On the Polynomial Asymptotics of Subharmonic Functions of Finite Order and their Mass Distributions

Vladimir Azarin
Department of Mathematics and Statistics, Bar-Ilan University Ramat-Gan, 52900, Israel
E-mail:azarin@macs.biu.ac.il

Received September 1, 2006

We obtain the results analogous of those of [5] on the polynomial asymptotics with arbitrary $0<\rho_{n}<\ldots<\rho_{1}<\rho$, defining multipolynomial terms.

Key words: subharmonic function, asymptotic representation, limit set for entire and subharmonic functions, topology of distribution.

Mathematics Subject Classification 2000: 30D20, 30D35, 31A05, 31A10.

1. Introduction and the Main Results

1.1. In papers [1-8], it is considered, in particular, the polynomial asymptotics of subharmonic functions of finite order ρ and their mass distributions in terms of the growth of reminder terms and topology of exceptional sets. Besides, the exponents $\rho_{1}, \ldots, \rho_{n}$ of terms had to satisfy the conditions $[\rho]<\rho_{n}<\ldots<\rho$ for a noninteger ρ. We are going to represent another point of view by studying the polynomial asymptotics in \mathcal{D}^{\prime}-topology and a little bit stronger topology and relax restriction on the exponent to the natural $\rho>\rho_{1}>\ldots>\rho_{n}>0$. It occurs that this change of topology together with the consideration of more narrow class than in [5] allows to obtain a multiterm asymptotic analog of Levin-Pfluger's theory of completely regular growth and make simpler (in our opinion) formulating of the results and proofs.

By " \mathcal{D}^{\prime}-topology" we call the topology of the space $\mathcal{D}^{\prime}(\mathbb{C} \backslash 0)$ of distributions (i.e., linear bounded functionals) over the basic space $\mathcal{D}(\mathbb{C} \backslash 0)$ of finite infinitely differentiable functions. Recall that a sequence $u_{j} \rightarrow 0, j \rightarrow \infty$ in this space if the linear functionals

$$
\begin{equation*}
<u_{j}, g>\rightarrow 0 \tag{1.1.1}
\end{equation*}
$$

for all $g \in \mathcal{D}$.

About connection between \mathcal{D}^{\prime}-topology and the topology of exceptional sets for subharmonic functions see [9], [10, Ch. 3].

We also use $C_{q, p}^{\infty}$-topology, i.e., the topology of linear functionals over the basic space $C_{q, p}^{\infty}$ with the convergence defined like in (1.1.1). The space $C_{q, p}^{\infty}$ is one of the infinitely differentiable functions in $\mathbb{C} \backslash 0$ that tends to ∞ not faster then $O\left(|z|^{-q}\right)$ as $z \rightarrow 0$ and tends to zero not slower then $O\left(|z|^{-p}\right)$ as $z \rightarrow \infty$. Let us note that this topology is stronger that \mathcal{D}^{\prime}-topology because $C_{q, p}^{\infty} \supset \mathcal{D}(\mathbb{C} \backslash 0)$.

Let $u(z)$ be a subharmonic function in \mathbb{C} of normal type with respect to a finite order ρ, i.e.,

$$
0<\sigma[u]:=\limsup _{r \rightarrow \infty} M(r, u) r^{-\rho}<\infty,
$$

where $M(r, u):=\max _{|z|=r} u(z)$. We write $u \in S H(\rho)$.
Let μ be a mass distribution in \mathbb{C} with no mass in zero. It has normal type with respect to the exponent ρ if

$$
0<\bar{\Delta}[\mu]:=\limsup _{r \rightarrow \infty} \mu\left(K_{r}\right) r^{-\rho}<\infty,
$$

where $K_{r}:=\{z:|z|<r\}$. We write $\mu \in \mathcal{M}(\rho)$. Define by μ_{u} the mass distribution associated with u. Recall

Borel's Theorem. Let $[\rho]<\rho$. If $u \in S H(\rho)$, then $\mu \in \mathcal{M}(\rho)$ and vice versa.

