H; 0; b).

P r o o f coincides with that of the analogous lemma in [12].

Corollary 1. The operator ~f ! ~F = ~F (t; ~f; �) is continuous in B.

4. Maximal and Minimal Relations

In this section, the maximal and minimal relations generated by expression

l+[y] and operator function A(t) in the space B = Lp(H;A(t); 0; b) are de�ned and

the properties of these relations are studied. Everywhere below we will assume

that p > 1.
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Terminology concerning linear relations can be found, for example, in [6, 14,

15]. The linear relation T in the Banach space B is understood as a linear manifold

T � B � B. Further the following notations are used: f�; �g is an ordered pair;

KerT is a set of ordered pairs of the form fz; 0g 2 T ; ker T is a set of elements

z such that fz; 0g 2 T ; D(T ) is a domain of T ; R(T ) is a range of values; �(T )
is a resolvent set of the relation T , i.e., a set of points � 2 C such that the

relation (T � �E)�1 is a bounded everywhere de�ned operator; �c(T ) (�r(T )) is
a continuous spectrum (residual spectrum) of the relation T , i.e., a set of points

� 2 C such that the relation (T ��E)�1 is a densely de�ned and unbounded (not

densely de�ned) operator; �p(T ) is the point spectrum of T , i.e., a set of points

� 2 C such that the relation (T � �E)�1 is not an operator. Since all relations

considered are linear, the word "linear" will often be omitted.

By D0 we denote a set of functions y(t) 2 B satisfying the following conditions:

i) y is strongly continuous on [0; b] in the space H and strongly di�erentiable in

the space Ĥ
�1, and y0(t) 2 H for all t 2 [0; b]; (ii) y0 is absolutely continuous

in Ĥ
�1; iii) l

+[y](t) 2 H1=q(t) for almost all t, and the function ~A�1
0 (t)l+[y] 2 B

(p�1 + q�1 = 1). To each class of functions identi�ed with y 2 D0 in B we

assign the class of functions identi�ed with ~A�1
0 (t)l+[y] in B. In general, this

correspondence is not an operator as the function y may be identi�ed with zero

in B and ~A�1
0 (t)l+[y] may be nonzero. Thus, in the space B we obtain a linear

relation L0. Denote its closure by L and call it a maximal relation. We de�ne the

minimal relation L0 as a restriction of L to the set of elements ~y 2 B that have

representatives y 2 D0 with the property y(0) = y0(0) = y(b) = y0(b) = 0.
Let Q0 be a set of elements x 2 H�H for which the equality A(t)U(t; �)x = 0

holds almost everywhere. Using Theorem 1, we get

U(t; 0)x = U(t; �)x� �

bZ

0

G�(s; t; ��) ~A(s)U(s; 0)xds; (26)

U(t; �)x = U(t; 0)x+ �

bZ

0

G�(s; t) ~A(s)U(s; �)xds: (27)

By (26), (27), it follows that Q0 does not depend on �. By Q we denote

an orthogonal complement of Q0 in H �H. In Q we introduce the norm

kxk
r
=

0
@

bZ

0

A1=r(s)U(s; 0)x
r ds

1
A

1=r

6 k kxk ; r > 1; x 2 Q: (28)

We denote the completion of Q with respect to the norm k�k
r
by Q

�
(r). It follows

from (26), (27) that the replacement of U(s; 0) by U(s; �) in (28) leads to the
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same set Q
�
(r) with the equivalent norm. Let the symbol ~U(s; �)x (x 2 Q

�
(r))

denote a class of functions to which the sequence f ~U(t; �)xng (xn 2 Q) converges
whenever fxng converges to x in the space Q

�
(r).

