УДК 551.466.8

А.А. Слепышев, И.С. Мартынова

Нелинейные эффекты при распространении внутренних волн с учетом влияния турбулентной вязкости и диффузии

В приближении Буссинеска, следуя методу асимптотических многомасштабных разложений, исследуются нелинейные эффекты при распространении внутренних волн с учетом турбулентной вязкости и диффузии. В работе определяются декремент затухания волны и погранслойные решения у дна и свободной поверхности. Среднее течение, индуцированное волной, находится во втором порядке малости по крутизне волны. Получены коэффициенты нелинейного уравнения Шредингера для огибающей волнового пакета. Показано, что в длинноволновом пределе слабонелинейная плоская волна устойчива к продольной модуляции; если длина волны меньше некоторого критического значения, то волна модуляционно неустойчива.

Нелинейные эффекты при распространении внутренних волн проявляются в генерации средних на масштабе волны течений [1, 2]. Физической причиной этого является отличие от нуля волновых напряжений вследствие зависимости огибающей волнового пакета от пространственно-временных координат [3, 4]. Огибающая узкоспектрального пакета внутренних волн удовлетворяет нелинейному уравнению Шредингера [2]. Внутренние волны распространяются преимущественно цугами – локализованными в пространстве волновыми пакетами. Физической причиной перемежаемости волнового поля является, с одной стороны, разнесенность источников и стоков энергии, с другой – модуляционная неустойчивость внутренних волн, которая приводит к сложной эволюции огибающей волнового пакета [5].

Теория нестационарных слабонелинейных пакетов внутренних волн при отсутствии турбулентной вязкости и диффузии создана в работах [1, 2]. Средние течения и неосциллирующие поправки к средней плотности, индуцированные волной, находились во втором порядке малости по крутизне волны. Погранслойные решения для поверхностных волн, как и средние течения, генерируемые волной за счет нелинейности, описаны в [6]. В настоящей работе определяются средние течения, индуцированные внутренней волной, при учете турбулентной вязкости и диффузии и коэффициенты нелинейного уравнения Шредингера для огибающей, а также декремент затухания волны, погранслойные решения у дна и свободной поверхности. Делается вывод о модуляционной неустойчивости внутренних волн.

Постановка задачи

Рассматриваются свободные внутренние волны с учетом турбулентной вязкости и диффузии. Применяется асимптотический метод многомасштабных

© А.А. Слепышев, И.С. Мартынова, 2009 ISSN 0233-7584. Мор. гидрофиз. журн., 2009, № 5 разложений для исследования нелинейных эффектов при наличии стока энергии внутренних волн в турбулентность. В первом порядке малости по амплитуде волны получено решение линейного приближения и дисперсионное соотношение для внутренних волн. Неосциллирующие поправки к средней плотности и скорости течения находятся во втором порядке малости по амплитуде волны. Из условия разрешимости краевой задачи, определяющей вертикальную структуру основной гармоники в третьем порядке малости по амплитуде волны, получено нелинейное эволюционное уравнение для огибающей.

Примем в качестве исходных уравнений для волновых возмущений уравнения Навье – Стокса для неоднородной жидкости и введем безразмерные переменные по следующим формулам (волнистой чертой сверху обозначены размерные физические величины):

$$\begin{split} \widetilde{x}_{i} &= Hx_{i} \, (i=1, \, 3), \quad \widetilde{t} = t \sqrt{H/g}, \quad \widetilde{\zeta}_{3} = H\zeta_{3}, \\ \widetilde{u}_{i} &= u_{i} \sqrt{gH}, \quad \widetilde{\rho}_{0}(x_{3}) = \rho_{0}(0)\rho_{0}(x_{3}), \\ \widetilde{k} &= k/H, \quad \widetilde{\omega} = \omega \sqrt{g/H}, \quad \widetilde{P} = \rho_{0}(0)gHP, \quad \widetilde{K}_{1} = K_{1}\mu, \quad \widetilde{K}_{3} = K_{3}\mu, \\ \widetilde{M}_{1} &= M_{1}\mu, \\ \widetilde{M}_{3} &= M_{3}\mu, \quad \varepsilon_{2}^{2} = \frac{\mu}{H^{2}} \sqrt{\frac{H}{g}}, \end{split}$$

где $u_i(i = 1, 3)$ – горизонтальная и вертикальная компоненты волновой скорости течения соответственно; H – глубина моря; $\rho_0(x_3)$ – средняя плотность; ζ_3 – возвышение свободной поверхности; K_i, M_i – коэффициенты турбулентной вязкости и диффузии; $\mu = \max \overline{K_1}(x_3)$, k – горизонтальное волновое число; ω – частота волны. Далее получим систему уравнений гидродинамики для волновых возмущений в приближении Буссинеска с учетом коэффициентов турбулентной вязкости и диффузии при реальной стратификации:

$$\frac{\partial u_1}{\partial t} + u_i \frac{\partial u_1}{\partial x_i} = -\frac{\partial P}{\partial x_1} + \varepsilon_2^2 \frac{\partial}{\partial x_1} \left(K_1 \frac{\partial u_1}{\partial x_1} \right) + \varepsilon_2^2 \frac{\partial}{\partial x_3} \left(K_3 \frac{\partial u_1}{\partial x_3} \right), \tag{1a}$$

$$\frac{\partial u_3}{\partial t} + u_i \frac{\partial u_3}{\partial x_i} = -\frac{\partial P}{\partial x_3} + \varepsilon_2^2 \frac{\partial}{\partial x_1} \left(K_1 \frac{\partial u_3}{\partial x_1} \right) + \varepsilon_2^2 \frac{\partial}{\partial x_3} \left(K_3 \frac{\partial u_3}{\partial x_3} \right) - \rho, \quad (16)$$

$$\frac{\partial \rho}{\partial t} + u_i \frac{\partial \rho}{\partial x_i} = \varepsilon_2^2 \frac{\partial}{\partial x_1} \left(M_1 \frac{\partial \rho}{\partial x_1} \right) + \varepsilon_2^2 \frac{\partial}{\partial x_3} \left(M_3 \frac{\partial \rho}{\partial x_3} \right) - u_3 \frac{\partial \rho_0}{\partial x_3}, \quad (1B)$$

$$\frac{\partial u_i}{\partial x_i} = 0. \tag{1r}$$

На свободной поверхности используем кинематическое и динамическое граничные условия [7]

4

$$-P + \zeta_3 + 2\varepsilon_2^2 K_3 \frac{\partial u_3}{\partial x_3} = 0, \qquad (2a)$$

$$K_3 \frac{\partial u_1}{\partial x_3} + K_1 \frac{\partial u_3}{\partial x_1} = 0, \qquad (26)$$

$$\frac{\partial \zeta_3}{\partial t} = u_3, \qquad (2B)$$

здесь (2а), (2б) определяют отсутствие нормальных и тангенциальных напряжений. На дне примем условия прилипания

$$u_3(-1) = 0$$
, (3a)

$$u_1(-1) = 0. (36)$$

Граничные условия по плотности следующие: при $x_3 = \overline{\zeta}_3$

$$\rho = \rho_s(x_1, t) = \text{const}, \qquad (4a)$$

при $x_3 = -1$

$$\rho = \rho_b(x_1, t) = \text{const.} \tag{46}$$

Указанные граничные условия сводятся к виду: при $x_3 = 0$

$$\rho(0) + \zeta_3 \frac{\partial \rho_0}{\partial x_3} + \zeta_i \frac{\partial \rho}{\partial x_i} = 0, \qquad (5a)$$

при $x_3 = -1$

$$\rho(-1) = 0. (56)$$

Решение исходной системы уравнений (1) будем искать в виде асимптотического ряда

$$\psi = \sum_{n=1} \varepsilon^n \psi_n(\xi, \tau, x_3, \theta), \qquad \rho = \sum_{n=1} \varepsilon^n \rho_n(\xi, \tau, x_3, \theta), \tag{6}$$

где $\psi(x_1, x_3, t)$ – функция тока, которая определяет поле волновых скоростей $(\frac{\partial \psi}{\partial x_3}$ – горизонтальная скорость, $-\frac{\partial \psi}{\partial x_1}$ – вертикальная скорость); ε – крутизна волны; $\tau = \varepsilon^2 t$; $\xi = \varepsilon(x_1 - C_g t)$, C_g – групповая скорость в линейном приближении. Здесь ξ и τ – медленные переменные, θ – быстрая переменная и фаза волны, $k = \theta_x$, $\omega = -\theta_t$.

