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Non-resonant nondestructive technique has been described for investigation of high-temperature superconductive and relative ma-

terials through the measurement of the microwave reflection at grazing incidence. As authors discussed earlier, a reflection coefficient of the 

electromagnetic wave at grazing incidence can be used to determine an absolute complex conductivity over a wide temperature and frequen-

cy range. As of now the experimental measurement setup was realized in millimeter wave range using waveguide phase bridge based ap-

proach. The conductivity of YBa2Cu3O7- film was measured at temperatures higher than critical. Fig. 5. Ref.: 27 titles. 
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Microwave impedance properties study of 

various materials including high-temperature super-

conductors (HTS) plays important role in fundamen-

tal physics and engineering. Different techniques are 

used for the mentioned above investigation. A num-

ber of the techniques make use of different resonant 

structures [1]. The other ones are based on measure-

ment of microwave power transmitted through or 

reflected from HTS sample [1]. The first investiga-

tion of conductivity by measurements of signal 

transmitted through the thin superconducting film in 

cylindrical waveguide was performed using certain 

assumptions to obtain complex value by measured 

real part of the transmission coefficient [2]. The fur-

ther investigations was performed without any ap-

proximations by measuring of the real parts of trans-

mission and reflection coefficients [3, 4]; by measu-

ring complex value of the transmission coefficient 

[5–7] and by measuring of the complex reflected 

signal [8]. As a form of the non-resonant method, the 

technique based on short circuit termination in a co-

axial cable was also used [9, 10]. The investigation of 

complex conductivity by non-resonant method is 

possible over a wide frequency range and allows ob-

taining absolute values of imaginary part of complex 

conductivity (penetration depth) while by the reso-

nant methods it is necessary to use fitting proce-

dure [11]. Moreover another advantage of the method 

is the possibility of the investigations in the tempera-

ture region close to and higher the superconductor 

critical temperature, where the resonant methods has 

pure accuracy [12]. This fact makes the method very 

useful for investigations of fluctuation conductivity 

(which is mainly studied in DC and there is only few 

works in microwave region [13–17]) and pseudogap 

effects (which is one of challenges in physics of un-

conventional superconductivity) [18]. Unfortunately 

the investigations of the transmitted signal are appli-

cable only for thin films of thickness less than a field 

penetration depth. Although the reflection coefficient 

for a thick conducting plate (which is normal to a 

longitudinal axis of the waveguide) is close to unity. 

It has small changes under large variation of the 

sample conductivity [2, 3, 8]. It is evident from a 

simple relation for absolute value R of the reflection 

coefficient:  
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where Rs is surface resistance of the sample under 

test and Z0 is characteristic impedance of free space. 

The relation Rs << Z0 is true for all conductors inclu-

ding superconductors.  
However situation could be improved by us-

ing grazing incident p-polarized wave. This fact was 
recently discovered in the infrared [19] and millime-
ter [20] wavebands under free-space and rectangular 
waveguide conditions accordingly. In this case sensi-
tivity of the reflection coefficient to conductivity 
changes can be increased by order of values and 
higher [21]. As it is shown by authors, this fact is 
connected to decreasing of the p-polarized wave re-
flection coefficient by the approaching to Brewster 
angle. The Brewster angle is close to 90 degrees for 
conducting plate, but it is different for the samples 
with various conductivity, e. g. for superconductor in 
normal and superconducting states. As a result, the 
reflection coefficient sensitivity to conductivity 
changes rises under grazing incidence angles condi-
tions [22]. 

The report gives a description of experi-

mental setup, where the idea of grazing incidence re-

flecti-vity technique of conductivity measurement is 

realized in millimeter wavelength range using wave-

guide phase bridge-based approach. The first results of 

the method application to investigation of HTS materi-

als are presented. YBa2Cu3O7- film (Tc  92 K) of 

300 nm thickness deposited on 0,3 mm sapphire sub-

strate with CeO2 buffer layer was studied. 

