ВХОДНОЕ СОПРОТИВЛЕНИЕ ЦИЛИНДРИЧЕСКОЙ МИКРОПОЛОСКОВОЙ АНТЕННЫ С ИЗЛУЧАТЕЛЕМ ПРОИЗВОЛЬНОЙ ФОРМЫ ПРИ ВОЗБУЖДЕНИИ КОАКСИАЛОМ

А. Е. Свеженцев

Институт радиофизики и электроники им. А. Я. Усикова НАН Украины 12, ул. Ак. Проскуры, Харьков, 61085, Украина E-mail: <u>svezh@ire.kharkov.ua</u>; <u>svezh@kharkov.ua</u>

Рассмотрена задача о возбуждении цилиндрической микрополосковой антенны с помощью коаксиальной линии (штыря), которая моделируется нитью электрического тока конечной длины. Задача решена методом моментов в спектральной области с использованием кусочно-заданных базисных функций. Этот факт позволяет существенно расширить класс задач, а именно, рассматривать антенны с произвольной формой излучателя. Рассчитана зависимость обратных потерь от частоты для антенны с излучателям. *И* назв.

Ключевые слова: цилиндрическая микрополосковая антенна, излучатель произвольной формы, метод моментов, входное сопротивление.

Цилиндрические микрополосковые антенны (ЦМА) находят широкое применение в мобильной и спутниковой радиосвязи, используются для радиосвязи с летающими и плавающими объектами. Особенность ЦМА заключается в том, что они могут быть размещены на цилиндрических поверхностях. Отметим, что к настоящему времени ЦМА менее изучены, чем планарные микрополосковые антенны. Это обусловлено тем, что математический аппарат в цилиндрическом случае является более сложным, и связано с привлечением как цилиндрических функций, так и более сложного фурье-преобразования, содержащего не только интеграл Фурье, но и ряд Фурье. Для теоретического анализа ЦМА применялись различные методы [1, 2]. Изучение ЦМА начиналось с применения приближенных моделей, например, ЦМА моделировалась открытым резонатором с магнитными стенками [3] либо с применением моделей, в которых ток на излучателе считался заданным, и в результате вычислялось поле в дальней зоне [4]. Затем были реализованы строгие теоретические модели, в которых анализ ЦМА был произведен путем применения метода моментов в пространственной [5] и спектральной областях [6]. Эти модели работают эффективно для ЦМА с малым электрическим размером $r_1 < \lambda$, где r₁ – радиус металлического цилиндра, на котором расположена антенна, λ – длина волны в свободном пространстве. Отметим, что в работе [5] ЦМА возбуждалась цилиндрической микрополосковой линией (ЦМЛ), а в работе [6] ЦМА возбуждалась с помощью коаксиальной линии (штыря), которая моделировалась нитью электрического тока конечных размеров. Также отметим, что в статьях [5, 6] в схеме метода моментов применялись базисные функции, заданные на всей области излучателя, имеющего прямоугольноцилиндрическую форму. Если же форма излучателя является произвольной, то в этом случае необходимо использовать кусочно-заданные базисные функции, определенные на сегментах излучателя. Однако в этом случае применение схемы метода моментов сопряжено со значительными трудностями в численной реализации, потому что сходимость при вычислении интеграла и ряда Фурье в преобразовании Фурье резко ухудшается. Особенность этой проблемы состоит в том, что спектральная функция Грина, входящая в обратное преобразование Фурье (ОПФ), является функцией двух переменных: постоянной распространения и индекса, значения которых изменяются в бесконечных пределах.

Отметим, что проблема улучшения сходимости для матричных элементов системы линейных алгебраических уравнений (СЛАУ), полученной в результате применения метода моментов в спектральной области, рассматривалась в работе [7], где была исследована задача о возбуждении ЦМА с помощью ЦМЛ. Однако в этой работе проблема не была полностью разрешена, так как асимптотические представления для спектральной функции Грина не были получены целиком в рамках цилиндрического случая, а были сконструированы исходя из симбиоза цилиндрического и планарного случаев.

Настоящая статья посвящена реализации строгой модели ЦМА, в которой применяется схема метода моментов в спектральной области с использованием кусочно-заданных базисных функций. Здесь, как и в статье [6], возбуждение ЦМА осуществляется коаксиальной линией, которая моделируется нитью электрического тока конечных размеров. Однако существенным отличием от работы [6] является использование в схеме метода моментов кусочно-заданных базисных функций, что дает возможность рассмотрения ЦМА с излучателями произвольной формы. В данной статье не только улучшена сходимость матричных элементов в матрице взаимных импедансов, но и улучшена сходимость элементов столбца правой части СЛАУ, обусловленной полем возбуждения. В отличие от работы [7], где асимптотические представления для спектральной функции получены эвристически, исходя из планарного случая, в настоящей статье все асимптотические выражения для спектральных функций Грина выводятся строго в рамках цилиндрического случая, что позволило дополнить и улучшить ранее известные представления. Отметим, что проблема улучшения сходимости элементов правой части в случае возбуждения ЦМА конечной нитью электрического тока рассматривается впервые. Для сравнения с ранее известными результатами в статье представлены результаты расчета входного сопротивления ЦМА от частоты для основного типа колебаний в случае *z*-поляризованного излучателя. Наблюдается очень хорошее совпадение. Приведены также результаты расчета величины обратных потерь от частоты для ЦМА с излучателем Е-формы.