Введем дифференциальные операторы

$$L = k^{2} \frac{\partial^{2}}{\partial \theta^{2}} + \frac{\partial^{2}}{\partial z^{2}}, \qquad M = 2k \frac{\partial^{2}}{\partial \theta \partial \xi} + k_{\xi} \frac{\partial}{\partial \theta}.$$

Подставляя разложение (6) в исходную систему уравнений движения и приравнивая члены при одинаковых степенях ε , с точностью до ε^3 получим:

$$\begin{split} &-\omega\frac{\partial L\psi_{1}}{\partial\theta} = k\frac{\partial\rho_{1}}{\partial\theta} + k\frac{\partial}{\partial\theta} \left[k\frac{\partial}{\partial\theta} \left[K_{1}k^{2}\frac{\partial^{2}\psi_{1}}{\partial\theta^{2}} \right] + \frac{\partial}{\partial x_{3}} \left[K_{3}k\frac{\partial^{2}\psi_{1}}{\partial\theta\partial x_{3}} \right] \right] \varepsilon_{2}^{2} + \\ &+ \frac{\partial}{\partial x_{3}} \left[k^{2}K_{1}\frac{\partial^{3}\psi_{1}}{\partial\theta^{2}\partial x_{3}} + \frac{\partial}{\partial x_{3}} \left(K_{3}\frac{\partial^{2}\psi_{1}}{\partial x_{3}^{2}} \right) \right] \varepsilon_{2}^{2} , \\ &- \omega\frac{\partial\rho_{1}}{\partial\theta} - k\frac{\partial}{\partial\theta} \left(M_{1}k\frac{\partial\rho_{1}}{\partial\theta} \right) \varepsilon_{2}^{2} - \frac{\partial}{\partial x_{3}} \left(M_{3}\frac{\partial\rho_{1}}{\partial x_{3}} \right) \varepsilon_{2}^{2} - \frac{d\rho_{0}}{dx_{3}}k\frac{\partial\psi_{1}}{\partial\theta} = 0, \quad (76) \\ &- C_{g}L\psi_{1} + kJ_{\theta,x_{3}}(L\psi_{1},\psi_{1}) - \omega\frac{\partial}{\partial\theta} (L\psi_{2} + M\psi_{1}) = k\frac{\partial\rho_{2}}{\partial\theta} + \frac{\partial\rho_{1}}{\partial\xi} + \\ &+ k^{4}\frac{\partial^{4}}{\partial\theta^{4}} (K_{1}\psi_{2})\varepsilon_{2}^{2} + \varepsilon_{2}^{2}\frac{\partial}{\partial x_{3}} \left[K_{3} \left(k\frac{\partial^{2}\psi_{2}}{\partial\theta\partial x_{3}} + \frac{\partial^{2}\psi_{1}}{\partial\xi} \right) \right] \right] + \\ &+ \frac{\partial}{\partial x_{3}} \left[K_{1} \left(k^{2}\frac{\partial^{3}\psi_{2}}{\partial\theta^{2}\partial x_{3}} + M\frac{\partial\psi_{1}}{\partial x_{3}} \right) + \frac{\partial}{\partial x_{3}} \left(K_{3}\frac{\partial^{2}\psi_{2}}{\partial x_{3}^{2}} \right) \right] \varepsilon_{2}^{2} + \\ &+ k^{2}\frac{\partial^{2}}{\partial\theta^{2}} (K_{1}M\psi_{1}) \varepsilon_{2}^{2} , \\ &- C_{g}\frac{\partial\rho_{1}}{\partial\xi} - \omega\frac{\partial\rho_{2}}{\partial\theta} + kJ_{\theta,x_{3}}(\rho_{1},\psi_{1}) - M_{1}k^{2}\frac{\partial^{2}\rho_{2}}{\partial\theta^{2}} \varepsilon_{2}^{2} - M_{1}M\rho_{1}\varepsilon_{2}^{2} - \\ &- \frac{\partial}{\partial x_{3}} \left(M_{3}\frac{\partial\rho_{2}}{\partial x_{3}} \right) \varepsilon_{2}^{2} - \frac{\partial\rho_{0}}{\partial x_{3}} \left(k\frac{\partial\psi_{2}}{\partial\theta} + \frac{\partial\psi_{1}}{\partial\xi} \right) = 0 , \\ &\frac{\partial}{\partial\tau} L\psi_{1} - \omega\frac{\partial}{\partial\theta} L\psi_{3} - C_{g}L\frac{\partial\psi_{2}}{\partial\xi} - C_{g}M\frac{\partial\psi_{1}}{\partial\xi} - \omega\frac{\partialM\psi_{2}}{\partial\theta} - \omega\frac{\partial^{3}\psi_{1}}{\partial\theta\partial\xi^{2}} + \\ &+ kJ_{\theta,x_{3}}(L\psi_{1},\psi_{2}) + kJ_{\theta,x_{3}}(L\psi_{2},\psi_{1}) + kJ_{\theta,x_{3}}(M\psi_{1},\psi_{1}) = \\ &= k\frac{\partial\rho_{3}}{\partial\theta} + \frac{\partial\rho_{2}}{\partial\xi} + k\varepsilon_{2}^{2}\frac{\partial}{\partial\theta} \left[k\frac{\partial}{\partial\theta} \left(K_{1} \left(k^{2}\frac{\partial^{2}\psi_{3}}{\partial\theta^{2}} + M\psi_{2} + \frac{\partial^{2}\psi_{1}}{\partial\xi^{2}} \right) \right] \right] + \\ &+ \frac{\partial}{\partial\xi} \left[K_{1} \left(k^{2}\frac{\partial^{2}\psi_{2}}{\partial\theta^{2}} + M\psi_{1} \right) \right] + \frac{\partial}{\partial\xi} \left[K_{1} \left(k\frac{\partial^{2}\psi_{3}}{\partial\theta\partial\thetax_{3}} + \frac{\partial^{2}\psi_{2}}{\partial\xi\partialy_{3}} \right) \right] + \\ &+ \frac{\partial}{\partial\xi} \left[K_{1} \left(k^{2}\frac{\partial^{2}\psi_{2}}{\partial\theta^{2}} + M\psi_{1} \right) \right] + \frac{\partial}{\partial\xi} \left[K_{1} \left(k\frac{\partial^{2}\psi_{3}}{\partial\theta\partial\thetax_{3}} + \frac{\partial^{2}\psi_{2}}{\partial\xi\partialy_{3}} \right) \right] + \\ &+ \frac{\partial}{\partial\xi} \left[K_{1} \left(k\frac{\partial^{2}\psi_{2}}{\partial\theta^{2}} + M\psi_{1} \right) \right] + \frac{\partial}{\partial\xi} \left[K_{1} \left(k\frac{\partial^{2}\psi_{3}}{\partial\theta\partial\thetax_{3}} + \frac{\partial^{2}\psi_{2}}{\partial\xi\partial\varphi} \right] \right] + \\ &+ \frac{\partial}{\partial\xi} \left[K_{1} \left(k\frac{$$

$$+\frac{\partial}{\partial\xi}\left(K_{1}\left(k\frac{\partial^{2}\psi_{2}}{\partial\theta\partial x_{3}}+\frac{\partial^{2}\psi_{1}}{\partial\xi\partial x_{3}}\right)\right)+\frac{\partial}{\partial x_{3}}\left(K_{3}\frac{\partial^{2}\psi_{3}}{\partial x_{3}^{2}}\right)]\varepsilon_{2}^{2},$$

$$-C_{g}\frac{\partial\rho_{2}}{\partial\xi}-\omega\frac{\partial\rho_{3}}{\partial\theta}+\frac{\partial\rho_{1}}{\partial\tau}+kJ_{\theta,x_{3}}(\rho_{1},\psi_{2})-k\frac{\partial}{\partial\theta}\left(M_{1}\left(k\frac{\partial\rho_{3}}{\partial\theta}+\frac{\partial\rho_{2}}{\partial\xi}\right)\right)\varepsilon_{2}^{2}-(96)$$

$$-\frac{\partial}{\partial\xi}\left(M_{1}\left(k\frac{\partial\rho_{2}}{\partial\theta}+\frac{\partial\rho_{1}}{\partial\xi}\right)\right)\varepsilon_{2}^{2}-\frac{\partial}{\partial x_{3}}\left(M_{3}\frac{\partial\rho_{3}}{\partial x_{3}}\right)\varepsilon_{2}^{2}-\frac{\partial\rho_{0}}{\partial x_{3}}\left(k\frac{\partial\psi_{3}}{\partial\theta}+\frac{\partial\psi_{2}}{\partial\xi}\right)+kJ_{\theta,x_{3}}(\rho_{2},\psi_{1})=0.$$