Let $\rho=[\rho]:=p$. Set

$$
\delta_{R}(z, \mu, p):=\frac{1}{p} \int_{|\zeta|<R} \Re\left(\frac{z}{\zeta}\right)^{\rho} \mu(d \xi d \eta) .
$$

This is a family of the homogeneous harmonic polynomial of degree p. Recall in an equivalent formulation

Lindelöf's Theorem. If $u \in S H(\rho)$ then $\mu_{u} \in \mathcal{M}(\rho)$ and the family $\left\{\delta_{R}\right\}$ is precompact as $R \rightarrow \infty$, and vice versa.

Denote $u_{t}(z):=u(t z) t^{-\rho}$. The function $u(z) \in S H(\rho)$ is called a function of the completely regular growth (CRG-function) if $u_{t} \rightarrow h_{\rho}(z)$ in \mathcal{D}^{\prime}-topology, as $t \rightarrow \infty$. Here

$$
\begin{equation*}
h_{\rho}(z):=r^{\rho} h\left(e^{i \phi}\right) \tag{1.1.2}
\end{equation*}
$$

and the function $h\left(e^{i \phi}\right)$ is a ρ-trigonometrically convex function (ρ-t.c. function) (see, e.g., $[10, \mathrm{Ch} .1, \S \S 15,16]$), i.e., it is a 2π-periodic generalized solution of the equation

$$
\begin{equation*}
h^{\prime \prime}+\rho^{2} h=\Delta(d \phi), \tag{1.1.3}
\end{equation*}
$$

where Δ is a 2π-periodic positive measure.

Recall also that ρ-t.c. function as a distribution is equivalent to a continuous function and can be represented for noninteger ρ in the form

$$
\begin{equation*}
h(\phi)=\frac{1}{2 \rho \sin \pi \rho} \int_{0}^{2 \pi} * \cos \rho(\phi-\psi-\pi) \Delta(d \psi) \tag{1.1.4}
\end{equation*}
$$

where the function $* \cos \rho(\phi)$ is a 2π-periodic extension of the function $\cos \rho \phi$ from the interval $(-\pi, \pi)$ on $(-\infty, \infty)$. If $\rho(>0)$ is integer, then Δ must satisfy the condition

$$
\begin{equation*}
\int_{0}^{2 \pi} e^{i \rho \phi} \Delta(d \phi)=0 \tag{1.1.5}
\end{equation*}
$$

and the representation has the form

$$
\begin{equation*}
h(\phi)=\Re\left\{C e^{i \phi)}\right\}+\frac{1}{2 \rho} \int_{0}^{2 \pi} *(\phi-\psi) \sin \rho(\phi-\psi) \Delta(d \psi) \tag{1.1.6}
\end{equation*}
$$

where C is a complex constant, the function $* \psi$ means the 2π-periodic continuation of the function $f(\psi):=\psi$ from the interval $[0,2 \pi)$ on $(-\infty, \infty)$.

Recall (see [9], $\left[10\right.$, Ch.3, §1]) that μ_{t} (do not confuse with μ_{u}) is the mass distribution defined by the equality

$$
<\mu_{t}, g>:=t^{-\rho} \int g(z / t) \mu(d x d y)
$$

for all $g \in \mathcal{D}$. It can also be defined by the equality

$$
\mu_{t}(E):=\mu(t E) t^{-\rho}
$$

where E is every Borel set and $t E$ is the homothety of E.
Let $\rho>[\rho]$. Recall that the mass distribution μ is called regular if

$$
\begin{equation*}
\mu_{t} \rightarrow \Delta(d \phi) \otimes \rho r^{\rho-1} d r \tag{1.1.7}
\end{equation*}
$$

in \mathcal{D}^{\prime}-topology as $t \rightarrow \infty . \Delta(d \phi)$ is a measure on the unit circle which is necessarily positive.

Let ρ be an integer number $p=[\rho]$. Then the mass distribution is called regular if, in addition to (1.1.7), $\delta_{R}\left(z, \mu_{t}, p\right)$ converges in \mathcal{D}^{\prime}-topology as $t \rightarrow \infty$ for some R.