1. Постановка задачи. Получение интегрального уравнения. На рис. 1, а показана модель исследуемой ЦМА, состоящей из так называемой линии Губо и цилиндрического металлического излучателя *E*-формы, расположенного на ее поверхности.

Рис. 1. ЦМА с излучателем *Е*-формы (а), геометрия излучателя (б)

В свою очередь, линия Губо представляет собой идеально проводящий бесконечный в направлении оси *z* круглый металлический цилиндр радиуса $r = r_1$ с круговой диэлектрической подложкой радиуса $r = r_0$ и относительной диэлектрической проницаемостью ε_r . Размеры излучателя в *z*- и φ -направлениях равны W_z и W_{φ} соответственно. Параметры щелей в излучателе показаны на рис. 1, б. Возбуждение ЦМА осуществляется с помощью коаксиальной линии, моделируемой конечной нитью электрического тока, изображенной на рис. 2, где представлено поперечное сечение ЦМА.

Рис. 2. Поперечное сечение ЦМА, возбуждаемой конечной нитью электрического тока

Согласно теореме эквивалентности [8] металлический излучатель, расположенный на поверхности линии Губо, замещается эквивалентным листовым поверхностным электрическим током с неизвестным распределением $J_{tg}^{S}(r = r_0, \varphi, z)$, которое будет найдено в рамках решения задачи с помощью метода моментов. Ключевым моментом в решении является граничное условие: полное тангенциальное электрическое поле на поверхности идеального металлического излучателя обращается в ноль, а именно,

$$\vec{E}_{tg}^{tot} = \vec{E}_{tg}^{P}(r_0, \varphi, z) + \vec{E}_{tg}^{J}(r_0, \varphi, z) = 0, \qquad (1)$$

где $\vec{E}_{tg}^{P}(r_0, \varphi, z)$ – поле возбуждения, порождаемое радиально расположенной нитью электрического тока с током $\vec{J}_r^{P}(r', \varphi', z')$ и имеющее вид

$$E_{tg}^{F}(r_{0},\varphi,z) =$$

= $\iiint_{V_{p}} \hat{G}(r_{0},r',z,z',\varphi,\varphi') \vec{J}_{r}^{P}(r',\varphi',z') dV',$ (2)

где V_P – объем источника; $\hat{G}(r_0, r', z, z', \varphi, \varphi')$ – функция Грина. Выражение для поля $\vec{E}_{tg}^P(r_0, \varphi, z)$ содержится в работе [7]. Также в формуле (1) вводится $\vec{E}_{tg}^{J}(r_0, \varphi, z)$ – поле, созданное неизвестным эквивалентным током $\vec{J}_{tg}^{S}(r=r_{0},\varphi,z)$. Это поле имеет вид

$$\vec{E}_{tg}^{J}(r_{0},\varphi,z) = = \int_{z'\varphi'} \hat{G}(r_{0},z,z',\varphi,\varphi') \vec{J}_{tg}^{S}(r_{0},\varphi',z') dS',$$
(3)

где S' – поверхность излучателя. Удовлетворяя граничному условию (1), получим интегральное уравнение для нахождения неизвестного распределения поверхностного тока на поверхности излучателя:

$$\iint_{z'\varphi'} \hat{G}(r_0, z, z', \varphi, \varphi') \vec{J}_{tg}^S(\varphi', z') dS' =$$

$$= -\iiint_{V_P} \hat{G}(r_0, z, z', \varphi, \varphi') \vec{J}_r^P(r', \varphi', z') dV'.$$
(4)

2. Решение интегрального уравнения методом моментов. Сведение к СЛАУ. В схеме метода моментов неизвестная плотность тока на излучателе представляется в виде разложения в ряд по базисным функциям:

$$\vec{\underline{J}} = \sum_{i=1}^{NB} \alpha_i \vec{J}_i^b, \tag{5}$$

где \vec{J}_i^b – базисные функции; α_i – неизвестные коэффициенты; i = 1, ..., NB, где NB – полное число базисных функций, равное: $NB = NBZ + NB\varphi$, NBZи NB *φ* – число базисных функций для *z*-й и *φ*-й компонент тока, соответственно. Для введения базисных функций излучатель разделяется на прямоугольно-цилиндрические сегменты. Одна базисная функция вводится на двух соседних сегментах. Пусть число сегментов, на которые разделен излучатель, будет равняться $NS = NZ \cdot N\phi$. Тогда число базисных функций для z-й и ф-й компонент тока равно: $NBZ = (NZ - 1)N\varphi$ и $NB\phi = NZ(N\phi - 1)$ соответственно. Чтобы найти α_i , вначале используем разложение (5), подставляя его в (4), а затем проецируем (4) на тест функции \vec{J}_{k}^{t} . В схеме Галеркина, а именно эта схема здесь используется, тест функции совпадает с базисными функциями. Таким образом, мы приходим к СЛАУ

где

$$Z_{ik} = \iint_{S_i} ds \, \vec{J}_i^l \left[\iint_{S_k} ds \, \hat{G}(r_0, z, z', \varphi, \varphi') \, \vec{J}_k^b \, dS' \right]; \quad (7)$$

 $\vec{Z}\vec{\alpha} = \vec{V}$.

$$V_i^{z,\varphi} = -\iint_{S_i} ds \, \vec{J}_i^t \, \vec{E}_{tg}^P(r_0,\varphi,z).$$
(8)