<u>Первый порядок малости по крутизне волны.</u> В первом порядке малости по крутизне волны волновые возмущения давления P_1 , плотности ρ_1 и функции тока ψ_1 представим в виде

$$\psi_1 = A \varphi_1 e^{i\theta} + \kappa.c., \qquad \rho_1 = A n_1 e^{i\theta} + \kappa.c., \qquad P_1 = A P_{10} e^{i\theta} + \kappa.c.,$$
(10)

здесь к.с. – комплексно-сопряженные слагаемые. Приведем граничные условия с точностью до ε^1 : при $x_3 = 0$

$$\frac{k}{\omega}\varphi_{1} - \frac{\omega}{k}\frac{d\varphi_{1}}{dx_{3}} - ik\varepsilon_{2}^{2}K_{1}\frac{d\varphi_{1}}{dx_{3}} + ik^{-1}\varepsilon_{2}^{2}\frac{d}{dx_{3}}\left(K_{3}\frac{d^{2}\varphi_{1}}{dx_{3}^{2}}\right) - 2i\varepsilon_{2}^{2}K_{3}k\frac{d\varphi_{1}}{dx_{3}} = 0, \quad (11a)$$

$$K_3 \frac{d^2 \varphi_1}{d x_3^2} + K_1 k^2 \varphi_1 = 0, \qquad (116)$$

при $x_3 = -1$

$$\varphi_1 = \frac{d\varphi_1}{dx_3} = 0. \tag{11B}$$

Уравнения для $\varphi_1(x_3)$ и $n_1(x_3)$ имеют вид

$$\left(i\omega - k^{2}M_{1}\varepsilon_{2}^{2} + \varepsilon_{2}^{2} \frac{d}{dx_{3}} \left(M_{3} \frac{d}{dx_{3}} \right) \right) \left[k^{2} \left(k^{2}K_{1}\varphi_{1} - \frac{d}{dx_{3}} \left(K_{3} \frac{d\varphi_{1}}{dx_{3}} \right) \right) + \frac{d}{dx_{3}} \left(-k^{2}K_{1} \frac{d\varphi_{1}}{dx_{3}} + \frac{d}{dx_{3}} \left(K_{3} \frac{d^{2}\varphi_{1}}{dx_{3}^{2}} \right) \right) \right] \varepsilon_{2}^{2} - \omega i \left(k^{2}M_{1} - \frac{d}{dx_{3}} \left(M_{3} \frac{d}{dx_{3}} \right) \right) \times (12a)$$
$$\times \left(-k^{2} + \frac{d^{2}}{dx_{3}^{2}} \right) \varphi_{1} \varepsilon_{2}^{2} = \omega^{2} \left(-k^{2} + \frac{d^{2}}{dx_{3}^{2}} \right) \varphi_{1} - k^{2} \frac{d\varphi_{0}}{dx_{3}} \varphi_{1},$$

$$\left(i\omega - k^2 M_1 \varepsilon_2^2 + \varepsilon_2^2 \frac{d}{dx_3} \left(M_3 \frac{d}{dx_3}\right)\right) n_1 = -ik \frac{d\rho_0}{dx_3} \varphi_1 \quad . \tag{126}$$

Граничные условия для функции n_1 следующие: при $x_3 = 0$

$$n_1(0) + \frac{k}{\omega} \varphi_1(0) \frac{d\rho_0}{dx_3} = 0., \qquad (13a)$$

при $x_3 = -1$

$$n_1(-1) = 0.$$
 (136)

Уравнение (12а) будем решать методом Люстерника – Вишика, разлагая φ_1, n_1, ω в асимптотические ряды [7, 8]:

$$\varphi_1(x_3) = \sum_{i=0}^{i} \varphi_{1i}(x_3) \varepsilon_2^i + \varepsilon_2 \sum_{i=0}^{i} v_i^1 \varepsilon_2^i + \varepsilon_2^2 \sum_{i=0}^{2} \varepsilon_2^i v_i^0, \qquad (14a)$$

$$n_{1} = \sum_{i=0}^{n} n_{1i}(x_{3})\varepsilon_{2}^{i} + \varepsilon_{2} \sum_{i=0}^{n} w_{i}^{1}\varepsilon_{2}^{i} + \varepsilon_{2}^{2} \sum_{i=0}^{n} \varepsilon_{2}^{i} w_{i}^{0}, \qquad (146)$$

$$\omega = \omega_{01} + \varepsilon_2 \cdot \omega_{02} + \varepsilon_2^2 \cdot \omega_{03} + \dots, \tag{14B}$$

где $v_i^{\ 1}((1+x_3)/\varepsilon_2)$, $w_i^{\ 1}((1+x_3)/\varepsilon_2)$ – погранслойные решения в окрестности дна; $v_i^{\ 0}(x_3/\varepsilon_2)$, $w_i^{\ 0}(x_3/\varepsilon_2)$ – погранслойные решения в окрестности свободной поверхности.

В нулевом порядке малости по параметру \mathcal{E}_2 получим уравнение и граничные условия для φ_{10} :

$$\omega_{01}^{2} \left(-k^{2} + \frac{d^{2}}{dx_{3}^{2}} \right) \varphi_{10} - k^{2} \frac{d\rho_{0}}{dx_{3}} \varphi_{10} = 0; \qquad (15a)$$

при $x_3 = 0$

$$\varphi_{10_{x_3}} - \frac{k^2}{\omega_{01}^2} \varphi_{10} \Big|_{x_3=0} = 0, \qquad (156)$$

при $x_3 = -1$

$$\varphi_{10}\Big|_{x_3=-1} = 0. \tag{15b}$$

Краевая задача (15) имеет счетный набор собственных значений k, соответствующих различным номерам мод при фиксированном ω_{01} .

Подставляя разложение (14а) в уравнение (12а), получим с точностью до ε_2^0 уравнение для $v_0^{-1}(\eta) \ (\eta = \frac{1+x_3}{\varepsilon_2})$:

$$K_{3}M_{3}\frac{\partial^{6}v_{0}^{1}}{\partial\eta^{6}} + \frac{\partial^{4}v_{0}^{1}}{\partial\eta^{4}}i(K_{3}+M_{3})\omega_{01} = \frac{\partial^{2}v_{0}^{1}}{\partial\eta^{2}}\omega_{01}^{2}.$$
 (16)

Решение уравнения (16):

$$v_0^{\ 1} = D_0^1 \exp(-\lambda_1 \eta) + G_0^1 \exp(-\lambda_2 \eta),$$

где

$$\lambda_{1} = \sqrt{\frac{\omega_{01}}{2M_{3}(-1)}} (1-i) , \qquad \lambda_{2} = \sqrt{\frac{\omega_{01}}{2K_{3}(-1)}} (1-i) , \qquad (17)$$

$$D_{0}^{1} = \frac{\partial \varphi_{10} / \partial x_{3} |_{x_{3}=-1}}{\lambda_{1} - \lambda_{2}} , \qquad G_{0}^{1} = -D_{0}^{1} .$$

Найдем погранслойные решения v_0^0 в разложении (14а), чтобы удовлетворить граничным условиям (11а), (11б) в окрестности свободной поверхности. Подставляя разложение (14а) в уравнение (12а), получим с точностью до

~
$$\varepsilon_2^0$$
 уравнение для $v_0^0(\varsigma)$, $(\varsigma = \frac{x_3}{\varepsilon_2})$:

$$K_{3}M_{3}\frac{\partial^{6}v_{0}^{0}}{\partial\zeta^{6}} + \frac{\partial^{4}v_{0}^{0}}{\partial\zeta^{4}}i\omega_{01}(K_{3} + M_{3}) = \omega_{01}^{2}\frac{\partial^{2}v_{0}^{0}}{\partial\zeta^{2}}.$$
 (18)

Решение уравнения (18):

$$v_0^0(\zeta) = C_0^0 \exp(\lambda_1^0 \zeta) + F_0^0 \exp(\lambda_2^0 \zeta),$$

где

$$C_0^0 = \left(\lambda_1^0 \omega_{01} - iK_3 (\lambda_1^0)^3\right)^{-1} \left(-\omega_{01} \lambda_2^0 + iK_3 (\lambda_2^0)^3\right) F_0^0,$$
(19a)

$$F_0^0 = -\frac{K_1 k^2 \varphi_{10}(0) + K_3 d^2 \varphi_{10} / dx_3^2 |_{x_3=0}}{K_3((\lambda_2^0)^2 + \beta(\lambda_1^0)^2)},$$
(196)

$$\beta = \left(\lambda_1^0 \omega_{01} - iK_3 (\lambda_1^0)^3\right)^{-1} \left(-\omega_{01} \lambda_2^0 + iK_3 (\lambda_2^0)^3\right), \tag{19B}$$

 λ_1^0, λ_2^0 определяются по формулам (17), только функции K_3, M_3 берутся в точке $x_3 = 0$.

