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CHAOS AND FREQUENCY TRANSFORMATION
IN SYSTEMS OF COUPLED OSCILLATORS

Chaotic instabilities and frequency transformations caused by the interaction of oscillators are important effects for many
applications. We review these effects from the point of view of their influence on the dynamics of practical electronic systems. It is
demonstrated that the interaction of high-frequency (HF) and low-frequency (LF) oscillations can result in the development of chaotic
oscillations even in the quasilinear limit creating a threat for the stability of many electronic devices. This result is illustrated by considering
the destruction of both trains of pulses in a nonlinear RLC-circuit and a harmonic oscillation in a two-mode system. In its turn, the LF to HF
transformations that occur in multi-mode systems can be used for the development of novel types of generators. We illustrate this approach
by considering the dynamics of an ensemble of linear oscillators with controlled coupling. A possible practical realization of such generator

by using an antenna array is proposed. Fig. 4. Ref.: 15 titles.
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The interaction of two or more oscillations
or modes is a well-known effect in the theory of
oscillations and its applications. The most studied
systems are ones with the resonant interaction of
oscillations, when the following condition is met
[1,2]:

/@, =n/m, ()
where @, and @, are external frequencies or the

natural frequencies of interacting modes, n and m are
comparatively small integers. The interaction of
oscillations with substantially different frequencies,
when

) >> w, 2)

has not been studied such deeply. Nevertheless,
during the last decades a number of novel results
have been obtained in this direction what clearly
indicates a crucial role of such interaction on the
dynamics of many systems. In this paper, we review
these results considering the effects caused by such
interaction from the point of view of applications.
Moreover, to a large extent arbitrary, we divide these
effects into harmful and beneficial. For example, the
interaction of high-frequency (HF) and low-
frequency (LF) oscillations can lead to arrising of a
chaotic instability in electronic circuits, which is an
undesiarable effect for most practical situations. The
destruction of modulated oscillations in nonlinear
RLC-circuits, cavities, or amplifiers [3—6] is an
example of the manifestation of such instability.
The remarkable feature of the instability is that above
devices being stable in the case of a harmonic input
signal loose their stability when the signal is
modulated at a low frequency. In the next section, we
will illustrate this phenomenon by considering a
transition of a train of pulses via a nonlinear RLC-
circuit.
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There is a variety of roads to chaotic
inabilities in multimode systems due to the
considered HF and LF interaction [7-10].
For example, a harmonic forcing can initiate the
chaos onset in a weakly nonlinear two-mode system
with the natural frequencies that differ significantly
[7]. The corresponding example will be presented in
Section 2.

The LF to HF transformation is another
important phenomenon [11, 12]. This transformation
is interesting, for example, from the point of view of
the development of novel methods of the generation
of electromagnetic oscillations. In this paper, we
demonstrate  that the generation of HF
electromagnetic oscillations is possible by using
coupled linear oscillators, for example, resonant
antennas, cavities or RLC-circuits, which are excited
at a low frequency. The corresponding results are
presented in Section 3.

1. Destruction of modulated signals. Let
us consider a transition of a modulated signal via a
weakly nonlinear oscillator. The dynamics of the
oscillator can be described by the following
generalized Duffing equation:

d 2x 2
- +wyx =

dt (D

= g{— 2040, % + g a)gyx3 + A(et)sin[ayt + go(gt)]}.

Here xis the generalized coordinate, @, is

the natural frequency, O<e<<1 is a small

parameter, o, is the damping parameter, y is the
parameter of nonlinearity, @, is the carrier frequency
of the signal, A(gt) and ¢@(&t) are slow varying
functions (as compared with sin (@, £)). The case of
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the principal resonance is considered what means that
W =y + O(gwo).

The above equation has been used to study
the destruction of various types of modulated signals —
amplitude-modulated, frequency-modulated, and
trains of pulses [3—6]. We will review here the results
[5] related to the destruction of trains of pulses what
is actual for digital communication lines.

The application of the secondary averaging
technique [13] to (1) enables to find analytical
conditions for the chaotic instability onset [5].
For example, the critical value of the pulse intensity

A2, which can cause the destruction of a train of

rectangular RF-pulses, is determined by the
expression
2 T 30(0
Ocr — . . (2)
2y, T, sin(#T ),/ T,,)

Here 4, is the amplitude of the pulses, 7, is their

duration, 7,, is the period of the train. The minimum

value of A7, is achieved when
Tp/Tm =2/7=0.64.

For such 7, /T, the minimum intensity for the

chaos to arise is

%o
R
m

Therefore, the threshold for the instability is
lowering with reducing losses in the system and with
increasing both the period of modulation and the
nonlinearity parameter.