We introduce the operator Vr(�) : Q�
(r)! Lr(H;A(t); 0; b) by the formula

Vr(�)x = ~U(t; �)x. It follows from (28) that the operator Vr(�) is continuous, the
range R(Vr(�)) is closed, and kerVr(�) = f0g. Hence the range of the adjoint

operator V �

r (�) : Lr1(H;A(t); 0; b) ! Q�

�
(r) � Q� = Q coincides with Q�

�
(r)

(here r�1 + r�1
1 = 1). We �nd the form of V �

r (�). For any elements x 2 Q and
~f 2 Lr1(H;A(t); 0; b), we have

h ~f; Vr(�)xi =

bZ

0

( ~A(s)f(s); U(s; �)x)ds

= (

bZ

0

U�(s; �) ~A(s)f(s)ds; x) = (V �

r (�)
~f; x): (29)

Here (V �

r (�)
~f; x) is a scalar product of the elements V �

r (�)
~f 2 Q�

�
(r) � Q and

x 2 Q in Q. For x+ 2 Q�

�
(r), this scalar product (x+; x) is extended by continuity

to the sesquilinear form (x+; x�) determined by the duality between Q�

�
(r) and

Q
�
(r). Taking into account (29) and that Q can be densely embedded in Q

�
(r),

we obtain

V �

r (�)
~f =

bZ

0

U�(s; �) ~A(s)f(s)ds: (30)

Further, to avoid complicated notation, we denote Q
�
= Q

�
(p), ~Q+ = Q�

�
(q),

where p�1 + q�1 = 1. Thus the following lemma is proved.

Lemma 6. The operator V �

q (
��) is a continuous mapping of B onto ~Q+.

Lemma 7. For any � 2 �0(GA), the relation L � �E consists of the pairs

f~y; ~fg 2 B� B such that

~y = ~U(t; �)x+ ~F ; (31)

where x 2 Q
�

and ~F are a class of functions identi�ed in B with the function

(24).

P r o o f. It follows from Theorem 1, Lemma 1 and the de�nition of the

space Q
�
that a pair f~y; ~fg 2 B � B satisfying (31) belongs to L � �E. Now

let f~y; ~fg 2 L � �E. Then there exists a sequence of pairs f~yn; ~fng 2 L0

� �E

converging to the pair f~y; ~fg in B � B. Using Lemma 4, we obtain that the

Journal of Mathematical Physics, Analysis, Geometry, 2009, vol. 5, No. 2 135



V.M. Bruk

function yn can be represented in the form

yn(t) = U(t; �)xn +

bZ

0

G�(s; t; ��) ~A(s)fn(s)ds; (32)

where xn 2 Q. From the convergence of the sequence of pairs f~yn; ~fng in B � B
there follows the convergence of the sequence f ~U(t; �)xng in B. When passing to

(32) to the limit as n ! 1, we �nd that ~y admits the form (31). The proof of

Lemma 7 is complete.

Corollary 2. The operator Vp(�) is a continuous one-to-one mapping of Q
�

onto ker(L� �E).

R e m a r k 2. In equality (31), the element x 2 Q
�
and the function F are

uniquely determined by the pair f~y; ~fg 2 L � �E. The pair f~y; ~fg 2 L0

� �E if

and only if x 2 Q and in this case x = f�y0(0); y0(b)g.

R e m a r k 3. It follows from (22), (24), (30) that V �

q (
��) ~f = fF (0); F (b)g.

R e m a r k 4. When p = 2 and there is no operator weight (i.e., A(t) = E),

the equality Q
�
= Ĥ

�3=2(�+2) � Ĥ
�3=4 is valid (see [5]).

Lemma 8. For any � 2 �0(GA) the relation L0 � �E is closed.

P r o o f. Suppose the sequence of pairs f~yn; ~fng 2 L0 � �E converges to the

pair f~y; ~fg in the space B�B. It follows from the de�nition of L0 and Remark 2

that we can choose representatives yn, fn of the classes of functions ~yn, ~fn such

that they satisfy (32), where xn 2 Q and yn(0) = yn(b) = y0n(0) = y0n(b) = 0.
Using Remark 3 and Lemma 4, we get xn = 0 and V �

q (
��) ~fn = 0. Passing to

the limit as n ! 1 in the last equality and in (32), we obtain that x = 0 and

V �

q (
��) ~f = 0 in (31). Therefore f~y; ~fg 2 L0 � �E. Lemma 8 is proved.