Уравнение следующего приближения в (12а) для φ_{11} получается после подстановки разложений (14а), (14в) в (12а) и приравнивания членов ~ ε_2 :

$$\omega_{01}^{2} \left(-k^{2} + \frac{d^{2}}{dx_{3}^{2}} \right) \varphi_{11} - \frac{d\rho_{0}}{dx_{3}} k^{2} \varphi_{11} = -\frac{2\omega_{02}}{\omega_{01}} k^{2} \varphi_{10} \frac{d\rho_{0}}{dx_{3}}, \qquad (20)$$

граничные условия для φ_{11} :

	r		
	r.		
1	۰.		,
		,	

при $x_3 = 0$

$$\frac{k}{\omega_{01}}\varphi_{11} - \frac{\omega_{01}}{k}\varphi_{11x_3} = 0, \qquad (21a)$$

при $x_3 = -1$

$$\varphi_{11} = 0.$$
 (216)

Условием разрешимости полуоднородной краевой задачи (20), (21) является ортогональность правой части собственной функции однородной краевой задачи для φ_{10} . Ввиду того что правая часть уравнения (20) при $\omega_{02} \neq 0$ не ортогональна φ_{10} , краевая задача (20), (21) не разрешима и функция φ_{11} не определена, так же как и не определена поправка к частоте ω_{02} . Рассмотрим уравнение для φ_{12} , полученное из уравнения (12а) после подстановки разложений (14а), (14в) и приравнивания членов ~ ε_2^{2} :

$$\omega_{01}^{2} \left[-k^{2} + \frac{d^{2}}{dx_{3}^{2}} \right] \varphi_{12} - \frac{d\rho_{0}}{dx_{3}} k^{2} \varphi_{12} = \left(-2\omega_{03} - iM_{1}k^{2} + iM_{3}\frac{d^{2}}{dx_{3}^{2}} \right) \times \\ \times \left(-k^{2} + \frac{d^{2}}{dx_{3}^{2}} \right) \varphi_{10} \omega_{01} + \omega_{01} \left[i\frac{d}{dx_{3}} \left(K_{3}\frac{d^{3}\varphi_{10}}{dx_{3}^{3}} - K_{1}k^{2}\frac{d\varphi_{10}}{dx_{3}} \right) + ik \left(K_{1}k^{3}\varphi_{10} - kK_{3}\frac{d^{2}\varphi_{10}}{dx_{3}^{2}} \right) \right] = F_{1}.$$
(22a)

Граничные условия для φ_{12} следуют из (11а), (11в) после подстановки разложений (14а), (14в) во втором порядке малости по параметру ε_2 :

$$\varphi_{12x_3} - \frac{k^2}{\omega_{01}^2} \varphi_{12} = \gamma_{12} \Big|_{x_3=0}, \qquad \varphi_{12} \Big|_{x_3=-1} = 0,$$

где

$$\gamma_{12} = \frac{ik}{\omega_{01}} \left[-k \frac{\partial \varphi_{10}}{\partial x_3} K_1 + \frac{1}{k} \frac{\partial}{\partial x_3} \left(K_3 \frac{\partial^2 \varphi_{10}}{\partial x_3^2} \right) - 2K_3 \frac{\partial \varphi_{10}}{\partial x_3} k \right].$$
(226)

Условие разрешимости краевой задачи (22) имеет вид [9]

$$\int_{-1}^{0} F_1 \varphi_{10} dx_3 = -\gamma_{12} \varphi_{10}(0) \,. \tag{23}$$

Из условия (23) следует выражение для ω_{03} :

ISSN 0233-7584. Мор. гидрофиз. журн., 2009, № 5

$$\begin{split} \omega_{03} &= \left(\int_{-1}^{0} \frac{d\rho_{0}}{dx_{3}} k^{2} \varphi_{10}^{2} \frac{2dx_{3}}{\omega_{01}} + 2 \frac{d\varphi_{10}(0)}{dx_{3}} \frac{\varphi_{10}(0)}{\omega_{01}} \right)^{-1} i [\omega_{01} \int_{-1}^{0} [-(k^{2}M_{1} - \frac{d}{dx_{3}}(M_{3}\frac{d}{dx_{3}}))(-k^{2} + \frac{d^{2}}{dx_{3}^{2}})\varphi_{10} + k^{4}K_{1}(x_{3})\varphi_{10} - \frac{d}{dx_{3}}(K_{3}(x_{3})\frac{d\varphi_{10}}{dx_{3}})k^{2} - k^{2}\frac{d}{dx_{3}}(K_{1}(x_{3})\frac{d\varphi_{10}}{dx_{3}}) + \frac{d^{2}}{dx_{3}^{2}}(K_{3}\frac{d^{2}\varphi_{10}}{dx_{3}^{2}})]\varphi_{10}dx_{3} + \frac{k}{\omega_{01}}[-k\frac{d\varphi_{10}}{dx_{3}}K_{1}(0) + \frac{1}{k}\frac{d}{dx_{3}}(K_{3}(x_{3})\frac{d^{2}\varphi_{10}}{dx_{3}^{2}}) - 2kK_{3}(0)\frac{d\varphi_{10}}{dx_{3}}]|_{x_{3}=0}\varphi_{10}(0)]. \end{split}$$

$$(24)$$

<u>Второй порядок малости по крутизне волны.</u> Решения уравнений второго порядка малости по параметру *є* – крутизне волны будем искать в виде

$$\psi_2 = \varphi_2(A, x_3) e^{2i\theta} + \varphi_4(A, x_3) e^{i\theta} + C(\xi, \tau, x_3) + \hat{e.c.}, \qquad (25a)$$

$$\rho_2 = n_2(A, x_3)e^{2i\theta} + n_4(A, x_3)e^{i\theta} + R(\xi, \tau, x_3) + \hat{e}.c.$$
(256)

Из граничных условий (2), (3) с точностью до членов ~ ε^2 получим краевые условия для φ_2 , n_2 :

$$4k^{2}\varphi_{2} - 2i\omega_{01}\left[-2i\omega_{01}\frac{\partial\varphi_{2}}{\partial x_{3}} + ik\left(\frac{\partial\varphi_{10}}{\partial x_{3}}\right)^{2}A^{2} - ik\varphi_{10}\frac{\partial^{2}\varphi_{10}}{\partial x_{3}^{2}}A^{2} + \varepsilon_{2}^{2}4k^{2}K_{1}\frac{\partial\varphi_{2}}{\partial x_{3}}\right] - (26a)$$
$$-\varepsilon_{2}^{2}\frac{\partial}{\partial x_{3}}\left(K_{3}\frac{\partial^{2}\varphi_{2}}{\partial x_{3}^{2}}\right) + 16K_{3}\varepsilon_{2}^{2}k^{2}i\omega_{01}\frac{\partial\varphi_{2}}{\partial x_{3}}|_{x_{3}=0} = 0,$$
$$K_{3}\frac{\partial^{2}\varphi_{2}}{\partial x_{3}^{2}} + 4k^{2}K_{1}\varphi_{2}|_{x_{3}=0} = 0,$$
$$(266)$$

$$\frac{\partial \varphi_2}{\partial x_3}\Big|_{x_3=-1} = \varphi_2\Big|_{x_3=-1} = 0.$$
(26B)

Граничные условия для n_2 :

$$\begin{split} n_{2} + \frac{k}{\omega} \frac{d\rho_{0}}{dx_{3}} &\left(\frac{k}{\omega} \varphi_{1} \frac{d\varphi_{1}}{dx_{3}} A^{2} + k\varphi_{2} \right) + \frac{k^{2}}{\omega^{2}} \varphi_{1} \frac{d\varphi_{1}}{dx_{3}} \frac{d\rho_{0}}{dx_{3}} A^{2} - \\ &- \frac{k^{2}}{\omega^{2}} \frac{d}{dx_{3}} &\left(\varphi_{1} \frac{d\rho_{0}}{dx_{3}} \right) A^{2} \varphi_{1} \mid_{x_{3}=0} = 0, \\ &n_{2} \mid_{x_{3}=-1} = 0. \end{split}$$