2. Dynamics of two-mode system. In this
section, we review the dynamics of a harmonically
forced two-mode system with essentially different
natural frequencies [7]. Under rather general
conditions, such system can be described by the
following equations

Ajer =84

dszF dxyp
+ Xy = 2 HE
dr? HE # dr
—e2mppXpp —Scosvr), 3)
2
< xéF +&°x =26 Pup _ &y
dr T

Here xpr and x;, are variables describing

the HF and LF oscillators with the natural
frequencies wyr and @;p, correspondingly, z; and

M, represent damping in the HF and LF oscillators,
correspondingly, y is the coefficient of nonlinearity,

7 is slow time, S is the amplitude of the external
periodic forcing at the carrier frequency v, which is
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close to the natural frequency of the HF oscillator,
& = wrp/ 0yp << 1is a small parameter.

A possible physical realization of the above
system is shown in Fig.2. Here L, , R, , and C

represent a HF circuit, which is resonantly driven by
an external harmonic force. L, , R, , and C,

represent a LF circuit. It was generally believed that,
if the conditions L; = &l,,C, =~ ¢C, are met, the
influence of the LF circuit on the dynamics of the
whole system can be neglected. However, as it was
shown in [7], such influence can have a crucial
effect.

The first equation of (3) can be considered
as the motion equation of a quasilinear oscillator.
So one can look for a solution in the form:

Xyp = a(er) cos[vr + p(e7)],

“
where a(er) and ¢@(er) are the slowly varying
amplitude and phase of the HF oscillation. After

application of the averaging technique [13], we have
the following system of the averaged equations:

a =—pa— Ssin @,

¢=—A+7u—£cos¢,
“ 6))

u=v,

. 1

V=="2uyv-u—-—mnmu.
2

The overdot here denotes the differentiation
with respect to the slow time &7, v = X;p, u=x;p

are independent variables, and A = (V2 —l)/ (251/) is
the parameter of the frequency mismatch.

Let us describe qualitative changes in the
dynamics of the system (5) with the increase of the
forcing amplitude S. When the S-value is small
enough, only stable equilibriums exist in the system.
The first qualitative change is associated with the
Hopf bifurcation occurring in some range of the
frequency mismatch A, when the amplitude S is
above some critical value S,,. Due to this bifurcation,
the forced HF oscillations become amplitude- and
phase-modulated at a frequency, which is close to the
natural frequency of the LF circuit. At the same time,
a LF component arises in the system, which
corresponds to the energy transfer from the high
frequencies to the low ones. The critical value of the
amplitude (S,,) can be found from the analysis of the

stability conditions. It is possible to show that the
minimum value of S, is

Smin = % V Hity

when A~1.

(6)
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The relation A =1 can be considered as a
resonance condition necessary for the effective
interaction between the oscillators. Note also that this
condition, written in terms of dimensional
frequencies, takes the form: @ = o, + @,. Hence, we

can conclude that the instability appears here due to
the decay mechanism. In this case the quantum 7@
of the input signal breaks down into two quanta with
the frequencies close to the natural frequencies of the
circuits (@, and @,). The oscillations with the

frequencies @ and o, fall within the bandwidth of

the HF oscillator, resulting in the excitation of a
quasiperiodic oscillation. This is the primary reason
for the complexity in the system dynamics.

It should be noted that the destruction of the
quasiperiodic oscillations, excited in the HF circuit,
leads to the appearance of chaotic oscillations even
under the weakly nonlinear excitation conditions.
The distinguishing feature of the considered problem,
as compared to two-periodically forced oscillators, is
related to the fact that the oscillation with the second
incommensurate frequency is induced by the external
periodic force. In terms of the averaged equations (5),
the destruction of the quasiperiodic oscillation is
observed as a cascade of period-doubling
bifurcations of the envelope of this oscillation.

Experimental investigations of the circuit
shown in Fig. 1 were performed [7]. A reverse-biased
varactor was used as the nonlinear element. The
natural frequencies of the HF and LF circuits were:
w, = 1447 MHz, @, =0.187 MHz, and their O-factors

were 130 and 80, correspondingly. It means that
= 0.013. The values of other dimensionless

parameters are: £ =0.7, u, =0.02, y=1.