В системе (6) вектор-столбец
$$\vec{V}$$
 имеет вид

$$\vec{V} = \left\{ V_1^z, V_2^z, ..., V_{NBZ}^z, V_1^{\varphi}, V_2^{\varphi}, ..., V_{NB\varphi}^{\varphi} \right\}.$$

РWS-базисные функции. Здесь, в схеме Галеркина, в качестве базисных функций мы будем использовать кусочно-заданные синусоидальные функции (PWS-piecewise sinusoidal) [9]. Плотность тока для z- и *ф*-ориентированных PWSбазисных функций, соответственно, с центрами г' и ϕ' , задается известным образом [9]. Преобразование Фурье для *PWS*-базисных и тест-функций выглядит для z-ориентированных функций как $\begin{aligned} \widetilde{\vec{J}}_{z}^{b(t)}(r_{0},n,h) &= \widetilde{J}_{z}^{b(t)}(r_{0},n,h) \vec{z}^{0} = \\ &= e^{i z^{(b,t)} h} e^{i n \varphi^{(b,t)}} a_{z}^{n}(n) a_{z}^{h}(h) \vec{z}^{0}, \end{aligned}$

гле

$$a_{z}^{h}(\overline{h}) = \frac{4}{A_{z}} \sin[\Delta_{z}(h + p_{z})/2] \times$$

$$\times \sin[\Delta_{z}(h - p_{z})/2] \frac{p_{z}}{h^{2} - p_{z}^{2}};$$

$$a_{z}^{n}(n) = 2 \sin[\Delta_{\varphi}n/2]/n;$$

$$A_{z} = \sin(p_{z} \Delta_{z}); \quad \Delta_{z} = W_{z}/NZ;$$

$$\Delta_{\varphi} = W_{\varphi}/N\varphi,$$

(9)

и для ф-ориентированных функций как

$$\vec{J}_{\varphi}^{b(t)}(r_{0},n,h) = \vec{J}_{\varphi}^{b(t)}(r_{0},n,h) \varphi^{0} =
= e^{i z^{(b,t)} h} e^{i n \varphi^{(b,t)}} a_{\varphi}^{n}(n) a_{\varphi}^{n}(h) \varphi^{0},$$
(10)

где \vec{z}^0 и $\vec{\varphi}^0$ – орты в *z*- и φ -направлениях;

$$p_{z} = k_{0} p_{0}; p_{\varphi} = k_{0}r_{0} p_{z};$$

$$p_{0} = \sqrt{(\varepsilon_{r} + 1)/2}; k_{0} = 2\pi/\lambda;$$

$$a_{\varphi}^{n}(n) = \frac{4}{A_{\varphi}} \sin[\Delta_{\varphi}(n + p_{\varphi})/2] \times$$

$$\times \sin[\Delta_{\varphi}(n - p_{\varphi})/2] \frac{p_{\varphi}}{n^{2} - p_{\varphi}^{2}};$$

$$a_{\varphi}^{h}(h) = 2 \sin[\Delta_{\varphi}h/2]/h; A_{\varphi} = \sin(p_{\varphi} \Delta_{\varphi}).$$

Эффективное вычисление матрицы взаимных импедансов. В выражении (3) была введена функция Грина $\hat{G}(r_0, z, z', \varphi, \varphi')$ для листка электрического тока, расположенного на диэлектрической подложке. Эта функция Грина находится в результате использования ОПФ и удовлетворения граничным условиям для тангенциального электрического поля на поверхности металлического цилиндра и на границе диэлектрик-воздух, содержащей листок электрического тока [6, 10-12]. Мы используем обозначения, введенные в работах [10-12]. Компоненты функции Грина в пространственной области выражаются через их спектральный эквивалент с помощью ОПФ:

(6)

$$G_{pq}(r_0, z - z', \varphi - \varphi') =$$

$$= \frac{1}{4\pi^2} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \widetilde{G}_{pq}(n, h) e^{-in(\varphi - \varphi')} e^{-ih(z - z')} dh, \qquad (11)$$

где *p*, *q* обозначают *z* или φ ; $\tilde{G}_{pq}(n,h)$ – компоненты функции Грина в спектральной области [10–12]. Несмотря на некоторые отличия в промежуточных обозначениях, которые имеются между формулами в работах [10–12] и статье [6], в обоих случаях мы имеем тот же самый результат для компонент функции Грина. Элементы матрицы взаимных импедансов Z_{ik} могут быть вычислены как в пространственной области с помощью (7), так и в спектральной области в виде

$$Z_{ik} = \frac{1}{4\pi^2} \times \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \widetilde{J}_i^t(r_0, -n, -h) \widetilde{G}(n, h) \widetilde{J}_k^b(r_0, n, h) dh.$$
(12)