1. The experimental setup. To realize the 

grazing incidence of the p-polarized wave on a sam-

ple in Ka-band, the special rectangular waveguide 

section with fundamental mode H10 (fig. 1) was de-
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veloped. The section has been realized by oblique 

short-circuit termination by the measured sample. 

The temperature sensor is placed on a top of the 

sample. An angle of incidence was chosen equal to 

80 degrees on the basis of the theoretical study 

[21, 22]. 
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Fig. 1. Waveguide section 

 

The computer-controlled experimental setup 

(fig. 2) for investigation of temperature dependence 

of complex reflection coefficient was developed in 

Ka-band based on phase bridge method [23]. 

 

 
 

Fig. 2. Schematic diagram of the experimental setup for measure-

ment of complex reflection coefficient 

 

A magic-Tee 1 splits the signal of micro-

wave oscillator in two branches. The first branch, 

which is a reference, consists of attenuator 1 and 

phase shifter. The latter devices have been improved 

to achieve digital control and to obtain data by PC. 

The second branch, which is a measuring one, in-

cludes attenuator 2 and circulator. Attenuator 2 is 

intended for isolation and a circulator allows decou-

pling incident and reflected waves in the waveguide 

section. Sample under test with a waveguide section 

is placed in the cryostat which allows to perform 

measurements in a wide temperature range, namely 

from liquid nitrogen temperature up to room one. 

Microwave signal from both branches as a result of 

combining by magic-Tee 2 is converted in DC volt-

age by detector. Thereafter the signal is amplified 

and converted to digital by the designed interface and 

passes into PC for further processing. The tempera-

ture at the sample surface was determined by a sensor 

placed in the copper plate (fig. 1) which is on a top of 

the sample. The changes of the phase shift and losses 

were recorded by PC simultaneously with the tem-

perature changes using interface.  

The special code was written to control the 

measurement process. It allows one to detect temper-

ature changes of the sample, change positions of both 

attenuator1 and a phase shifter in a reference branch 

of the phase bridge in order to achieve compensation 

of the bridge output signal throughout minimum of 

the detected signal. At the same time the code allows 

determining positions of the attenuator and phase 

shifter in a reference branch and represents tempera-

ture dependencies in real time. The minimum detect-

able phase shift and attenuation in measuring system 

were 0.1 degree and 0.03 dB, respectively. 

2. Calibration. To obtain absolute values of 

the complex reflection coefficient the calibration of 

the setup is needed. It was performed by measuring 

of samples with known characteristics. The relation 

of the measured Rm and actual Ra reflection 

coefficients is determined by [9]:  

,
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where ,RE SE  and DE  are coefficients specified by 

imperfections such as losses and reflection in the 

microwave waveguide transmission line. RE  is the 

reflection tracking which is connected to the losses 

and phase shift in the transmission line and SE  is 

referred to as the source match. The error coefficient 

DE  is the directivity, which arises from the imperfect 

nature of the circulator and reflections due to wave-

guide connections. Three calibration measurement 

cycles were performed to obtain temperature depend-

ence of the three calibration coefficients by solving 

system of equations for each temperature point. Bulk 

copper, titanium and absorber were used as calibra-

tion samples. The samples were chosen with different 

enough but known values of conductivity. Absorber 

reflection coefficient is close to zero in a whole tem-

perature region, which was proven by low standing 

wave ratio (SWR) of the waveguide section with 

such sample (less than 1.1). This means that the ab-

sorber measured reflection coefficient is equal to 

calibration coefficient .DE  The actual reflection coef-

ficient could be obtained by equation: 
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Temperature dependence of microwave losses 

mRL log20  in measurement branch of the phase 
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bridge for three calibration samples (▲ – absorber, 

■ – titanium, ● – copper) and superconducting 

YBa2Cu3O7- film (♦) at frequency 39.6 GHz is 

shown in fig. 3, a. Changes of the losses at S-N tran-

sition are equal to about 1.5 dB, which is well meas-

urable value (in comparison with normal incidence 

case [20]). 