R e m a r k 5. It follows from the proof of Lemma 8 that R(L0 � �E) =
ker V �

q (
��).

5. Spectrum of Restrictions of the Maximal Relation L

In this section, we introduce an abstract space of boundary values (SBV).

By means of SBV we describe the spectrum of restrictions of the relation L and

study the bounded operators (L(�)� �E)�1, where L0 � L(�) � L.

Suppose B1, B2, ~B1, ~B2 are Banach spaces, T � B1 � B2 is a closed relation,

and Æ : T ! ~B1 �
~B2 is a linear operator. We denote Æi = PiÆ, i = 1; 2, where Pi

is the projection ~B1 �
~B2 onto ~Bi, i.e., Pifx1; x2g = xi (the similar notation will

be used in the analogous cases below). The following de�nition is given in [16]

for operators and in [17] for relations.
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De�nition. The quadruple ( ~B1; ~B2; Æ1; Æ2) is called a space of boundary values

(SBV) for a closed relation T if the operator Æ is a continuous mapping of T onto
~B1 �

~B2, and the restriction of the operator Æ1 to KerT is a one-to-one mapping

of KerT onto ~B1.

We de�ne an operator �Æ : ~B1 !
~B2 by the equality �Æ = Æ2�, where � =

(Æ1jKerT )
�1 is the operator inverse to the restriction of Æ1 to KerT . We denote

T0 = ker Æ, T1 = ker Æ1. Then T0 � T1 � T , R(T1) = R(T ), and the relation T�1
1

is an operator (see [16, 17]).

From the de�nition of SBV, it follows that between the relations � � ~B1�
~B2

and ~T with the property T0 � ~T � T there is a one-to-one correspondence

determined by the equality Æ ~T = �. In this case we denote ~T = T�.

Lemma 9. T� = T
�
.

Corollary 3. The relation T� is closed if and only if � is closed.

R e m a r k 6. By the continuity of operator �Æ the relation � is closed if

and only if the relation � � �Æ is closed.

Lemma 10. Let R(T ) = B2. Then the following statements are valid:

1) the range R(T�) is closed if and only if the range R(� � �Æ) is closed;

2) dimB2=R(T�) = dim ~B2=R(� � �Æ);
3) dimker(T�) = dimker(� � �Æ).
The proves of Lemmas 9, 10 are based on the following statement, that might

be known.

Lemma 11. Suppose B1, B2 are Banach spaces, � : B1 ! B2 is a bounded

linear operator with the range R(�) = B2, X � B1 is a linear manifold such that

ker� � X. Then �X = �X and dimB1=X = dimB2=�X.

P r o o f of Lemma 11. The continuity of operator � implies �X � �X.

We prove the inverse inclusion. Let B
(0)
1 = B1= ker� be a quotient space and �

be a canonical mapping of B1 onto B
0
1. We de�ne an operator �0 by the equality

� = �0�. Then �0 is a continuous one-to-one mapping of B0
1 onto B2. Let

a 2 �X, an 2 �X, where n 2 N. If a sequence fang converges to a, then

the sequence f��1
0 ang converges to ��1

0 a in the space B
(0)
1 . Since ker� � X,

we see that all elements of the classes of adjacency ��1
0 an belong to X. Let

b 2 ��1
0 a. Then we can choose a sequence fbng such that bn 2��1

0 an�X and

fbng converges to b. Therefore b 2 X . Since �b = a, we have �X � �X.

The equality �X = �X is proved.

Let �1 be an operator de�ned by the equality �1�1 = �2�, where �1, �2 are

canonical mappings of B1, B2 onto quotient spaces B1=X , B2=�X , respectively.

Since �1 is a continuous one-to-one mapping of B1=X onto B2=�X, we have

dimB1=X = dimB2=�X. The proof of Lemma 11 is complete.
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P r o o f of Lemma 9. In Lemma 11 we take B1 = B1 � B2, B2 = ~B1 �
~B2,

� = Æ, X = T�. Then �X = ÆT� = �, and �X = ÆT� = �. Hence, T� = T
�
.

Lemma 9 is proved.