Since $\delta_{R}\left(z, \mu_{t}, p\right)$ is a homogeneous harmonic polynomial, the convergence in \mathcal{D}^{\prime}-topology is equivalent to uniform convergence in every bounded domain.

In such terms Levin-Pfluger's theorem (see [9, Chs. 2, 3], [10, Ch. 3, Th. 3]) may be formulated as follows.

Levin-Pfluger's Theorem. If u is a $C R G$-function, then its mass distribution is regular and vice versa.
1.2. Let $\hat{\rho}=\left\{\rho>\rho_{1}>\ldots>\rho_{n}>0\right\}$ be a finite monotonic system of numbers. We call a function $u \in S H(\rho)$ completely $\hat{\rho}$-regular if

$$
\begin{equation*}
u_{t}=h_{\rho}+t^{\rho_{1}-\rho} h_{\rho_{1}}+\ldots+t^{\rho_{n}-\rho} h_{\rho_{n}}+t^{\rho_{n}-\rho} o(1), \tag{1.2.1}
\end{equation*}
$$

where h_{ρ} is a ρ-t.c. function and $h_{\rho_{j}}(z), j=1,2, \ldots, n$, are of the form of (1.1.2) with the corresponding h 's being the differences of ρ_{j}-t.c. functions. Therefore $h_{\rho_{j}}$ can be represented in the form of (1.1.4) or (1.1.6) with Δ 's being the functions of bounded variation. Besides, $o(1) \rightarrow 0$ in \mathcal{D}^{\prime} topology.

Let $\rho>[\rho]$ and $\rho_{j} \in([\rho], \rho), j=1,2, \ldots, n$. We call $\mu \in \mathcal{M}(\rho) \hat{\rho}$-regular if

$$
\begin{equation*}
\left.\mu_{t}=\mu_{(\rho)}+\sum_{j=1}^{j=n} t^{\rho_{j}-\rho} \mu_{\left(\rho_{j}\right)}+t^{\rho_{n}-\rho} o(1)\right) \tag{1.2.2}
\end{equation*}
$$

as $t \rightarrow \infty$, where

$$
\begin{equation*}
\mu_{(\rho)}=\Delta_{\rho}(d \psi) \otimes \rho r^{\rho-1} d r, \tag{1.2.3}
\end{equation*}
$$

with Δ_{ρ} positive and summable, and $\mu_{\left(\rho_{j}\right)}, j=0,1, \ldots, n$, are of the same form as $\rho=\rho_{j}, j=0,1, \ldots, n$, and arbitrary $\Delta_{\left(\rho_{j}\right)}$'s that are the functions of bounded variation on the circle.

If $o(1) \rightarrow 0$ in \mathcal{D}^{\prime}-topology, then μ is $\hat{\rho}$-regular in \mathcal{D}^{\prime}-topology. However it is possible to say that μ is $\hat{\rho}$-regular in other topology if $o(1) \rightarrow 0$ in this topology.

Theorem 1.2.1. Let $\rho>[\rho]$ and $\left[\rho_{n}, \rho\right] \cap \mathbb{N}=\emptyset$. If u is completely $\hat{\rho}$-regular in \mathcal{D}^{\prime}-topology then its mass distribution μ is $\hat{\rho}$-regular in \mathcal{D}^{\prime} topology. If μ is $\hat{\rho}$-regular in $C_{p, p+1}^{\infty}{ }^{*}$-topology, then u is completely $\hat{\rho}$-regular in \mathcal{D}^{\prime}-topology.

Let us notice that the classical Levin-Pfluger theorem of completely regular growth function for noninteger ρ can be obtained from here by using the following

Proposition 1.2.2. Let $\mu \in \mathcal{M}(\rho)$ and $\mu_{t} \rightarrow \mu_{(\rho)}$ in \mathcal{D}^{\prime} as $t \rightarrow \infty$. Then the same holds in $C_{p, p+1}^{\infty}$.

We suppose further that ρ is an exponent of the convergence of μ.
Let us consider the situation, when $\hat{\rho}$ consists of noninteger numbers, but the interval $(0, \rho)$ contains integer numbers.