 

80 85 90 95 100

5

10

L
, 

d
B

T, K  
a) 

 

80 85 90 95 100

0,90

0,95

R

T, K  
b) 

 

Fig. 3. Losses of YBa2Cu3O7- superconducting film and three 

calibration samples dependence on temperature at frequency 
39.6 GHz (a) and temperature dependence of the film reflection 

coefficient (b) 
 
Knowing the loss of the copper, absorber 

and titan samples depending on temperature, it is 
possible to obtain absolute reflection coefficient of 
the superconducting film – dielectric substrate struc-
ture depending on temperature (fig. 3, b) by solving 
the abovementioned equations. 

3. Results and discussion. Complex con-
ductivity (or complex surface impedance) could be 
obtained by plane wave approach. Full reflection 
coefficient r from multilayer structure could be cal-
culated by using Fresnel equations, Snell’s law and 
dielectric function by [21, 22]: 
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where 02 is the total transmission coefficient through 

the first (i. e. superconducting) layer taking all the 

reflections into account; t02 and r02 are the Fresnel 

transmission and reflection coefficients for the se-

cond interface; 02 reflection coefficient from the 

first layer which takes into account the interference 

which occurs within the film due to the reflection at 

the last interface; 20 and 02 are introduced analo-

gously to 02 and 20;   kd2 p, k  2 /, where is 

the wavelength, d2 is the substrate thickness and 

Sp   are the refractive index of the substrate. 

Reflection coefficient 
2

rR  could be recalculated 

from film permittivity f knowing film thickness, 

substrate thickness and permittivity (which was taken 

from [24]), and also angle and frequency of incident 

wave. 

Eigen waves in the waveguide including a 

basic H10-wave are not plane ones but they can be 

represented as a superposition of the plane waves, so 

our approximation is hold true at a certain orientation 

of microwave electric field with regard to plane of 

the sample under test, i. e. microwave electric field 

E


 must lie in incident plane of guide wave (see 

fig. 1). The plane wave approach is more useful than 

electromagnetic analysis in the waveguide due to its 

simplicity. The exact electromagnetic analysis is 

complex at angles, higher than 78 degrees due to a 

large length of the measurement sample at a wave-

guide shear comparable to wavelength. Besides the 

data obtained by plane wave approach and using ex-

act electromagnetic analysis are agreed for thin su-

perconducting films and bulk samples in both normal 

and superconducting states up to 78 degrees of inci-

dence angles. 

To obtain complex conductivity from 

measured sample reflection coefficient it is neces-

sary to find relation of complex conductivity and 

reflection coefficient. It is impossible to solve this 

problem analytically therefore iteration procedure 

was used. 

To check reliability of the measurement ap-

proach and calibration procedure the investigation of 

conductivity of silicon, YBaCuO ceramics at room 

temperature (which was used only as a test material 

and does not has as good quality as superconducting 

film, mentioned above, but is thick) and duralumin 

samples was performed by two methods. The first 

one is a given method and the second, i. e. reference, 

one is a method based on whispering gallery mode 

sapphire disk resonator with the sample as conduc-

ting endplate [25]. The data obtained by both meth-

ods conform to each other well within the measure-

ment errors (fig. 4). 
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Fig. 4. Conductivity of the bulk test samples (silicon, ceramics, 

duralumin) and calibration samples (titanium and copper) obtained 

by given method and method based on whispering gallery mode 
resonator. All of the samples were at room temperature 

 

The measured dependence of the real part of 

YBa2Cu3O7- film complex conductivity is shown in 

fig. 5. The calculated dependence of the conductivity 

on temperature is shown by solid line.  
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Fig. 5. Experimental temperature dependence of YBa2Cu3O7- 

superconducting film conductivity (points) and calculated results 

on the basis of linear dependence of the sample resistance in nor-
mal state (line) 

 

Here linear dependence of the normal state 

film resistance on temperature and assumption that 

normal state conductivity at T  Tc is equal to 

1.35·10
6
 Sm/m were taken into account. There is a 

good coincidence of the theoretical and experimental 

results in temperature region higher than 120 K. Ex-

perimental and theoretical conductivities at tempera-

tures 92…120 K differ and experimental values are 

higher than theoretical ones. This distinction is obvi-

ously connected with fluctuation conductivity phe-

nomenon of the superconducting YBCO film 

[16, 26]. 