P r o o f of Lemma 10. We de�ne an operator W : B2 !
~B2 by the equality

Wf = Æ2fT
�1
1 f; fg, where f 2 B2. From the continuity of T�1

1 (see [16, 17])

and the properties of operators Æ1, Æ2 it follows that W is a continuous mapping

of B2 onto ~B2. Moreover, using the de�nition of the relations T0, T1, we get

kerW = R(T0). Any pair fy; fg 2 T is uniquely represented in the form fy; fg =
m0+m, where m0 2 KerT , m 2 T1, namely, fy; fg = fy� T�1

1 f; 0g+ fT�1
1 f; fg.

Hence, (Æ2��ÆÆ1)fy; fg = Æ2fT
�1
1 f; fg =Wf . Therefore, WR(T�) = R(���Æ).

In Lemma 11 we take B1 = B2, B2 = ~B2, � = W , X = R(T�). Then we obtain

the �rst and the second statements of Lemma 10. An element u 2 T has the form

u = u0 + v, where u0 2 KerT , v 2 T0, if and only if Æ2u � �ÆÆ1u = 0. Hence

the restriction of the operator Æ1 to KerT� is a one-to-one mapping of KerT� onto
ker(���Æ). From the above the third statement of the lemma follows. Lemma 10

is proved.

Let B1 = B2 = B0 and let the quadruple ( ~B1; ~B2; Æ1; Æ2) be an SBV for a closed

relation T � B0

� B0. A pair fy1; y2g 2 T if and only if the pair fy1; y2 � �y1g 2

T � �E. For any pair fy1; y2 � �y1g 2 T � �E we put Æ(�)fy1; y2 � �y1g =
Æfy1; y2g. As proved in [17], � 2 �(T1) if and only if the quadruple

( ~B1; ~B2; Æ1(�); Æ2(�)) is an SBV for the relation T � �E. As above, we denote

�Æ(�) = Æ2(�)(Æ1(�) jKer(T��E))
�1 : ~B1 !

~B2. Lemma 10 implies the following

assertion.

Theorem 2. Let � 2 �(T1). Then the following statements are valid:

1) the range R(T� � �E) is closed if and only if the range R(� � �Æ(�)) is

closed;

2) dimB0=R(T� � �E) = dim ~B2=R(� � �Æ(�));
3) dimker(T� � �E) = dimker(� � �Æ(�)).

Corollary 4. Suppose that the relation � is closed. A point � 2 �(T1) belongs
to the point spectrum �p(T�) of the relation T� if and only if ker(���Æ(�)) 6= f0g.
A point � 2 �(T1) belongs to the residual spectrum �r(T�) (to the continuous

spectrum �c(T�)) if and only if the relation (���Æ(�))
�1 is a non-densely de�ned

(densely de�ned and unbounded) operator. A point � 2 �(T1) belongs to the

resolvent set �(T�) if and only if (� � �Æ(�))
�1 is a bounded everywhere de�ned

operator.

Notice that for abstract SBV introduced in [20, 21] the statements similar to

Cor. 4 were obtained in [18, 19].

In view of Lemma 10 and Theorem 2, we recall the following de�nitions (see

[22] for relations and [23, Ch. 4] for operators). Let S � B1 � B2 be a closed

linear relation. The quantity �(S) = dimkerS � dimB2=R(S) is called an index
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of S if one of the subspaces kerS or B2=R(S) is �nite-dimensional. The relation

S is called normal solvable if R(S) is closed; it is called semi-Fredholm if it is

normal solvable and kerS or B2=R(S) is �nite-dimensional; it is called a Fredholm

relation if it is semi-Fredholm, and the subspaces kerS and B2=R(S) are �nite-

dimensional; it is called regular solvable if it is a Fredholm relation and �(S) = 0;
it is called solvable if R(S) = B2 and kerS = f0g. Theorem 2 implies that the

relations T� � �E and � � �Æ(�) simultaneously possess or do not possess the

properties listed in this de�nition.