Для вычисления элементов Z_{ik} нами была использована формула (12). Такие расчеты требуют значительных затрат компьютерных ресурсов по ряду причин. Во-первых, в (12) входят цилиндрические функции, которые необходимо вычислять значительное число раз, что требует значительных затрат компьютерного времени. Во-вторых, в интеграле Фурье в (12) мы имеем дело с быстро осциллирующими функциями, и сходимость является относительно невысокой. Поэтому при численной реализации (12) желательно использовать процедуру улучшения сходимости. В работе [7] были получены главные члены асимптотических разложений для компонент спектральной функции Грина при $h \rightarrow \infty$, $n \rightarrow \infty$. Важно отметить, что эти асимптотические представления были получены эвристически, путем сопоставления асимптотических представлений для компонент функции в случае плоской среды, с одной стороны, и асимптотических выражений, полученных для компонент спектральной функции Грина в предельных случаях для цилиндрической среды, с другой. Под предельными понимаются случаи, когда аргумент цилиндрической функции много больше индекса и наоборот. Оказывается, что главные и некоторые другие дополнительные члены асимптотических разложений могут быть получены строго в рамках цилиндрической геометрии, используя равномерные асимптотические представления для модифицированных цилиндрических функций в случае, когда индекс много больше аргумента. Эти равномерные асимптотические представления для модифицированных цилиндрических функций приведены в работе [13]. В результате имеем

$$\widetilde{G}_{zz}^{AS}(h,n) = \left\{ \frac{i\overline{h}^2}{\sqrt{n^2 + (k_0 r_0)^2 \overline{h}^2}} \frac{k_0 r_0}{(\varepsilon_{0r} + \varepsilon_{1r})} + \frac{i k_0 r_0 \overline{h}^2 (\varepsilon_{0r} - \varepsilon_{1r})}{2 (\varepsilon_{0r} + \varepsilon_{1r})^2 [n^2 + (k_0 r_0)^2 \overline{h}^2]} \right\} \times$$
(13)

$$\times \left[1 - e^{-2\sqrt{n^2 + (k_0 r_0)^2 \bar{h}^2} (r_0 - r_1)/r_0} \right];$$

$$\widetilde{G}_{z\varphi}^{AS}(h,n) = \frac{i\bar{h}n}{\sqrt{n^2 + (k_0 r_0)^2 \bar{h}^2}} \times$$
(14)

$$\times \frac{1}{(\varepsilon_{0} + \varepsilon_{1})} \left[1 - e^{-2\sqrt{n^{2} + (k_{0}r_{0})^{2}\bar{h}^{2}(r_{0} - r_{1})/r_{0}}} \right];$$

$$\widetilde{G}_{\varphi\varphi}^{AS}(h, n) = \frac{2in^{2}}{\sqrt{n^{2} + (k_{0}r_{0})^{2}\bar{h}^{2}}} \times$$
(15)

$$\times \frac{1}{(k_0 r_0)(\varepsilon_{0r} + \varepsilon_{1r})} \left[1 - e^{-2\sqrt{n^2 + (k_0 r_0)^2 \bar{h}^2} (r_0 - r_1)/r_0} \right],$$

где $\overline{h} = h/k_0$. Отметим, что по сравнению с формулами, приведенными в работе [7], формулы (13)-(15) содержат дополнительный член в квадратных скобках, который, как было показано в работах [10-12], соответствует изображению источника в бесконечной идеально проводящей металлической плоскости. Этот дополнительный член особенно эффективен в случае тонких подложек. Также было найдено, что второй член у функции $\widetilde{G}_{zz}^{AS}(h,n)$ (см. (13)) является не константой, как это было получено в работе [7], а зависит от двух переменных: *n* и *h*. В пределе, когда $h \rightarrow \infty$, этот второй член переходит в константу, приведенную в работе [7]. Таким образом, здесь показано, что главные члены равномерного асимптотического представления для компонент спектральной функции Грина в зависимости от двух переменных могут быть получены для цилиндрического случая, исходя из равномерных аппроксимаций для цилиндрических модифицированных функций. Используя асимптотические представления для спектральных функций Грина (13)-(15), эффективность вычисления выражения (12) может быть улучшена путем добавления и вычитания асимптот [7]. В итоге Z_{ik} представля-

$$Z_{ik} = Z_{ik}^{NUM} + Z_{ik}^{AS}, (16)$$

$$\begin{aligned} Z_{ik}^{NUM} &= \frac{1}{4\pi^2} \times \\ &\times \sum_{n=-\infty}^{\infty} \int_{h=-\infty}^{\infty} \widetilde{J}^t(r_0, -n, -h) \left[\widetilde{\hat{G}}(n, h) - \widetilde{\hat{G}}^{AS}(n, h) \right] \times (17) \\ &\times \widetilde{J}^b(r_0, n, h) dh; \end{aligned}$$

$$Z_{ik}^{AS} = \sum_{n=-\infty}^{\infty} \int_{h=-\infty}^{\infty} \widetilde{\vec{J}}^{t}(r_{0},-n,-h) \widetilde{\vec{G}}^{AS}(n,h) \widetilde{\vec{J}}^{b}(r_{0},n,h) dh.$$
⁽¹⁸⁾

В результате такого преобразования сходимость интеграла и ряда Фурье в (17) существенно улучшается, вместе с тем выражение (18) не содержит цилиндрических функций и вычисляется достаточно эффективно. Отметим, что в (17) при вычислении интеграла Фурье имеют место особенности спектральной функции Грина, соответствующие полюсам поверхностных волн. В работах [10–12] показано, как компенсировать эти особенности. Отметим, что способ компенсации особенностей будет рассмотрен подробнее при вычислении правой части.