The experimentally obtained bifurcation
diagram is shown in Fig. 4. The region of chaos,
boundaries of hysteretic areas, and some fragments
of period-doubling lines are plotted here. We note
that this structure is generally the same as the one
following from the theoretical results [7].
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Fig. 1. An example of physical realization of the two-mode
externally forced system
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Fig. 2. Biturcation diagrams on the parameter plane (S, A).
Regions of chaos are shaded. Solid and dashed lines indicate
borders of the soft and hard regimes of the excitation of LF
oscillations. Dotted lines denote the period-doubling bifurcation

3. LF to HF transformation. Systems of
coupled linear oscillators can be effectively used for
the realization of LF to HF transformation
mechanisms. One of such mechanisms was described
in [14], where it was shown that the above
transformation takes place in a harmonically forced
system of two linear non-reciprocally coupled
oscillators. In this paper, we consider an ensemble of
reciprocally coupled linear oscillators [15]. It is
known that such ensemble has a set of normal
frequencies which differ from the partial frequencies
of the individual oscillator. Provided a large number
of the coupled oscillators is used, the minimal value
of the normal frequencies can be much less than the
partial frequencies of the oscillators. In this case, a
LF forcing at this minimal normal frequency leads to
a resonant excitation of the ensemble of the
oscillators. If at some moment of time, the coupling
between the oscillators will be broken, the oscillators
will start to oscillate at their partial frequencies.
Provided these partial frequencies are identical, the
energy of the LF excitation is transformed to the
energy of the HF oscillation, determined by the
partial frequency.

Let us confirm the above statement by the
corresponding mathematics. An ensemble of N
coupled linear identical oscillators is described by the
following Hamiltonian:

SIVZeY S
H:z TIJFWOTZ +Wozq1a

i=0 j=0 (7)
oH

a;

Di o4, g

Here u =const is the coupling coefficient, @, is the

partial frequency of the oscillators. For simplicity, we
consider the system where the oscillators are coupled
with each other only across the zero oscillator.

From (7) it is easy to obtain the equations
describing dynamics of the oscillators:
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q; =DPi>»P;i = —0yq; — K4y,

N
. 2
Po=—00q0— 1Y 4
i=0

®)

2
Pi T @yp; =—Hpy,

N
Bo+ @5 po = -1 Py

i=0
This system describes the behavior of the N coupled
linear oscillator. Let us find the normal frequencies
of such system. For this purpose we look for the
solution of (8) in the form:

)

Substituting in (8), one can find the following
dispersive equation:

p; = a; exp(iot), a; = const.

(10)

From this equation we find an expression for the

normal frequencies
VN

o = taw, |l + =
0

(— w* + a)g)z = 1°N.

an

It is seen, that even with a small value of the
coupling coefficient, but with a large number of the
oscillators, one of the normal frequencies can be very
small. If now the ensemble of the oscillators (8) is
excited by an external periodic force with the
frequency which is close to this minimum normal
frequency of the ensemble, then the amplitude of the
oscillations will increase in time. In Fig. 3, the
dynamics of two oscillators with different initial
conditions is illustrated for an ensemble of 100
oscillators with the ratio of the minimum normal
frequency to the partial frequency of 0.01.
In practical systems, the increase of the amplitude
will be limited by dissipation and nonlinear effects.
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Fig. 3. Dynamics of the ensemble of oscillators with external

periodic forcing
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Fig. 4. Dynamics of oscillators after breaking the coupling

The system dynamics after breaking of the
coupling is illustrated in Fig. 4. The oscillators start
to oscillate at their partial frequencies. So, we
observe the LF to HF transformation. The important
feature is that after the coupling breaking the
oscillators oscillate coherently. This enables to
organize a coherent radiation and an efficient
summation of the power of individual oscillators.

One of possible practical realizations of the
described frequency transformation mechanism is as
follows. Let us use a resonant antenna as the
oscillator. By creating an antenna array with such
coupled antennas we will have an ensemble of
oscillators. In order to realize the coupling breaking,
and electrically controlled switches can be introduced.
Exciting such antenna array with low frequency
pulses it is possible to produce and directly radiate
HF pulses by switching off and on the switches.

Conclusions. The results of the theoretical
and experimental investigations accumulated to date
support the viewpoint that that interaction of low-
and high frequency oscillations can exert a strong
influence on the dynamics of various systems. Such
interaction can initiate arising of chaotic instabilities
in single- and multi-mode systems. These instabilities
arise even in the weakly nonlinear limit.
Mathematically, the mechanism of the interaction of
high- and low-frequencies is described in terms of
second-order resonances. Such description provides
theoretical results that are in good agreement with the
corresponding experimental data.

Coupled linear oscillators can be effectively
for the development novel types of generators
of RF-oscillations by means of a LF to HF
transformation. Such transformation can be realized
by using nonreciprocally coupled oscillators [14] or
by wusing reciprocally coupled oscillators with
controlled coupling.
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XAOC U ITPEOBPA30OBAHME YACTOTBI
B CUCTEMAX CBA3AHHBIX OCHJIJIATOPOB