We apply the obtained results to the relation L generated by the expression

l+[y] and the operator function A(t).
We de�ne the boundary operators 1 : L! Q

�
, 2 : L! ~Q+ for the relation

L in the following way. Let a pair f~y; ~fg 2 L. Then ~y has form (31) for � = 0.
By (31), to each pair f~y; ~fg 2 L we assign a pair of boundary values by the

formulas

1f~y; ~fg = x; 2f~y; ~fg = V �

q (0)
~f =

bZ

0

U�(s; 0) ~A(s)f(s)ds: (33)

It follows from Remark 2 that the pair f1f~y; ~fg; 2f~y; ~fgg of boundary values
is uniquely determined for each pair f~y; ~fg 2 L. By Lemmas 6, 7 and Corollary 2,

for each � 2 �0(GA) the quadruple (Q�
; ~Q+; 1; 2) is the space of boundary values

for the relation L. As above, by  we denote the operator de�ned by the equality

f~y; ~fg = f1f~y; ~fg; 2f~y; ~fgg. The operator  is a continuous mapping of L onto

Q
�
� ~Q+. It follows from Remark 3 and the proof of Lemma 8 that ker  = L0.

Analogously as above, for any pair fy1; y2g 2 L we put (�)fy1; y2 � �y1g =
fy1; y2g. Using Lemma 7, we get �0(GA) � �(L1), where L1 = ker 1. Hence,

for all � 2 �0(GA) the quadruple (Q�
; ~Q+; 1(�); 2(�)) is an SBV for the relation

L � �E. By �(�) we denote the corresponding operator �(�). Using (33), we

obtain

�(�) = �

bZ

0

U�(s; 0) ~A(s)U(s; �)ds:

Let � � Q
�
� ~Q+ be a linear relation and L� � L be a linear relation such

that L� = �. From Theorem 2, we get the following statement.

Theorem 3. Let � 2 �0(GA). Then the following statements are valid:

1) the range R(L� � �E) is closed if and only if the range R(� � �(�)) is

closed;

2) dimB=R(L� � �E) = dim ~Q+=R(� � �(�);
3) dimker(L� � �E) = dimker(� � �(�)).
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Corollary 4 with T� replaced by L� and �Æ(�) replaced by �(�) holds for the
relation L.

Suppose �(�) � Q
�
� ~Q+ and L�(�) � L are the families of linear relations

such that L�(�) = �(�). By Lemma 4, the relation R(�) = (L�(�) � �E)�1 is

a bounded everywhere de�ned operator if and only if (�(�)��(�))�1 is bounded

everywhere de�ned.

The following two theorems can be proved in view of Lemma 7 and Corollary 4

by analogy with the corresponding assertions in [12], where the case of p = 2,
� = 0, was considered.

Theorem 4. Suppose R(�) = (L�(�)��E)
�1 (or (�(�)��(�))�1) is a bounded

everywhere de�ned operator. Then R(�) is an integral operator of the form

R(�) ~f =

bZ

0

( ~U(t; �)(�(�) � �(�))�1U�(s; ��) +G�(s; t; ��)) ~A(s))f(s)ds: (34)

Theorem 5. Suppose the relation R(�0) (or (�(�0)� �(�0)
�1) is a bounded

everywhere de�ned operator. Then the family R(�) is holomorphic in the point �0
if and only if the family (�(�)� �(�))�1 is holomorphic in �0.

R e m a r k 7. If the relation T (�0) is a bounded everywhere de�ned operator

and the family of relations T (�) is holomorphic in the point �0, then the relations

T (�) are bounded everywhere de�ned operators in some neighborhood of �0 (see

[23, Ch. 7; 24]).

6. Maximal and Minimal Relations in L2(H;A(t); 0; b).
Description of Generalized Resolvents

In this section, we prove that the minimal relation L0 is symmetric in the

space L2(H;A(t); 0; b) and describe the generalized resolvents of the relation L0.