Уравнение второго приближения для φ_2 имеет вид

ISSN 0233-7584. Мор. гидрофиз. журн., 2009, № 5

$$\begin{bmatrix} -2i\omega + 4k^{2}M_{1}\varepsilon_{2}^{2} - \varepsilon_{2}^{2}\frac{\partial}{\partial x_{3}}\left(M_{3}\frac{\partial}{\partial x_{3}}\right)\end{bmatrix} \begin{bmatrix} -2i\omega\left(-4k^{2} + \frac{\partial^{2}}{\partial x_{3}^{2}}\right)\varphi_{2} - 16k^{4}K_{1}\varphi_{2}\varepsilon_{2}^{2} - \varepsilon_{2}^{2}\frac{\partial}{\partial x_{3}}\left(2ikK_{3}\frac{\partial \varphi_{2}}{\partial x_{3}}\right) - \varepsilon_{2}^{2}\frac{\partial}{\partial x_{3}}\left[-4k^{2}K_{1}\frac{\partial \varphi_{2}}{\partial x_{3}} + \frac{\partial}{\partial x_{3}}\left(K_{3}\frac{\partial^{2}\varphi_{2}}{\partial^{2}x_{3}}\right)\right] \end{bmatrix} + 2k^{2}\left[2\frac{\partial \rho_{0}}{\partial x_{3}}\varphi_{2} - \left(n_{1}\frac{d\varphi_{1}}{dx_{3}} - \varphi_{1}\frac{dn_{1}}{dx_{3}}\right)A^{2}\right] = \left[-2\omega i + 4k^{2}M_{1}\varepsilon_{2}^{2} - \varepsilon_{2}^{2}\frac{\partial}{\partial x_{3}}\left(M_{3}\frac{\partial}{\partial x_{3}}\right)\right] \times \left[-ki\frac{d\varphi_{1}}{dx_{3}}\left(-k^{2} + \frac{\partial^{2}}{\partial x_{3}^{2}}\right)\varphi_{1}A^{2} + A^{2}ki\varphi_{1}\left(-k^{2} + \frac{\partial^{2}}{\partial x_{3}^{2}}\right)\frac{d\varphi_{1}}{dx_{3}}\right]. \quad (27a)$$

Функция n_2 удовлетворяет уравнению

$$\left[-2i\omega+4k^2M_1\varepsilon_2^2-\varepsilon_2^2\frac{\partial}{\partial x_3}\left(M_3\frac{\partial}{\partial x_3}\right)\right]n_2=2ik\frac{d\rho_0}{dx_3}\varphi_2-ki\left(n_1\frac{d\varphi_1}{dx_3}-\varphi_1\frac{dn_1}{dx_3}\right)A^2.$$
 (276)

Решение уравнений (27а), (27б), следуя асимптотическому методу Люстерника – Вишика, будем искать в виде

$$\varphi_2 = \varphi_{20} + \varepsilon_2^2 \varphi_{21} + \dots, \tag{28a}$$

$$n_2 = n_{20} + \varepsilon_2^{2} n_{21} + \dots$$
 (286)

Из (27а) найдем уравнение для φ_{20} :

$$-4\omega_{01}^{2}\left(-4k^{2}+\frac{\partial^{2}}{\partial x_{3}^{2}}\right)\varphi_{20}+4k^{2}\frac{d\rho_{0}}{dx_{3}}\varphi_{20}-2k^{2}\left(n_{10}\frac{d\varphi_{10}}{dx_{3}}-\varphi_{10}\frac{dn_{10}}{dx_{3}}\right)A^{2}=$$

$$=2\omega_{01}\left[-k\frac{d\varphi_{10}}{dx_{3}}\left(-k^{2}+\frac{d^{2}}{dx_{3}^{2}}\right)\varphi_{10}A^{2}+A^{2}k\varphi_{10}\left(-k^{2}+\frac{d^{2}}{dx_{3}^{2}}\right)\frac{d\varphi_{10}}{dx_{3}}\right].$$
(29)

Представляя φ_{20} в виде $\varphi_{20} = \varphi_{201}(x_3)A^2$, из (27а) получим обыкновенное дифференциальное уравнение для $\varphi_{201}(x_3)$ (30), а из граничных условий (26) с точностью до ~ ε_2^{0} – краевые условия для этой функции:

$$-4\omega_{01}^{2}\left(-4k^{2}+\frac{d^{2}}{dx_{3}^{2}}\right)\varphi_{201}+4k^{2}\frac{d\rho_{0}}{dx_{3}}\varphi_{201}-2k^{2}\left(n_{10}\frac{d\varphi_{10}}{dx_{3}}-\varphi_{10}\frac{dn_{10}}{dx_{3}}\right)=$$

$$=2\omega_{01}\left[-k\frac{d\varphi_{10}}{dx_{3}}\left(-k^{2}+\frac{d^{2}}{dx_{3}^{2}}\right)\varphi_{10}+k\varphi_{10}\left(-k^{2}+\frac{d^{2}}{dx_{3}^{2}}\right)\frac{d\varphi_{10}}{dx_{3}}\right];$$
(30)

при $x_3 = 0$

ISSN 0233-7584. Мор. гидрофиз. журн., 2009, № 5

$$4k^{2}\varphi_{201} - 4\omega_{01}^{2}\frac{d\varphi_{201}}{dx_{3}} + 2\omega_{01}k\left(\frac{d\varphi_{10}}{dx_{3}}\right)^{2} - 2\omega_{01}\varphi_{10}k\frac{d^{2}\varphi_{10}}{dx_{3}^{2}} = 0, \qquad (31a)$$

при $x_3 = -1$

$$\frac{d\varphi_{201}}{dx_3} = \varphi_{201} = 0. \tag{316}$$

Из (27б) получим

$$n_{20} = -\frac{k}{\omega_{01}} \frac{d\rho_0}{dx_3} \varphi_{20} + \frac{k}{2\omega_{01}} \left(n_{10} \frac{d\varphi_{10}}{dx_3} - \varphi_{10} \frac{dn_{10}}{dx_3} \right) A^2, \qquad (32)$$

где $n_{10} = -\frac{k}{\omega_{01}} \frac{d\rho_0}{dx_3} \varphi_{10}.$

Подставляя (25а), (25б) в (8а), (8б) и собирая слагаемые, пропорциональные $e^{i\theta}$, получим уравнения для φ_4, n_4 :

$$-\omega i \left(-k^{2} + \frac{\partial^{2}}{\partial x_{3}^{2}}\right) \varphi_{4} - k^{4} K_{1} \varphi_{4} \varepsilon_{2}^{2} - \varepsilon_{2}^{2} \frac{\partial}{\partial x_{3}} \left(ikK_{3} \frac{\partial \varphi_{4}}{\partial x_{3}}\right) - \frac{\partial}{\partial x_{3}} \left[-k^{2} K_{1} \frac{\partial \varphi_{4}}{\partial x_{3}} + \frac{\partial}{\partial x_{3}} \left(K_{3} \frac{\partial^{2} \varphi_{4}}{\partial x_{3}^{2}}\right)\right] \varepsilon_{2}^{2} = C_{g} \left(-k^{2} + \frac{\partial^{2}}{\partial x_{3}^{2}}\right) \varphi_{1} A_{\xi} - 2k\varphi_{1} \omega A_{\xi} + kin_{4} + n_{1} A_{\xi} - (33a)$$

$$-2ik^{3} K_{1} \varphi_{1} A_{\xi} \varepsilon_{2}^{2} + \frac{d}{dx_{3}} \left(K_{3} \frac{d\varphi_{1}}{dx_{3}}\right) A_{\xi} \varepsilon_{2}^{2} + \frac{d}{dx_{3}} \left(2ikK_{1} \frac{d\varphi_{1}}{dx_{3}}\right) A_{\xi} \varepsilon_{2}^{2},$$

$$\left[-i\omega + k^{2} M_{1} \varepsilon_{2}^{2} - \varepsilon_{2}^{2} \frac{\partial}{\partial x_{3}} \left(M_{3} \frac{\partial}{\partial x_{3}}\right)\right] n_{4} = C_{g} n_{1} A_{\xi} + 2ikn_{1} M_{1} A_{\xi} \varepsilon_{2}^{2} + \frac{d\rho_{0}}{dx_{3}} (ki\varphi_{4} + \varphi_{1} A_{\xi}).$$
(336)

Граничные условия для φ_4 : при $x_2 = 0$

при
$$x_3 = 0$$

$$k^{2}\varphi_{4} - \omega i \left[-\omega i \frac{\partial \varphi_{4}}{\partial x_{3}} + \varepsilon_{2}^{2}k^{2}K_{1}\frac{\partial \varphi_{4}}{\partial x_{3}} - \varepsilon_{2}^{2}\frac{\partial}{\partial x_{3}} \left(K_{3}\frac{\partial^{2}\varphi_{4}}{\partial x_{3}^{2}}\right) \right] +$$

$$+ 2i\varepsilon_{2}^{2}k^{2}\omega K_{3}\frac{\partial \varphi_{4}}{\partial x_{3}} = 0,$$

$$k^{2}K_{1}\varphi_{4} + K_{3}\frac{\partial^{2}\varphi_{4}}{\partial x_{3}^{2}} = 0,$$
(346)