Theorem 1.2.3. Let u_{t} have the representation

$$
\begin{equation*}
u_{t}=h_{\rho}+t^{\rho_{1}-\rho} h_{\rho_{1}}+\ldots+t^{\rho_{n}-\rho} h_{\rho_{n}}+\sum_{1}^{[\rho]} \Re\left\{a_{k} z^{k}\right\} t^{k-\rho}+t^{\rho_{n}-\rho} o(1), \tag{1.2.4}
\end{equation*}
$$

where $o(1) \rightarrow 0$ in \mathcal{D}^{\prime}.
Then

$$
\begin{equation*}
\mu_{t}=\mu_{(\rho)}+\sum_{j=1}^{j=n} t^{\rho_{j}-\rho} \mu_{\left(\rho_{j}\right)}+t^{\rho_{n}-\rho_{O}}(1) \tag{1.2.5}
\end{equation*}
$$

with $o(1) \rightarrow 0$ in \mathcal{D}^{\prime}.
The inverse theorem is the following
Theorem 1.2.4. Let $u \in S H(\rho)$ and its mass distribution have the representation (1.2.5) with $o(1) \rightarrow 0$ in $C_{p, p+1}^{\infty}$ * and

$$
\begin{equation*}
\int_{0}^{2 \pi} e^{i k \phi} \Delta_{\rho_{j}}(d \phi)=0 \tag{1.2.6}
\end{equation*}
$$

for all $k, \rho>k>\rho_{j}$.
Then (1.2.4) holds for u_{t} with $o(1) \rightarrow 0$ in \mathcal{D}^{\prime}.
Let us notice that the conditions (1.2.6) are not necessary for the validness of (1.2.4).

The similar theorems can be formulated for the case when ρ or some of ρ_{j} are integers.

I am grateful to Prof. V. Logvinenko for his valuable notes.

2. Proofs

2.1. Consider the case when $\rho>[\rho]$ and $\left[\rho_{n}, \rho\right] \cap \mathbb{N}=\emptyset$. Let u_{t} have the representation (1.2.1) and the remainder term be $o(1)$ in \mathcal{D}^{\prime}-topology. Applying to (1.2.1), the operator $(1 / 2 \pi) \Delta$ (here Δ is the Laplace operator) we obtain (1.2.2), as $(1 / 2 \pi) \Delta u_{t}=\mu_{t},(1 / 2 \pi) \Delta h_{\rho_{j}}=\Delta_{\rho_{j}}(d \phi), j=0, \ldots, n$, and $(1 / 2 \pi) \Delta o(1)=o(1)$ since the Laplace operator is continuous in \mathcal{D}^{\prime}-topology. The first assertion of Th. 1.2.1 is proved.

Let (1.2.2) hold with $o(1)$ in $C_{p, p+1}^{\infty}$. Apply to it the operator $A d_{\rho}^{*}$ which is conjugated to

$$
A d_{\rho}[\bullet]:=\int_{\mathbb{C} \backslash 0} H(z / \zeta,[\rho]) \bullet(d x d y)
$$

that acts from \mathcal{D} to $C_{\infty} p, p+1$. By definition, for $g \in \mathcal{D}$ we have

$$
<A d_{\rho}^{*} \mu_{t}, g>=<\mu_{t}, A d_{\rho}[g]>
$$

Now substitute (1.2.2) for μ_{t}. The integral of the first n terms of (1.2.2) are, in fact, the first n terms of (1.2.1). Let us verify it.