Further, we will consider the case of B = L2(H;A(t); 0; b), i.e., p = 2. Notice
that the norm in B is generated by the scalar product

( ~f; ~g)B =

bZ

0

( ~A(t)f(t); g(t))dt:

The space Q
�
is a Hilbert space with the scalar product

(x1; x2)� = ( ~U (�; 0)x1; ~U(�; 0)x2)B:

This scalar product generates the norm (28) under r = 2. The space Q
�

can

be treated as a space with the negative norm with respect to Q [6, Ch. 2; 9,
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Ch. 1]. By Q+, denote the corresponding space with the positive norm. Using

the de�nitions of positive and negative spaces, we get Q+ = ~Q+.

Lemma 12. Let the pairs f~y; ~fg; f~z; ~gg 2 L0. Then there exist such represen-

tatives y 2 ~y, z 2 ~z that the following equality holds:

( ~f; ~z)B� (~y; ~g)B = �(y0(b); z(b))+(y0(0); z(0))+(y(b); z0(b))� (y(0); z0(0)): (35)

P r o o f. It follows from Lemma 7 and Remark 2 that there exist such

representatives y 2 ~y, z 2 ~z that

y(t) = U(t; 0)v +

bZ

0

G�(s; t) ~A(s)f(s)ds;

z(t) = U(t; 0)w +

bZ

0

G�(s; t) ~A(s)g(s)ds;

where v; w 2 Q. Since ~f; ~g 2 B, we obtain that the functions ~A(s)f(s), ~A(s)g(s)
belong to L1(H; 0; b). We chose two sequences ffng and fgng of functions such

that fn, gn are strongly continuous functions in the space Ĥ+1 and the sequences

ffng, fgng converge to the functions ~A(s)f(s) and ~A(s)g(s), respectively, in the

space L1(H; 0; b). Moreover, we take two sequences fvng, fwng, where vn; wn 2

Ĥ+1, such that fvng, fwng converge to v, w, respectively, in the space H.

Then the functions

yn(t) = U(t; 0)vn +

bZ

0

G�(s; t)fn(s)ds; zn(t) = U(t; 0)wn +

bZ

0

G�(s; t)gn(s)ds

are strong solutions [11] of equation (2) with the right parts fn, gn, respectively.

Hence, yn(t); zn(t) 2 D(A1) for each t 2 [0; b]. Therefore,

bZ

0

(l[yn]; zn)dt�

bZ

0

(yn; l[zn])dt =

bZ

0

(�y00n(t) +A1(t)yn(t); zn(t))dt

�

bZ

0

(yn(t);�z
00

n(t) +A1(t)zn(t))dt = �

bZ

0

(y00n(t); zn(t))dt+

bZ

0

(yn(t); z
00

n(t))dt

= �(y0n(b); zn(b)) + (y0n(0); zn(0)) + (yn(b); z
0

n(b))� (yn(0); z
0

n(0)): (36)

It follows from (11) that yn(0), yn(b), zn(0), zn(b) converge to y(0), y(b),
z(0), z(b), respectively, in the space H. Since vn = f�y0n(0); y

0

n(b)g, wn =
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f�z0n(0); z
0

n(b)g, v = f�y0(0); y0(b)g, w = f�z0(0); z0(b)g, we have y0n(0), y
0

n(b),
z0n(0), z

0

n(b) converge to y0(0), y0(b), z0(0), z0(b), respectively, in the space H.

In (36), we pass to the limit as n!1 and obtain (35). The proof of Lemma 12

is complete.

Corollary 5. The relation L0 is symmetric.

P r o o f follows from Remark 2, Lemma 12 and the de�nition of L0.

Lemma 13. L�

0 = L.

In view of Lemma 7 and Corollary 5, the proof of Lemma 13 is the same as

that of the similar assertion in [12].

Theorem 6. The range R() of the operator  coincides with Q
�
�Q+, and

for any pairs f~y; ~fg; f~z; ~gg 2 L �the Green formula� is valid:

( ~f; ~z)B � (~y; ~g)B = (Y2; Z1)� (Y1; Z2); (37)

where fY1; Y2g = f~y; ~fg, fZ1; Z2g = f~z; ~gg.

P r o o f. The equalityR() = Q
�
�Q+ follows from Lemmas 6, 7, Corollary 2

and equalities (33). In view of Lemma 12, formula (37) is proved in the same way

as the similar one in [12]. Theorem 6 is proved.