XaoTH4yecKkue HEYCTOHYMBOCTH M IIPeoOpa3oBaHus yac-
TOTBI, 00YCIOBICHHBIC B3aUMOJICHCTBHAMU OCLMIUIATOPOB, SIBIIA-
I0TCSl Ba)KHBIMHU d((eKTaMH Ui MHOTUX HPHIOXKEHHH. MBI 1po-
BOJUM 0030p 3THX 3(p(EKTOB ¢ TOYKM 3PEHHS WX BIUSHUSI Ha
JVHAMUKY peallbHBIX dJIEKTPOHHBIX cHcTeM. Iloka3aHo, 4To B3anMo-
neiictBue  BbIcOKovacTOTHBIX (BY) u HuskouwacrotHeix (HY)
KoJeOaHUIl MOXKET NPUBOJUTH K BO3SHUKHOBCHHUIO XAOTHUYECKHX
KonebaHuil fake B KBa3WIMHEHHOM IIpezelie, YTO MPEACTaBIsIeT
yrpo3y Ui MHOTHX O3JIEKTPOHHBIX HPHOOPOB. DTOT pe3yJbrar
OOyCIIOBIIEH ~ aHANIW30M  pa3pyLIEHHs]  IIOCIIEOBAaTEIbHOCTH
HMITy/IbCOB B HEIMHEHHOM KoOJIeOaTelIbHOM KOHType, a Takoke
rapMOHHUYECKOro KoyiebaHus B JBYXMOJOBOH cucreme. B cBoto
ouepenp, mnpeobpasoBanuss HY- B BY-konebanus, KOTOpbIe
MIPOUCXOISIT B MHOIOMOJOBBIX CHCTE€MaX, MOTYT HCIOJIb30BAThCS
JUISL CO3IaHMSI HOBBIX THIIOB T'€HEPATOPOB, YTO HILIIOCTPHPYET
AQHAIN3 JMHAMHKH aHCaMOJs JIMHEHHBIX OCLIIUIATOPOB C
KOHTpoJupyeMoil cBs3bio. IlpeasioskeHa BO3MOXKHasi MpakTHYec-
Kasl peaju3alys Takoro reHepaTopa Ha OCHOBE AHTEHHOH PeIleTKH.

KiaroueBble cJ10Ba: DJICKTPOMAarHUTHBIE KoJeOaHUS,
npeoOpa3oBaHHEe YAaCTOTHI, XaOTHYECKask HEYCTOHIUBOCTh, MHOTO-
MO/IOBBIE CHCTEMBI, FEHEPATOP.

B. O. byn, 1. M. Baspis, JI. B. Tapacos

XAOC TA [IEPETBOPEHHA YACTOTU
B CUCTEMAX 3B’3AHUX OCLHMJIATOPIB

XaoTH4HI HECTIHKOCTI Ta NMEpeTBOPEHHs YacCTOTH, SIKi
3yMOBJICHI B3a€MOJISIMH OCLWIITOPIB, € BAXKJIUBUMH e(eKTaMu
11t 6araTbOX 3aCTOCYBaHb. MM MPOBOIMMO OIS LUX e(eKTiB 3
TOYKH 30y iXHBOTO BIUIUBY Ha AMHAMIKY PEalbHUX CICKTPOHHHUX
cucreM. IlokasaHo, mo B3aemonist BucokowactoTHuX (BY) i
Hu3pkovactoTHHX (HY) KonmMBaHb MOXKE NPU3BOAUTH 10
BUHMKHEHHS XAaOTHYHUX KOJIMBAHb HABiTh y KBa3UIHIWHIA MexXi,
I[0 CTAaHOBUTH 3arpo3y Julsl 6araTtbox eIeKTPOHHMX npuianis. Lleit
pe3ysbTaT 3yMOBIICHO aHANi30M pPYyHHYBAaHHsS IOCIiZOBHOCTI
IMITyJIbCIB 'y HENHIHHOMY KOJMBAJILHOMY KOHTYpPi, a TaKOX
TrapMOHIYHOTO KOJIMBAHHS y JIBOMOJIOBIH cucTeMi. Y CBOIO Uepry,
neperBopeHHs HU- y BU-konuBaHHs, SIKi BiIOyBalOThes B Oarato-
MOJIOBUX CHCTEMax, MOXYTb BUKOPHCTOBYBATUCS [UIsi CTBOPEHHS
HOBUX THIIIB TEHEpPaTopiB, II0 UIOCTPye aHali3 JUHAMIKH
aHCaMOJII0 JTHIHUX OCHUIISTOPIB 3 KOHTPOJBOBAHUM 3B’S3KOM.
3anporoHOBAaHO  MOXJIMBY — IPAKTUYHY — peaii3aliro
reHepaTopa Ha OCHOBI aHTEHHOT PEIIiTKH.

Ki11040Bi c10Ba: e1eKTPOMArHiTHI KOJIMBAHHS, IEPETBO-
PEHHSI 4acTOTH, XAaOTHYHA HECTiiKiCTh, 0AaraToOMOJOBI CHUCTEMH,
reHepaTop.
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