Conclusion. Thus, the possibility to study 

superconductor impedance properties by measure-

ments of reflection coefficient at grazing incidence 

angles in rectangular waveguide with a sample in-

clined at the large angle (more than 80°) in a plane of 

microwave electric field is shown. The method al-

lows performing study of the superconductors and 

other materials, e. g. CMR substances [27], conduc-

tivity of which changes under different external con-

ditions such as temperature, magnetic field, etc. The 

technique to obtain such HTS characteristics as com-

plex conductivity or surface impedance at tempera-

ture above Tc using measured complex reflection 

coefficient, calibrated by absolute values of reflection 

coefficient of the known materials, has been shown. 

The applicability of the method to studying the mi-

crowave properties of YBa2Cu3O7- superconducting 

film in normal state and near Tc was demonstrated. 

Although only the real part of conductivity is mea-

sured in the present work, the measurement of the 

imaginary part is possible as well. It is worthy to note 

also, that although a given work was performed in 

single frequency mode, the grazing incidence reflec-

tivity technique is frequency broadband one in prin-

ciple. For realization of such a broadband approach, 

the sweep oscillator or frequency synthesizer is nec-

essary.  
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МЕТОД ИССЛЕДОВАНИЯ ПРОВОДИМОСТИ 

ВЫСОКОТЕМПЕРАТУРНЫХ 

СВЕРХПРОВОДНИКОВ ПРИ ПОМОЩИ 

ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ 

ВОЛНЫ ПРИ СКОЛЬЗЯЩИХ УГЛАХ  

ПАДЕНИЯ В МИЛЛИМЕТРОВОМ  

ДИАПАЗОНЕ 

 

А. И. Губин, Н. Т. Черпак, A. A. Лавринович 

 
Описан метод неразрушающего микроволнового 

исследования высокотемпературных сверхпроводников и 
родственных материалов посредством измерения их коэффи-

циента отражения при скользящих углах падения. Измерения 

коэффициента отражения при скользящих углах падения 
электромагнитной волны могут быть использованы для полу-

чения абсолютных значений комплексной проводимости об-

разца в широком температурном и частотном диапазонах. 
Разработана и реализована экспериментальная установка на 

основе фазового моста в миллиметровом диапазоне длин 

волн. Измерена проводимость YBa2Cu3O7--пленок при темпе-
ратурах выше критической. 

Ключевые слова: коэффициент отражения при 

скользящих углах падения, микроволновая проводимость, 
сверхпроводящие пленки. 

 

МЕТОД ДОСЛІДЖЕННЯ ПРОВІДНОСТІ  

ВИСОКОТЕМПЕРАТУРНИХ  

НАДПРОВІДНИКІВ ЗА ДОПОМОГОЮ  

ВИМІРЮВАННЯ КОЕФІЦІЄНТА ВІДБИТТЯ 

ХВИЛІ ПРИ КОВЗНИХ КУТАХ ПАДІННЯ  

У МІЛІМЕТРОВОМУ ДІАПАЗОНІ 

 

О. І. Губін, М. T. Черпак, О. A. Лавринович 

 
Описано метод неруйнівного мікрохвильового до-

слідження високотемпературних надпровідників та спорідне-
них матеріалів за допомогою вимірювання їх коефіцієнта 

відбиття при ковзних кутах падіння. Вимірювання коефіцієнта 

відбиття при ковзних кутах падіння електромагнітної хвилі 
можуть застосовуватись для отримання абсолютних значень 

комплексної провідності зразка в широкому температурному 

та частотному діапазонах. Розроблено та реалізовано експе-
риментальну установку на базі фазового мосту в міліметрово-

му діапазоні довжин хвиль. Виміряно провідність YBa2Cu3O7--

плівок при температурах вищих за критичну. 
Ключові слова: коефіцієнт відбиття при ковзних 

кутах падіння, мікрохвильова провідність, надпровідні плівки. 

 

Рукопись поступила 14 января 2010 г. 

 

Печатается в авторской редакции. 

 