In a particular case of Q
�
= Q+ = Q, Theorem 6 implies that the ordered

triple (Q; 1; 2) is a space of boundary values in the sense of papers [20, 21].

Using the argumentation of [20, 21], we obtain the following assertion.

Lemma 14. For �xed �, the relations L�(�) and �(�) are or are not simul-

taneously accumulative (dissipative, symmetric, maximal accumulative, maximal

dissipative, maximal symmetric, selfadjoint).

When there is no operator weight (i.e., (A(t) = E), the relation L is an ope-

rator, and in this case Theorem 6 was proved in [1] for the expression l[y] with
a constant operator coe�cient A1(t) = A1, and in [2, 3] for l[y] with a variable

operator coe�cient A1(t) satisfying the conditions listed in Sect. 2. The case

of � = 0 was considered in these papers. In [1], the boundary values did not

contain the Green function. In [3], for the variable operator coe�cient A1(t), the
boundary values were constructed so that they did not contain the Green function.

Moreover, additional conditions were imposed on the function A1(t), and the

example proving the necessity of these conditions was given. The boundary values

containing the Green function were constructed in [2] as � = 0 and in [4, 5] as

� > 0, and they di�er from the boundary values (33) introduced in the present

paper. The papers [1�3, 20, 21] are reviewed in the monograph [6]. Notice that

for the �rst time linear relations were applied to the description of extensions of

di�erential operators in [25] (see also [14]), where the di�erential expressions with

bounded operator coe�cients were considered.
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We recall a de�nition of the generalized resolvent. Suppose that B is a Hilbert

space, L0 is a closed symmetric relation, L0 � B �B. The operator function R�,

Im� 6= 0, is called a generalized resolvent of the relation L0 if there exists the

Hilbert space ~B � B and the selfadjoint relation ~L � L0, ~L � ~B� ~B such that the

condition R� = P ( ~L � �E)�1
j
B
, where P is an orthogonal projection of ~B onto

B, is satis�ed.

Detailed bibliography on generalized resolvents is given in the monograph [14].

In view of Theorems 4, 5 and Lemma 14, the proof of the following theorem

is the same as that of the similar assertion in [12], where the case of � = 0 was

considered.

Theorem 7. Any generalized resolvent R� (Im� 6= 0) of the relation L0 is the

integral operator (34), where �(�) � Q
�
�Q+, and �(�) is a holomorphic family,

the values of which �(�) are maximal accumulative relations in the case of Im� > 0
and maximal dissipative relations in the case of Im� < 0, with ��(�) = �(��).
Conversely, if �(�) is a family of the linear relations with the mentioned above

properties, then the family of operators R� of form (34) is a generalized resolvent

of the relation L0.

References

[1] M.L. Gorbatchuk, Selfadjoint Boundary Problems for a Di�erential Equation of

Second Order with an Unbounded Operator Coe�cient. � Funct. Anal. Appl. 5

(1971), No. 1, 10�21. (Russian)

[2] L.I. Vainerman, Selfadjoint Boundary Problems for Strongly Elliptic and Hyperbolic

Equations of Second Order in a Hilbert Space. � Dokl. Akad. Nauk USSR 218

(1974), 345-348. (Russian)

[3] V.M. Bruk, Dissipative Extensions of a Di�erential Elliptic-type Operator. � Funct.

Anal., Ulyanovsk 3 (1974), 35�43. (Russian)

[4] L.I. Vainerman, A Degenerating Elliptic Equation of Second Order in a Hilbert

Space. � Di�. Eq. 14 (1978), 482�491. (Russian)

[5] L.I. Vainerman, A Degenerating Elliptic Equation with a Variable Operator Coef-

�cient. � Ukr. Mat. Zh. 31 (1979), 247�255. (Russian)

[6] V.I Gorbatchuk and M.L. Gorbatchuk, Boundary Value Problems for Di�erential-

Operator Equations. Kluwer Acad. Publ., Dordrecht, Boston, London, 1991.