3. Вычисление правой части СЛАУ. Получение асимптотических выражений для спектральных функций Грина, возникающих при вычислении поля возбуждения. Принимая за основу формулу (8), можно показать, что элементы столбцов правой части СЛАУ (8) V_i^z и V_i^{φ} могут быть вычислены в спектральной области в виде

$$V_{k}^{z} = -\sum_{n=-\infty}^{n=\infty} a_{z}^{n}(n) e^{-in(\varphi_{k}-\varphi_{p})} \times$$

$$\times \int_{-\infty}^{\infty} a_{z}^{h}(h) e_{nz}^{P}(r_{0},h) e^{-ih(z_{k}-z_{p})} dh;$$

$$V_{k}^{\varphi} = -\sum_{n=-\infty}^{n=\infty} a_{\varphi}^{n}(n) e^{-in(\varphi_{k}-\varphi_{p})} \times$$

$$\times \int_{-\infty}^{\infty} a_{\varphi}^{h}(h) e_{n\varphi}^{P}(r_{0},h) e^{-ih(z_{k}-z_{p})} dh,$$
(20)

где $e_{nz}^{P}(r_{0},h)$, $e_{n\varphi}^{P}(r_{0},h)$ – фурье-образы поля возбуждения [6]; z_{k}, φ_{k} – координаты центра *к*-й тест-функции (*PWS*); $a_{z}^{n}(n)$, $a_{z}^{h}(h)$ и $a_{\varphi}^{n}(n)$, $a_{\varphi}^{h}(h)$ вводятся формулами (9)–(10). Для установления сходимости представлений (19)–(20) необходимо установить асимптотическое поведение спектральных функций $e_{nz}^{P}(r_{0},h)$, $e_{n\varphi}^{P}(r_{0},h)$ при $n \to \infty$, $h \to \infty$. Применяя равномерные асимптотические представления для модифицированных цилиндрических функций [11, 13], получим искомые асимптотические представления в виде

$$e_{n(z,\varphi)}^{P,AS}(r_{0},\overline{h}) = \frac{w_{0}A_{n(z,\varphi)}}{\sqrt{n^{2} + (k_{0}r_{0})^{2}\overline{h}^{2}}} \times \left[1 - e^{-2\sqrt{n^{2} + (k_{0}r_{0})^{2}\overline{h}^{2}}(r_{0} - r_{1})/r_{0}}\right],$$
(21)

где

$$A_{nz} = \frac{2\bar{h}}{(\varepsilon_r + 1)\pi}; \quad A_{n\varphi} = \frac{2n}{(\varepsilon_r + 1)\pi kr_0}$$

Из (9)–(10), (21) следует, что при $h \to \infty$ подынтегральные выражения в (19)–(20) ведут себя как $O(h^{-2})$, а ряды сходятся при $n \to \infty$ как $O(n^{-2})$. Следовательно, выражения (19)–(20) не имеют особенностей в точке запитки даже в самом плохом, если говорить о сходимости, случае, когда координаты точки запитки совпадают с координатой какой-либо базисной функции. Однако вычисление V_k^z , V_k^{φ} по прямым формулам (19)–(20) является весьма затратным по времени и требует существенных шагов, направленных на улучшение эффективности вычислений.

Компенсация особенностей в полюсах. Очевидно, что подынтегральные выражения в интегралах Фурье в выражениях (19)–(20) ведут себя в окрестностях полюсов $\overline{h} = P_n^m$ $(m = 1,...,M_n; n = 0,...,N)$, соответствующих поверхностным волнам, как

$$f_{nm}^{(z,\phi)}(\bar{h}) = \frac{2R_n^{(z,\phi)m}P_n^m}{\bar{h}^2 - (P_n^m)^2},$$
 (22)

где R_n^m – вычет соответствующей подынтегральной функции в полюсе. Следовательно, спектральные функции типа (22) могут быть использованы для компенсации особенностей в полюсах путем их вычитания из подынтегральной функции в спектральной области и добавления их вклада в пространственной области.

Улучшение сходимости элементов правой части и выделение вклада поверхностных волн. С целью улучшения сходимости выражений (19)–(20) вычтем и добавим асимптотику подынтегральной функции, используя (21). А для компенсации особенностей в виде полюсов функции вычтем спектральные функции (22) в спектральной области и добавим их вклад в пространственной области. Также, принимая во внимание четность/нечетность спектральных функций относительно переменных h и n, получим элементы столбца правой части в виде

$$V_{k}^{(z,\varphi)} = V_{k}^{(z,\varphi)NUM} + V_{k}^{(z,\varphi)AS} + V_{k}^{(z,\varphi)SURF}, \quad (23)$$

где $V_k^{(z)NUM} =$

$$= -\sum_{n=0}^{n=\infty} \chi_n a_z^n(m) \cos\left[n(\varphi_p - \varphi_k)\right] I_n^{z \ NUM};$$

$$V^{(\varphi) \ NUM} =$$
(24)

$$= -\sum_{n=1}^{n=\infty} a_{\varphi}^{n}(m) i \sin \left[n(\varphi_{p} - \varphi_{k}) \right] I_{n}^{\varphi NUM}; \qquad (25)$$

$$I_{n}^{z \ NUM} = \int_{0}^{\infty} 2i \sin[h(z_{p} - z_{k})] a_{z}^{h}(h) \times \\ \times \left[e_{nz}^{P}(r_{0}, h) - e_{nz}^{P,AS}(r_{0}, \bar{h}) - \sum_{m=1}^{M_{n}} f_{nm}^{z}(\bar{h}) \right] dh;$$
(26)

$$I_n^{\varphi NUM} = \int_0^\infty 2\cos[h(z_p - z_k)] a_{\varphi}^h(h) \times \\ \times \left[e_{n\varphi}^P(r_0, h) - e_{n\varphi}^{P,AS}(r_0, \bar{h}) - \sum_{m=1}^{M_n} f_{nm}^{\varphi}(\bar{h}) \right] dh.$$
(27)

Величины $V_k^{(z,\varphi)AS}$ и $V_k^{(z,\varphi)SURF}$ вводятся аналогично $V_k^{(z,\varphi)NUM}$. Отметим, что интегралы Фурье, входящие в $V_k^{(z,\varphi)SURF}$, вычисляются аналитически путем замыкания контура интегрирования в верхнюю или нижнюю полуплоскости (в зависимости от знака z - z') и применения теоремы о вычетах [11].