ISSN 0233-7584. Мор. гидрофиз. журн., 2009, № 5

при $x_3 = -1$

$$\varphi_4 = \frac{\partial \varphi_4}{\partial x_3} = 0.$$
 (34b)

Граничные условия для n_4 :

при $x_3 = 0$

$$n_4 + \frac{k}{\omega}\varphi_4 \frac{d\rho_0}{dx_3} = 0, \qquad (34\Gamma)$$

при $x_3 = -1$

$$n_4(-1) = 0. (34 \pi)$$

Решение уравнений (33а), (33б) будем искать в виде

$$\varphi_4 = A_{\xi} \varphi_{40}(x_3), \qquad n_4 = A_{\xi} n_{40}(x_3),$$

где функции $\varphi_{40}(x_3)$, $n_{40}(x_3)$ удовлетворяют следующим уравнениям:

$$-\omega i \left(-k^{2} + \frac{\partial^{2}}{\partial x_{3}^{2}}\right) \varphi_{40} - k^{4} K_{1} \varphi_{40} \varepsilon_{2}^{2} - \varepsilon_{2}^{2} \frac{\partial}{\partial x_{3}} \left(ikK_{3} \frac{\partial \varphi_{40}}{\partial x_{3}}\right) - \frac{\partial}{\partial x_{3}} \left[-k^{2} K_{1} \times \frac{\partial \varphi_{40}}{\partial x_{3}} + \frac{\partial}{\partial x_{3}} \left(K_{3} \frac{\partial^{2} \varphi_{40}}{\partial x_{3}^{2}}\right)\right] \varepsilon_{2}^{2} = C_{g} \left(-k^{2} + \frac{\partial^{2}}{\partial x_{3}^{2}}\right) \varphi_{1} - 2k\varphi_{1}\omega + kin_{40} + n_{1} - (35)$$
$$- 2ik^{3} K_{1} \varphi_{1} \varepsilon_{2}^{2} + \frac{\partial}{\partial x_{3}} \left(K_{3} \frac{d\varphi_{1}}{dx_{3}}\right) \varepsilon_{2}^{2} + \frac{\partial}{\partial x_{3}} \left(2ikK_{1} \frac{d\varphi_{1}}{dx_{3}}\right),$$
$$\left[-i\omega + k^{2} M_{1} \varepsilon_{2}^{2} - \varepsilon_{2}^{2} \frac{\partial}{\partial x_{3}} \left(M_{3} \frac{\partial}{\partial x_{3}}\right)\right] n_{40} = C_{g} n_{1} + 2ikn_{1} M_{1} \varepsilon_{2}^{2} + \frac{d\rho_{0}}{dx_{3}} (ki\varphi_{40} + \varphi_{1}). \quad (36)$$

Граничные условия для φ_{40} :

при $x_3 = 0$

$$k^{2}\varphi_{40} - \omega i \left[-\omega i \frac{\partial \varphi_{40}}{\partial x_{3}} + \varepsilon_{2}^{2}k^{2}K_{1}\frac{\partial \varphi_{40}}{\partial x_{3}} - \varepsilon_{2}^{2}\frac{\partial}{\partial x_{3}}\left(K_{3}\frac{\partial^{2}\varphi_{1}}{\partial x_{3}^{2}}\right) \right] + 2i\varepsilon_{2}^{2}k^{2}\omega K_{3}\frac{\partial \varphi_{40}}{\partial x_{3}} = 0,$$
(37a)

$$k^{2}K_{1}\varphi_{40} + K_{3}\frac{\partial^{2}\varphi_{40}}{\partial x_{3}^{2}} = 0, \qquad (376)$$

при $x_3 = -1$

ISSN 0233-7584. Мор. гидрофиз. журн., 2009, № 5

$$\varphi_{40} = \frac{\partial \varphi_{40}}{\partial x_3} = 0.$$
 (37b)

Граничные условия для n_{40} :

при $x_3 = 0$

$$n_{40} + \frac{k}{\omega}\varphi_{40}\frac{d\rho_0}{dx_3} = 0,$$
 (38a)

при $x_3 = -1$

$$n_{40}(-1) = 0.$$
 (386)

Уравнения для неосциллирующих поправок к функции тока $\tilde{N}(\xi, \tau, x_3)$ и к возмущениям плотности $R(\xi, \tau, x_3)$ получаются после подстановки (25а), (25б) в (8а), (8б) и осреднения по периоду волны:

$$\varepsilon_{2}^{2} \frac{\partial^{2}}{\partial x_{3}^{2}} \left(K_{3} \frac{\partial^{2} \tilde{N}}{\partial x_{3}^{2}} \right) = \left[ki \frac{\partial}{\partial x_{3}} \left(\left(-k^{2} + \frac{\partial^{2}}{\partial x_{3}^{2}} \right) \varphi_{1} \varphi_{1}^{*} \right) + \hat{\mathbf{e}}.\tilde{\mathbf{n}} \right] A_{1} A_{1}^{*}, \qquad (39a)$$

$$\varepsilon_{2}^{2} \frac{\partial}{\partial x_{3}} \left(M_{3} \frac{\partial R}{\partial x_{3}} \right) = \left[ki \frac{\partial}{\partial x_{3}} \left(n_{1} \varphi_{1}^{*} \right) + \hat{e.c.} \right] A_{1} A_{1}^{*}, \qquad (396)$$

где $A_1A_1^* = AA^* \exp(-2|\omega_{03}|\tau)$. Из (39) следует, что функции $\tilde{N}(\xi, \tau, x_3)$ и $R(\xi, \tau, x_3)$ необходимо искать в виде $\tilde{N}(\xi, \tau, x_3) = c(x_3)A_1A_1^*$, $R(\xi, \tau, x_3) = r(x_3)A_1A_1^*$, причем $c(x_3)$ и $r(x_3)$ удовлетворяют уравнениям

$$\varepsilon_2^2 \frac{d^2}{dx_3^2} \left(K_3 \frac{\partial^2 c}{\partial x_3^2} \right) = ki \frac{d}{dx_3} \left(\left(-k^2 + \frac{\partial^2}{\partial x_3^2} \right) \varphi_1 \varphi_1^* \right) + \text{K.c.}, \quad (40a)$$

$$\varepsilon_2^2 \frac{d}{dx_3} \left(M_3 \frac{dr}{dx_3} \right) = ki \frac{d}{dx_3} \left(n_1 \varphi_1^* \right) + \text{K.c.}$$
(406)

Эти уравнения следует дополнить граничными условиями, вытекающими из (2), (3):

при $x_3 = 0$

$$\varepsilon_2^2 \frac{d}{dx_3} \left(K_3 \frac{\partial^2 c}{\partial x_3^2} \right) = ki \varphi_1^* \frac{d^2 \varphi_1}{d x_3^2} + \text{K.c.}, \qquad (41a)$$

$$\frac{d^2c}{dx_3^2} = 0, (416)$$

при $x_3 = -1$

ISSN 0233-7584. Мор. гидрофиз. журн., 2009, № 5

$$\frac{dc}{dx_3} = c = 0.$$
(41B)

Граничные условия для функции $r(x_3)$: при $x_3 = 0$

$$r + \frac{d\rho_0}{dx_3} \frac{1}{C_g} \left[2\varphi_1 \frac{d\varphi_1}{dx_3} \frac{k}{\omega} + c \right] - 2\varphi_1 \frac{d\varphi_1}{dx_3} \frac{k^2}{\omega^2} \frac{d\rho_0}{dx_3} - 2\varphi_1 \frac{k^2}{\omega^2} \frac{d}{dx_3} \left(\varphi_1 \frac{d\rho_0}{dx_3} \right) = 0, \quad (42a)$$

при $x_3 = -1$

$$r(-1) = 0.$$
 (426)