[7] V.I.Khrabustovsky, On the Characteristic Operators and Projections and on the So-

lutions of Weil Type of Dissipative and Accumulative Operator Systems. 1. General

Case; 2. Abstract Theory; 3. Separated Boundary Conditions. � J. Math. Phys.,

Anal., Geom. 2 (2006), 149�175; 299�317; 449�473.

[8] V.M. Bruk, On Invertible Restrictions of Relations Generated by a Di�erential

Expression and by a Nonnegative Operator Function. � Mat. Zametki 82 (2007),

652�664. (Russian)

Journal of Mathematical Physics, Analysis, Geometry, 2009, vol. 5, No. 2 143



V.M. Bruk

[9] Yu. M. Berezanski, Expansions in Eigenfunctions of Selfadjoint Operators. Naukova

Dumka, Kiev, 1965. (Russian)

[10] V.M. Bruk, On Linear Relations in a Space of Vector Functions. � Mat. Zametki

24 (1978), 499�511. (Russian)

[11] V.I Gorbatchuk and M.L. Gorbatchuk, Some Questions of Spectral Theory of a

Linear Di�erential Equation of Second Order with Unbounded Operator Coe�cients.

� Ukr. Mat. Zh. 23 (1971), 3�14. (Russian)

[12] V.M. Bruk, On Generalized Resolvents of Linear Relations Generated by a Nonneg-

ative Operator Function and a Di�erential Elliptic-Type Expression. � Izv. Vuz.

Mat. 11 (2008), 12�26. (Russian)

[13] G.I. Laptev, Strong Elliptic Di�erential Equations of Second Order in a Hilbert

Space. � Lit. Mat. Sb. 8 (1968), No. 1, 87�99. (Russian).

[14] F.S. Rofe-Beketov and A.M. Khol'kin, Spectral Anaysis of Di�erential Operators.

Interplay between Spectral and Oscillatory Properties. World Sci. Monogr. Ser.

Math., Singapore 7 (2005), XXII.

[15] A.G. Baskakov and K.I. Chernyshov, Spectral Analysis of Linear Relations, and

Degenerate Semigroups of Operators. � Mat. Sb. 193 (2002), 1573�1610. (Russian)

[16] V.M. Bruk, On Invertible Restrictions of Closed Operators in Banach Spaces. �

Funct. Anal., Ulyanovsk 28 (1988), 17�22. (Russian)

[17] V.M. Bruk, On the Spectrum of Linear Relations Associated with Uniformly Well-

Posed Problems. � Di�. Eq. 43 (2007), 21�27. (Russian)

[18] A.N. Kochubei, On the Spectrum of Selfadjoint Extensions of the Symmetric Ope-

rator. � Mat. Zametki 19 (1976), 429�434. (Russian)

[19] V.A. Derkach and M.M. Malamud, Generalized Resolvents and the Boundary Value

Problems for Hermitian Operators with Gaps. � J. Funct. Anal. 95 (1991), No. 1,

1�95.

[20] A.N. Kochubei, On Extensions of Symmetric Operators and Symmetric Binary

Relations. � Mat. Zametki 17 (1975), 41�48. (Russian)

[21] V.M. Bruk, On One Class of Boundary Value Problems with a Spectral Parameter

in the Boundary Condition. � Mat. Sb. 100 (1976), 210�215. (Russian)

[22] L.I. Vainerman, On Extensions of Closed Operators in a Hilbert Space. � Mat.

Zametki 28 (1980), 833�842. (Russian)

[23] T. Kato, Perturbation Theory for Linear Operators. � Springer�Verlag, Berlin,

Heidelberg, New York, 1966.

[24] V.M. Bruk, On Holomorphic Families of Linear Relations. � Funct. Anal.,

Ulyanovsk 33 (1992), 24�28. (Russian)

[25] F.S. Rofe-Beketov, Selfadjoint Extensions of Di�erential Operators in a Space of

Vector Functions. � Dokl. Akad. Nauk USSR 164 (1969), 1034�1037. (Russian)

144 Journal of Mathematical Physics, Analysis, Geometry, 2009, vol. 5, No. 2