4. Расчет входного сопротивления ЦМА. В результате решения системы уравнений (6) мы получим амплитуды базисных функций. Входное сопротивление антенны может быть рассчитано по формуле [6]

$$Z_{in} = -\frac{1}{I_0^2} \int_{V_P} d\vec{R} \vec{E}^{(J)}(\vec{R}) \vec{J}^P(\vec{R}), \qquad (28)$$

где \vec{R} – радиус-вектор в сферической системе координат. После интегрирования по объему источника (28) приводится к виду

$$Z_{in} = -\frac{1}{I_0} \int_{V_P} dr \ E_r^{(J)}(r, \varphi = \varphi_P, z = z_P).$$
(29)

Эта формула и была использована в работе [6] для расчета входного сопротивления ЦМА. Однако используя теорему взаимности для поля, созданного током на излучателе, и поля источника в виде нити тока, можно показать, что (29) сводится к более простому виду, который аналогичен приведенному в работе [9] для планарных антенн:

$$Z_{in} = \sum_{k=1}^{NB} \alpha_k V_k.$$
(30)

5. Анализ результатов. Вначале рассмотрим численные результаты, демонстрирующие улучшение сходимости при вычислении элементов матрицы взаимных импедансов Z_{ik} путем вычитания асимптотического поведения спектральной функции Грина. На рис. 3 представлены зависимости компонент спектральной функции $g1_n^{pqJ} = \tilde{G}_{pq}(h,n) - \tilde{G}_{pq}^{AS}(h,n)(p,q=z,\varphi)$ от нормированной постоянной распространения.

Рис. 3. Зависимость спектральной функции $gl_n^{pqJ}(h)$ от нормированной постоянной распространения h/k_0 в случае n = 50: a) $-gl_n^{z z J}(h)$; б) $-gl_n^{z \phi J}(h)$; в) $-gl_n^{\varphi \phi J}(h)$

Кривые 1 соответствуют результатам данной статьи с использованием асимптотических представлений (13)–(15), а кривые 2 построены, используя асимптотические представления, данные в работе [7]. Отметим, что функции $g1_n^{pqJ}$ убывают на одну дополнительную степень величины *h* сильнее, чем ведут себя компоненты спектральной функции Грина $\tilde{G}_{pq}(h, n)$. Также из результатов, представленных на рис. 3 видно, что наличие дополнительного члена в квадратных скобках в формулах (13)–(15) усиливает степень убывания компонент спектральной функции Грина от постоянной распространения, а именно, кривые 1 убывают быстрее, чем кривые 2.

Далее рассмотрим численные результаты относительно процедуры улучшения сходимости при вычислении элементов правой части системы уравнений $V_k^{(z,\varphi)}$. Процедуру улучшения сходимости, реализованную при вычислении интегралов Фурье $I_n^{z NUM}$ и $I_n^{\varphi NUM}$ соответственно, демонстрирует рис. 4, где представлены зависимости подынтегральных выражений от нормированной постоянной распространения в интегралах Фурье (26)–(27), в частности, спектральных функций

$$f_{1ns}^{P}(h) = 2 \sin[h(z_{p} - z_{k})] \times$$

$$\times a_{s}^{h}(h) \left[e_{ns}^{P}(r_{0}, \overline{h}) - \sum_{m=1}^{M_{n}} f_{nm}^{s}(\overline{h}) \right]; \qquad (31)$$

$$f_{2ns}^{P}(h) = 2 \sin[h(z_{p} - z_{k})] a_{s}^{h}(h) e_{ns}^{P,AS}(r_{0}, \overline{h}); \quad (32)$$

$$f_{ns}^{R}(h) = f_{1ns}^{R}(h) - f_{2ns}^{R}(h),$$
(33)

которые вводятся для демонстрации эффективности выделения асимптотического поведения и компенсации поведения в полюсах, отвечающих поверхностным волнам. Рис. 4 соответствует следующим материальным и геометрическим параметрам: $W_z = W_{\varphi} = 0,05$ м, $\varepsilon_r = 2,2, z_k - z_p = 0,01$ см, $N_z = N_{\varphi} = 11, r_1 = 0,05$ м, $r_0/r_1 = 1,01524, f = 1,95$ ГГц, где f – частота. Из рис. 4 следует, что разностная часть $f_{ns}^{R}(h)$ убывает существенно быстрее, чем функция $f_{1ns}(h)$ в зависимости от h. Аналогичная картина наблюдается и в зависимости от п. Таким образом, предложенный алгоритм позволяет эффективно вычислить элементы правой части СЛАУ (6). Входное сопротивление ЦМА рассчитывалось по формуле (30). Рассмотрим случай, когда штырь расположен таким образом, что $z = z_P$, $\varphi_P = 0$. При таком расположении штыря мы имеем *z*-поляризованный излучатель. В этом случае на излучателе в случае возбуждения основной моды возникает такое распределение тока, что в *z*-направлении укладывается приблизительно половина длины волны. В этой основной моде зависимости от *ф*-вариации тока отсутствуют. Пусть излучатель разделяется на $5 \times 5 = 25$ сегментов. При таком разбиении мы получаем полное число базисных функций NB = 40, из которых *z*- и φ -компоненте тока отвечают NBz = 20 и $NB\phi = 20$ базисных функций, соответственно. Пусть ЦМА имеет такие же материальные и геометрические параметры, как и в статье [14], а именно: $W_z = 3$ см, $W_{\omega} = 4$ см, $\varepsilon_r = 2,32, N_z = N_{\varphi} = 5, r_1 = 0,05 \text{ cm}, r_0/r_1 = 1,0159.$