We have

$$
<\mu_{\left(\rho_{j}\right)}, A d_{\rho}[g]>_{z}=\int g(z) d x d y \int H\left(z / r e^{i \psi}, p\right) \Delta_{j}(d \psi) \rho_{j} r^{\rho_{j}-1} d r .
$$

Counting the inner integral on $d r$ (see, [11, Ch. $1, \S 17$, footnote 21]), we obtain

$$
\begin{equation*}
\int_{0}^{\infty} H\left(z / r e^{i \psi}, p\right) \rho_{j} r^{\rho_{j}-1} d r=\frac{1}{2 \rho_{j} \sin \pi \rho_{j}} * \cos \rho(\arg z-\psi-\pi)|z|^{\rho_{j}} . \tag{2.1.1}
\end{equation*}
$$

Hence, using (1.1.4), we obtain

$$
\begin{equation*}
<\mu_{\rho_{j}}, A d_{\rho}[g]>_{z}=<h_{\rho_{j}} . g> \tag{2.1.2}
\end{equation*}
$$

The last term is $t^{\rho_{n}-\rho} o(1)$ where $o(1)$ is understood in $C_{p, p+1}^{\infty}{ }^{*}$. The function $A d_{\rho}[g]$ is a canonical potential of the function $g \in \mathcal{D}$. Thus $A d_{\rho}[g] \in C_{p, p+1}^{\infty}$. Therefore $<o(1), A d_{\rho}[g]>_{z} \rightarrow 0$ as $t \rightarrow \infty$. This proves the second assertion of Th. 1.2.1.
2.2. Let us prove Proposition 1.2.2.

Proof. Let $g \in C_{p, p+1}^{\infty}$. Let $\tau_{1}, \tau_{2}, \tau_{3}$ be a partition of unity by infinitely differentiable functions, such that $\operatorname{supp} \tau_{1} \subset(0, \epsilon)$, supp $\tau_{2} \subset(\epsilon / 2,2 R)$, supp $\tau_{3} \subset(R, \infty)$. Then

$$
\int_{\mathbb{C}} g(z) \mu_{t}(d x d y)=I_{1}(t)+I_{2}(t)+I_{3}(t)
$$

where

$$
I_{j}(t)=\int_{\mathbb{C}} g(z) \tau_{j}(|z|) \mu_{t}(d x d y), j=1,2,3 .
$$

The first integral has the estimate

$$
\left|I_{1}(t)\right| \leq \lim _{\delta \rightarrow 0} \int_{\delta}^{\epsilon} C r^{-p} \mu_{t}(d r)
$$

because g is $O\left(|z|^{-p}\right)$ as $z \rightarrow 0$. Integrating by parts, we obtain

$$
I_{1}(t) \leq C\left[\mu_{t}(\epsilon) \epsilon^{\rho-p}+\lim _{\delta \rightarrow 0} \int_{\delta}^{\epsilon} r^{-p-1} \mu_{t}(r)(d r)\right] .
$$

Since $\mu(r) \leq C r^{\rho}$, also $\mu_{t}(r) \leq C r^{\rho}$. Thus

$$
\begin{equation*}
I_{1}(t) \leq C \epsilon^{\rho-p} \tag{2.2.1}
\end{equation*}
$$

uniformly with respect to t.
In the same way we obtain

$$
\begin{equation*}
I_{3}(t) \leq C R^{\rho-p-1} \tag{2.2.2}
\end{equation*}
$$

uniformly with respect to t.
Since $\mu_{t} \rightarrow \mu_{\rho}$ in \mathcal{D}^{\prime} and $g \tau_{2} \in \mathcal{D}$, we have

$$
\begin{equation*}
I_{2}(t) \rightarrow \int_{\mathbb{C}} g(z) \tau_{2}(|z|) \mu_{\rho}(d x d y), t \rightarrow \infty \tag{2.2.3}
\end{equation*}
$$

Moreover, (2.2.1),(2.2.2), and (2.2.3) imply that

$$
<g, \mu_{t}>\rightarrow<g, \mu(\rho)>
$$

for every $g \in C_{p, p+1}^{\infty}$ because ϵ can be chosen to be arbitrarily small and R can be selected to be arbitrarily large.

For proving Th. 1.2.3 we should only repeat the first part of the proof of Th. 1.2.1.

2.3.