Подставляя разложение (14) для функций $\varphi_1(x_3)$, $n_1(x_3)$ в уравнения (40а), (40б) и граничные условия (41), получим уравнения и граничные условия для решений c_0 , r_0 в основной толще жидкости:

$$\frac{d^2}{dx_3^2} \left(K_3 \frac{\partial^2 c_0}{\partial x_3^2} \right) = \varphi_{120} \frac{d}{dx_3} \left(\left(-k^2 + \frac{\partial^2}{\partial x_3^2} \right) \varphi_{10} \right) - \varphi_{10} \frac{d}{dx_3} \left(\left(-k^2 + \frac{\partial^2}{\partial x_3^2} \right) \varphi_{120} \right), \quad (43a)$$

$$\frac{d}{dx_3} \left(M_3 \frac{dr_0}{dx_3} \right) = 2k \frac{d}{dx_3} \left(n_{10} \varphi_{120} - \varphi_{10} n_{120} \right), \tag{436}$$

здесь $\varphi_{120} = \frac{\varphi_{12}}{i}, n_{120} = \frac{n_{12}}{i}$ – действительные функции. Граничные условия для $\tilde{n}_0(x_3)$:

при $x_3 = 0$

$$2k\varphi_{120}\frac{d^2\varphi_{10}}{dx_3^2} - 2k\varphi_{10}\frac{d^2\varphi_{120}}{dx_3^2} = \frac{d}{dx_3}\left(K_3\frac{\partial^2 c_0}{\partial x_3^2}\right),$$
(44a)

$$\frac{\partial^2 c_0}{\partial x_3^2} = 0, \qquad (446)$$

при $x_3 = -1$

$$\frac{\partial c_0}{\partial x_3} = c_0 = 0. \tag{44B}$$

Горизонтальная компонента средней скорости индуцированного течения определяется по формуле

$$U_{\text{èfā}} = \left(\left| \varepsilon \hat{A}_1 \right| \right)^2 \frac{dc}{dx_3}.$$
 (45)

Граничные условия для функции $r_0(x_3)$: при $x_3 = 0$

ISSN 0233-7584. Мор. гидрофиз. журн., 2009, № 5

$$r_{0} + \frac{d\rho_{0}}{dx_{3}} \frac{1}{C_{g}} \left[2\varphi_{10} \frac{d\varphi_{10}}{dx_{3}} \frac{k}{\omega_{01}} + c \right] - 2\varphi_{10} \frac{d\varphi_{10}}{dx_{3}} \frac{k^{2}}{\omega_{01}^{2}} \frac{d\rho_{0}}{dx_{3}} - 2\varphi_{10} \frac{k^{2}}{\omega_{01}^{2}} \frac{d}{dx_{3}} \left(\varphi_{10} \frac{d\rho_{0}}{dx_{3}} \right) = 0, (46a)$$

при $x_{3} = -1$
 $r_{0}(-1) = 0.$ (466)

<u>Третий порядок малости по крутизне волны.</u> Решение уравнений (9а), (9б) в третьем порядке малости по параметру ε будем искать в виде

$$\psi_3 = \varphi_{31} e^{i\theta} + \varphi_{32} e^{2i\theta} + \varphi_{33} e^{3i\theta} + \hat{e}.c. + \tilde{C}(\xi, \tau, x_3), \qquad (47a)$$

$$\rho_3 = n_{31} e^{i\theta} + n_{32} e^{2i\theta} + n_{33} e^{3i\theta} + \hat{e}.c. + \tilde{R}(\xi, \tau, x_3), \qquad (476)$$

где $\widetilde{C}(\xi, \tau, x_3)$, $\widetilde{R}(\xi, \tau, x_3)$ – неосциллирующие поправки к функции тока и средней плотности. Подставляя (47) в (9а), (9б) и собирая слагаемые, пропорциональные $e^{i\theta}$, получим уравнение для ψ_{31} . Решая последнее методом Люстерника – Вишика и используя разложение $\psi_{31} = \varphi_{31}^0 + \varepsilon_2^{-2} \varphi_{31}^2 + ...,$ получим уравнение для φ_{31}^0 :

$$\omega_{01}^{2} \left(-k^{2} + \frac{\partial^{2}}{\partial x_{3}^{2}} \right) \varphi_{31}^{0} - \frac{d\rho_{0}}{dx_{3}} k^{2} \varphi_{31}^{0} = s_{1} A_{1\tau} + s_{2} A_{1\xi\xi} + s_{3} A_{1}^{2} A_{1}^{*}.$$
(48)

Из граничных условий (2), (3) в третьем порядке малости по ε , собирая слагаемые, пропорциональные $e^{i\theta}$, найдем краевые условия для φ_{31}^0 с точностью до ε_{2}^{0} :

при $x_3 = 0$

$$\frac{\partial \varphi_{31}^0}{\partial x_3} - \varphi_{31}^0 \frac{k^2}{\omega_{01}^2} = \gamma_{13}, \qquad \gamma_{13} = \delta_{13} A_1^2 A_1^*, \qquad (49a)$$

$$\delta_{13} = \left(\frac{k^3}{\omega_{01}}\varphi_{10}\frac{dc}{dx_3} - \frac{k^3}{\omega_{01}}\varphi_{20}\frac{d\varphi_{10}}{dx_3} - \frac{k^2\varphi_{10}}{C_g}\frac{dc}{dx_3} + k\omega_{01}\frac{d\varphi_{20}}{dx_3}\frac{d\varphi_{10}}{dx_3} - \frac{k^2\varphi_{10}}{dx_3} - \frac{k^2\varphi_{10}}{dx_3}\frac{d\varphi_{10}}{dx_3} - \frac{k^2\varphi_{10}}{dx_3}\frac{d\varphi_{10}}{dx_3}\frac{d\varphi_{10}}{dx_3} - \frac{k^2\varphi_{10}}{dx_3}\frac{d\varphi_{10}}{dx_3} - \frac{k^2\varphi_{10}}{dx_3}\frac{d\varphi_{10}}{dx_3}\frac{d\varphi_{10}}{dx_3} - \frac{k^2\varphi_{10}}{dx_3}\frac{d\varphi_{10}}{dx_3}\frac{d\varphi_{10}}{dx_3} - \frac{k^2\varphi_{10}}{dx_3}\frac{d\varphi_{10}}{dx_3}$$

при $x_3 = -1$

$$\varphi_{31}^{0}\Big|_{x_{3}=-1} = 0.$$
(49b)

Условие разрешимости краевой задачи (48), (49а), (49в) имеет вид

$$\int_{-1}^{0} \left[s_1 A_{1\tau} + s_2 A_{1\xi\xi} + s_3 A_1^2 A_1^* \right] \varphi_{10} dx_3 = -\gamma_{13} \varphi_{10}(0) , \qquad (50)$$

где s_1, s_2, s_3 определяются по формулам

$$s_{1} = ikn_{10} - i\omega_{01} \left(-k^{2} + \frac{d^{2}}{dx_{3}^{2}} \right) \varphi_{10}, \qquad (51a)$$

$$s_{2} = -ikC_{g}n_{40} - ik\frac{d\rho_{0}}{dx_{3}}\varphi_{40} + i\omega_{01}C_{g}\left(-k^{2} + \frac{d^{2}}{dx_{3}^{2}}\right)\varphi_{40} - 2k\omega_{01}C_{g}\varphi_{10} -$$
(516)

 $-ik\omega_{01}^2\varphi_{40}-\omega_{01}^2\varphi_{10}+i\omega_{01}n_{40},$

$$s_{3} = k^{2} n_{1}^{*} \frac{d\varphi_{20}}{dx_{3}} - k^{2} \left(2n_{20} \frac{d\varphi_{10}}{dx_{3}} + \varphi_{10} \frac{dn_{20}}{dx_{3}} \right) + ki\varphi_{10} \frac{d}{dx_{3}} \left(\left(-4k^{2} + \frac{d^{2}}{dx_{3}^{2}} \right) \varphi_{20} \right) - \omega_{01} \left[k \left(-k^{2} + \frac{d^{2}}{dx_{3}^{2}} \right) \varphi_{10} \frac{d\varphi_{20}}{dx_{3}} + k \left(-k^{2} + \frac{d^{2}}{dx_{3}^{2}} \right) \varphi_{10} \frac{dc}{dx_{3}} - k\varphi_{10} \frac{d^{3}c}{dx_{3}^{3}} \right] - (51B)$$
$$- 2k\varphi_{20} \frac{d}{dx_{3}} \left(\left(-k^{2} + \frac{d^{2}}{dx_{3}^{2}} \right) \varphi_{10} \right) + 2ik \left(-4k^{2} + \frac{d^{2}}{dx_{3}^{2}} \right) \varphi_{20} \frac{d\varphi_{10}}{dx_{3}} .$$

Из (50) следует эволюционное уравнение для огибающей

$$A_{1\tau} + \alpha_1 A_{1\xi\xi} + \alpha_4 A_1^2 A_1^* = 0, \qquad (52)$$

где

$$\alpha_{1} = \frac{\int_{-1}^{0} s_{2} \varphi_{10} dx_{3}}{\int_{-1}^{0} s_{1} \varphi_{10} dx_{3}}, \qquad \alpha_{2} = \frac{\int_{-1}^{0} s_{3} \varphi_{10} dx_{3}}{\int_{-1}^{0} s_{1} \varphi_{10} dx_{3}}, \qquad (53)$$

$$\alpha_{3} = \frac{\delta_{13} \varphi_{10}(0)}{\int_{-1}^{0} s_{1} \varphi_{10} dx_{3}}, \qquad \alpha_{4} = \alpha_{2} + \alpha_{3}.$$

Коэффициенты α_1 , α_4 – чисто мнимые. С помощью замены $q = \frac{-2\alpha_1}{i}$,

 $T = \frac{\alpha_4}{i}$ уравнение (52) сводится к нелинейному уравнению Шредингера

$$\frac{\partial A}{\partial \tau} - i \frac{q}{2} \frac{\partial^2 A}{\partial \xi^2} + iT |A^2| A = 0.$$
(54)

Это уравнение имеет частное решение – огибающую слабонелинейной плоской волны $A_0 \exp(-iT |A_0^2|\tau)$, которая при Tq < 0 неустойчива к продольной модуляции в силу критерия Лайтхилла [10].