Отметим, что излучатель имеет прямоугольноцилиндрическую форму.

Рис. 4. Зависимость подынтегральных спектральных функций в интеграле Фурье $I_n^{u \ NUM}$ от нормированной постоянной распространения h/k_0 в случае n = 100: а) – u = z; б) – $u = \varphi$; 1 – $f_{1nu}(h)$; 2 – $f_{2nu}(h)$; 3 – $f_{nu}^R(h)$

На рис. 5 представлена зависимость входного сопротивления ЦМА от частоты при различных положениях штыря: кривые 1 соответствуют случаю $z_P = 1$ см, $\varphi_P = 0$, а кривые 2 – случаю $z_P = 0.55$ см, $\varphi_P = 0$. При этом кружками показана действительная часть, а треугольниками мнимая часть входного сопротивления. Частота, при которой мнимая часть входного сопротивления обращается в ноль, соответствует резонансной частоте основной моды. При расчете полагалось, что коаксиальная линия имеет характеристическое сопротивление 50 Ом. Отметим, что представленные для случая $z_P = 1$ см, $\varphi_P = 0$ результаты на рис. 5 с графической точностью совпадают с результатами расчета входного сопротивления, полученными для той же ЦМА в статье [14], где была рассмотрена другая схема метода моментов - с использованием базисных функций, заданных на всей области излучателя.

Рис. 5. Входное сопротивление ЦМА в зависимости от частоты для основной моды в случае *z*-поляризованного излучателя. Кружки соответствуют реальной части, а треугольники – мнимой части входного сопротивления

Предложенный в данной статье подход позволяет рассматривать ЦМА с излучателями произвольной геометрии, состоящих из прямоугольно-цилиндрических сегментов. Излучатель произвольной формы может быть сформирован путем удаления любого числа сегментов из излучателя прямоугольно-цилиндрической формы. В качестве примера рассмотрим излучатель Е-формы, показанный на рис. 1, б. Такой излучатель отличается от прямоугольно-цилиндрического излучателя тем, что в нем прорезаны две щели, которые характеризуются размерами L_s, L_{ϕ} и L_z. Для формирования излучателя Е-формы разобьем первоначальный прямоугольно-цилиндрический излучатель на 5×11 сегментов в z- и φ направлениях соответственно. Затем удалим некоторые сегменты таким образом, чтобы образовался требуемый излучатель Е-формы. Отметим, что входное сопротивление может быть пересчитано в коэффициент отражения.

На рис. 6 приведена зависимость величины обратных потерь для ЦМА E-формы для двух различных значений параметра L_{φ} .

Рис. 6. Зависимость величины обратных потерь для ЦМА с излучателем *Е*-формы для двух различных значений ширины щели

При расчете, как и ранее, полагалось, что коаксиальная линия имеет характеристическое сопротивление 50 Ом, а ЦМА имеет параметры: $W_z = 3 \text{ cm}, \quad W_{\varphi} = 6 \text{ cm}, \quad \varepsilon_r = 2,32, \quad r_1 = 5 \text{ cm} \quad \text{u}$ $r_0/r_1 = 1,0159$. Кривая 1 соответствует значениям *L*_{*o*} = 10,909 мм, *L*_z = 24 мм и *L*_s = 8,1818 мм. Кривая 2 построена в случае, когда $L_{\varphi} = 5,4545$ мм, а остальные параметры такие же, как и для кривой 1. Кривые 1 и 2 рассчитаны для позиций штыря: $z_p = -3,5$ мм и $z_p = -7$ мм соответственно. Для обеих кривых $\varphi_p = 0$. Отметим, что координаты позиции штыря были найдены путем численного анализа, чтобы обеспечить низкий уровень коэффициента отражения на резонансной частоте. Из рис. 6 видно, что чем шире щель, тем ниже резонансная частота ЦМА.

Выводы. Рассмотрена задача о возбуждении ЦМА с помощью коаксиальной линии (штыря), которая моделируется нитью электрического тока конечной длины. Задача решена методом моментов в спектральной области с использованием кусочно-заданных базисных функций. Впервые в рамках строгого рассмотрения цилиндрического случая получены равномерные асимптотические выражения для спектральных функций Грина в зависимости от двух переменных: постоянной распространения и индекса цилиндрической функции. Показано, что полученные представления дополнили и улучшили ранее известные представления. Улучшена сходимость при вычислении как матрицы взаимных импедансов, так и элементов правой части, что позволило существенно повысить эффективность вычислений.