Proof of Theorem 1.2.4. As in the proof of Th. 1.2.1 we apply the operator $A d_{\rho}^{*}$ to μ_{t} and evaluate $<\mu_{\rho_{j}}, A d_{\rho}[g]>_{z}$. Because of (1.2.3),

$$
<\mu_{\left(\rho_{j}\right)}, A d_{\rho}[g]>_{z}=<\rho_{j} r^{\rho_{j}-1},<\Delta_{\rho_{j}}, A d_{\rho}[g]>_{\phi}>_{r}
$$

where

$$
<\Delta_{\rho_{j}}, A d_{\rho}[g]>_{\phi}:=\int_{0}^{2 \pi} A d_{\rho}[g]\left(r e^{i \phi}\right) \Delta_{\rho_{j}}(d \phi)
$$

Changing the order of integration and using (1.2.6) and (2.1.1), we obtain

$$
<\mu_{\left(\rho_{j}\right)}, A d_{\rho}[g]>_{z}=<\mu_{\left(\rho_{j}\right)}, A d_{\rho_{j}}[g]>_{z}=<h_{\rho_{j}}, g>
$$

As it was explained in the proof of Th. 1.2.1, $<o(1), A d_{\rho}[g]>\rightarrow 0$. Thus

$$
\begin{equation*}
A d_{\rho}^{*} \mu_{t}=h_{\rho}+t^{\rho_{1}-\rho} h_{\rho_{1}}+\ldots+t^{\rho_{n}-\rho} h_{\rho_{n}}+o(1) t^{\rho_{n}-\rho} \tag{2.3.1}
\end{equation*}
$$

By Adamar's theorem (see, e.g., [12, Ch. 4.2])

$$
\begin{equation*}
u(z)-A d_{\rho}^{*} \mu(z)=\sum_{k=0}^{[\rho]} \Re\left\{a_{k} z^{k}\right\} \tag{2.3.2}
\end{equation*}
$$

Thus (2.3.1) and (2.3.2) imply (1.2.4).

References

[1] V.N. Logvinenko, On Entire Functions with Zeros on the Halfline. I. - Teor. Funkts., Funkts. Anal. i Prilozh. 16 (1972), 154-158. (Russian)
[2] V.N. Logvinenko, Two Term Asymptotics of a Class of Entire Functions. - Dokl. Akad. Nauk USSR 205 (1972), 1037-1039. (Russian)
[3] V.N. Logvinenko, On Entire Functions with Zeros on the Halfine. II. - Teor. Funkts., Funkts. Anal. i Prilozh. 17 (1973), 84-99. (Russian)
[4] P.Z. Agranovich and V.N. Logvinenko, Analog of the Valiron-Titchmarsh Theorem for Two-Term Asymptotics of Subharmonic Functions with Masses on a Finite System of Rays. - Sib. Mat. Zh. 26 (1985), No. 5, 3-19. (Russian)
[5] P.Z. Agranovich and V.N. Logvinenko, Polynomial Asymptotic Representation of Subharmonic Function in the Plane. - Sib. Mat. Zh. 32 (1991), No. 1, 3-21. (Russian)
[6] P.Z. Agranovich and V.N. Logvinenko, Exceptional Sets for Entire Functions. Mat. Stud. 13 (2000), No. 2, 149-156.
[7] P.Z. Agranovich, On a Sharpness of Multiterm Asymptotics of Subharmonic Functions with Masses in a Parabola. - Mat. fiz., anal., geom. 11 (2004), 127-134. (Russian)
[8] P.Z. Agranovich, Massiveness of Exeptional Sets Multi-Term Asymptotic Representations of Subharmonic Functions in the Plane. - J. Math. Phys., Anal., Geom. 2 (2006), 119-129.
[9] V.S. Azarin, On the Asymptotic Behavior of Subharmonic and Entire Functions. - Mat. Sb. 108 (1979), No. 2, 147-167. (Russian)
[10] A.A. Gol'dberg, B.Ya. Levin, and I.V. Ostrovskii, Entire and Meromorphic Functions. - Ecyci. Math. Sci. 85 (1997), 4-172.
[11] B.Ya. Levin, Distribution of Zeros of Entire Functions. AMS, Providence, RI, 1980.
[12] W.K Hayman and B.P. Kennedy, Subharmonic Functions. Vol. I Acad. Press, London, New York, San Francisco, 1976.