Отметим, что описанные в статье способы улучшения сходимости элементов матрицы взаимных импедансов и правой части могут быть применены в других схемах метода моментов с использованием других базисных функций, например в случае, когда базисные функции задаются на всей области излучателя. Рассчитано входное сопротивление антенны с излучателем прямоугольно-цилиндрической формы в случае возбуждения основной *z*-поляризованной моды при различных положениях штыря.

Проведено сравнение с результатами, полученными в рамках другой схемы метода моментов, и найдено хорошее совпадение результатов. Приведены результаты расчета величины обратных потерь от частоты для ЦМА с излучателем *Е*-формы для двух различных размеров щелей.

 [&]quot;4th European Workshop on Conformal Antennas": Proceedings. The division of Electromagnetic Theory. – Royal Institute of Technology. – Stockholm, 2005. – 129 p.

 [&]quot;5th European Workshop on Conformal Antennas": Proceedings. – University of Bristol. – United Kingdom, 2007. – 112 p.

- Wu K. Y., Kaufman J. F. Radiation pattern computation for cylindrical-rectangular microstrip antenna // IEEE AP Symp. Dig. – 1983. – P. 39–42.
- Luk Kwai-Man, Lee Kai-Fong, Dahele J. S. Analysis of the Cylindrical-Rectangular Patch Antenna // IEEE Trans. Antennas and Propagation. – 1989. – <u>37</u>, No. 2. – P. 143–147.
- Silva F. C., Fonseca S. B. A., Soares A. J. M., Giarola A. J. Analysis of microstrip antennas on circular-cylindrical substrates with a dielectric overlay // IEEE Trans. Antennas and Propagation. – 1991. – <u>39</u>, No. 9. – P. 1398–1404.
- Habashy T. M., Ali S. M., Kong J. A. Input impedance and radiation pattern of cylindrical-rectangular and wraparound microstrip antennas // IEEE Trans. Antennas and Propagation. – 1990. – <u>38</u>, No. 6. – P. 722–731.
- Vecchi G., Bertuch T., Orefice M. Analysis of cylindrical printed antennas with subsectional basis functions in the spectral domain // Proc. of the International Conf. on Electromagnetics in Advanced Applications (ICEAA96). – Torino, 1996. – P. 301–304.
- Schelkunoff S. A. Some equivalence theorems of electromagnetics and their application to radiation problems // Bell Syst. Tech. Journ. – 1936. – No. 15. – P. 92.
- Pozar D. M. Input impedance and mutual coupling of rectangular microstrip antennas // IEEE Trans. Antennas and Propagation. – 1982. – <u>AP-30</u>, No. 11. – P. 1191–1196.
- Svezhentsev A. Ye., Vandenbosch G. A. E. Efficient spatial domain moment method solution of cylindrically rectangular microstrip antennas // IEE Proc., Microwaves, Antennas and Propagation. – 2006. – <u>153</u>, iss. 4. – P. 376–384.
- Svechentsev A. Ye., Vandenbosch G. A. E. Mixed-Potential Green's Functions for Sheet Electric Current Over Metal-Dielectric Cylindrical Structure // Journ. of Electromagnetic Waves and Application. – 2002. – <u>16</u>, No. 6. – P. 813–835.
- Svezhentsev A. Ye., Vandenbosch G. A. E. Spatial Green's function singularity for sheet electric current over dielectric coated cylinder // IEEE Trans. on Antenna and Propagation. – 2004. – <u>52</u>, No. 2. – P. 608–610.
- 13. Abramowitz M., Stegun I.A. Handbook of Mathematical Functions. New York: Dover, 1971. 571 p.
- Mang H., Xiaowen X. Closed-Form Solution for Analysis of Cylindrically Conformal Antennas With Arbitrary radii //

IEEE Trans. Antennas and Propagation. – 2005. – <u>53</u>, No. 1. – P. 518–525.

INPUT IMPEDANCE OF A PROBE-FED CYLINDRICAL MICROSTRIP ANTENNA WITH ARBITRARILY SHAPED PATCH

A. Ye. Svezhentsev

A cylindrical microstrip antenna fed by a coaxial line (probe) is considered. The probe is modeled by a finite-size electric current filament. The problem is solved by the method of moments in the spectral domain. Sub-domain basis functions are introduced, which substantially expands a class of solvable problems, including arbitrarily shaped patch antennas. The return loss versus frequency is presented for an *E*-shaped patch antenna.

Key words: cylindrical microstrip antenna, arbitrarily shaped patch, moment method, input impedance.

ВХІДНИЙ ОПІР ЦИЛІНДРИЧНОЇ МІКРОСМУЖКОВОЇ АНТЕНИ З ВИПРОМІНЮВАЧЕМ ДОВІЛЬНОЇ ФОРМИ ЗА ЗБУДЖЕННЯ КОАКСІАЛОМ

О. Є. Свеженцев

Розглянуто задачу про збудження циліндричної мікросмужкової антени коаксіальною лінією (штирем), яка моделюється ниткою електричного струму кінцевої довжини. Задача розв'язана методом моментів у спектральній області з використанням кусково-заданих базисних функцій. Цей факт дозволяє істотно розширити клас задач, а саме, розглядати антени з довільною формою випромінювача. Розраховано залежність зворотних втрат від частоти для антени з випромінювачем *E*-форми.

Ключові слова: циліндрична мікросмужкова антена, випромінювач довільної форми, метод моментів, вхідний опір.

Рукопись поступила 23 июля 2009 г.