ISSN 0233-7584. Мор. гидрофиз. журн., 2009, № 5

Результаты расчетов

Сделаем расчет индуцированных течений в северо-западной части Черного моря при стратификации, показанной на рис. 1. Краевые задачи (15), (22) решались численно по неявной схеме Адамса третьего порядка точности. У внутренних волн низшей моды с периодом 1 ч при глубине 78 м $k = 6.88 \cdot 10^{-3} \,\mathrm{m}^{-1}$ $\delta\omega = \omega_{03}/i$ декремент затухания волны равен $-5,55\cdot10^{-7}$ рад/с; если глубина составляет 300 м, то $k = 2,35\cdot10^{-3}$ м⁻¹, $\delta \omega = -1,01 \cdot 10^{-7}$ рад/с. При решении краевой задачи (22) находилось единственное решение, ортогональное φ_{10} при следующих коэффициентах турбулентного обмена: $K_1 = 10^{-2} \text{ м}^2/\text{c}$, $K_3 = 8 \cdot 10^{-6} \text{ M}^2/\text{c}$, $M_1 = 0,006 \text{ M}^2/\text{c}$, $M_3 = 5 \cdot 10^{-6}$ м²/с. Решение краевой задачи (43а), (44) по определению вертикальной структуры индуцированного течения находилось путем интегрирования уравнения (43а), интегралы вычислялись численно. Горизонтальная компонента средней скорости индуцированного течения определялась по формуле (45). Величина εA_1 находилась по известной величине максимальной амплитуды вертикальных смещений. Действительно, если функция тока ψ_1 линейного приближения определяется по формуле (10), то можно найти

вертикальное смещение ζ_3 , используя соотношение $\frac{d\zeta_3}{dt} = u_3$:

$$\zeta_3 = \frac{k}{\omega_{01}} \varphi_{10} \varepsilon A_1 \exp(ikx - i\omega t) + \hat{\mathrm{e.c.}}$$

Отсюда следует, что

ISSN 0233-7584. Мор. гидрофиз. журн., 2009, № 5

Р и с. 2. Вертикальное распределение средней скорости индуцированного течения при H = 78 м (штриховая) и H = 300м (сплошная)

На рис. 2 показаны вертикальные профили среднего течения, индуцированного внутренней волной низшей моды периодом 1 ч при максимальной амплитуде вертикальных смещений 0,5 м. С возрастанием глубины скорость индуцированного течения при неизменных коэффициентах турбулентного обмена и амплитуде волны уменьшается.

Сделаем аналогичный расчет для 40- и 20-минутных внутренних волн низшей моды при тех же коэффициентах турбулентной вязкости и диффузии при стратификации, соответствующей глубине 300 м (рис. 1). У 40-минутных внутренних волн $k = 3,59 \cdot 10^{-3}$ м⁻¹, $\delta \omega = -1,64 \cdot 10^{-7}$ рад/с, у 20-минутных $k = 7,95 \cdot 10^{-3}$ м⁻¹, $\delta \omega = -5,88 \cdot 10^{-7}$ рад/с. Получим картину индуцированных течений при той же максимальной амплитуде волны (рис. 3). С уменьшением периода волны скорость индуцированного за счет нелинейности среднего течения возрастает. Для исследования модуляционной неустойчивости внутренних волн делался расчет коэффициентов нелинейного уравнения Шредингера при стратификации, соответствующей глубине 78 м (рис. 1).

Р и с. 3. Вертикальное распределение средней скорости индуцированного течения для 20минутных (штриховая) и 40-минутных (сплошная) внутренних волн низшей моды

20

Рис. 4. Зависимость коэффициента q от волнового числа

Рис. 5. Зависимость коэффициента нелинейного самовоздействия *T* от волнового числа

Зависимость коэффициентов q, T от волнового числа k показана на рис. 4, 5. Величина произведения $T \cdot q$ положительна в длинноволновом пределе, при k = 0,018 м⁻¹ происходит смена знака $T \cdot q$, при k > 0,018 м⁻¹ имеет место модуляционная неустойчивость.

Выводы

1. Нелинейные эффекты при распространении внутренних волн проявляются в генерации средних на временном масштабе волны течений, пропорциональных квадрату текущей амплитуды волны.

2. С увеличением частоты волны скорость индуцированного течения при фиксированной максимальной амплитуде вертикальных смещений увеличивается.

3. С уменьшением глубины скорость индуцированного течения при фиксированной максимальной амплитуде вертикальных смещений и частоте волны возрастает.

4. Огибающая волнового пакета удовлетворяет нелинейному уравнению Шредингера. Показано, что слабонелинейная плоская волна в длинноволновом пределе устойчива к продольной модуляции. Если длина волны меньше некоторого критического значения, то волна модуляционно неустойчива.

СПИСОК ЛИТЕРАТУРЫ

- Борисенко Ю.Д., Воронович А.Г., Леонов А.И., Миропольский Ю.З. К теории нестационарных слабонелинейных внутренних волн в стратифицированной жидкости // Изв. АН СССР. Физика атмосферы и океана. – 1976. – <u>12</u>, № 3. – С. 293 – 301.
- Grimshow R. The modulation of an internal gravity wave packet and the resonance with the mean motion // Stud. Appl. Math. – 1977. – <u>56</u>. – P. 241 – 266.

ISSN 0233-7584. Мор. гидрофиз. журн., 2009, № 5

- Езерский А.Б., Островский Л.А., Степанянц Ю.А. Индуцированные течения и их вклад в энергию волновых движений жидкости // Изв. АН СССР. Физика атмосферы и океана. – 1982. – <u>17</u>, №11. – С. 1201 – 1208.
- Езерский А.Б., Папко В.В. Лабораторное исследование потенциальных течений, индуцированных пакетом поверхностных волн // Изв. АН СССР. Физика атмосферы и океана. – <u>22</u>, № 9 – 1986. – С.979 – 986.
- Юэн Г., Лэйк Б. Теория нелинейных волн в приложении к волнам на глубокой воде // Солитоны в действии. – М.: Мир, 1981. – С. 108 – 131.
- Дворянинов Г.С. Эффекты волн в пограничных слоях атмосферы и океана. Киев: Наук. думка, 1982. – 176 с.
- 7. Черкесов Л.В. Гидродинамика волн. Киев: Наук. думка, 1980. 259 с.
- Задорожный А.И. Затухание длинных волн в экспоненциально стратифицированном море // Морские гидрофизические исследования. –1975. – №3. – С 96 – 110.
- Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1971. – 576 с.
- 10. *Миропольский Ю.3*. Динамика внутренних волн в океане. Л.: Гидрометеоиздат, 1981. 216 с.

Морской гидрофизический институт НАН Украины,	Материал поступил	
Севастополь	в редакцию 13.03.08	
Филиал МГУ им. М.В. Ломоносова	После доработки 14.04.08	
в Севастополе		

ABSTRACT In the Boussinesque approximation and following the method of asymptotic multi-scale expansion, non-linear effects in propagation of internal waves are studied with allowance for turbulent viscosity and diffusion. The wave attenuation decrement and boundary-layer solutions near the bottom and the free surface are defined. The wave-induced mean current is of the second order infinitesimal in the wave steepness expansion. The coefficients of the Schrödinger non-linear equation for the wavepacket envelope are obtained. It is shown that within the long-wave limit a weak-nonlinear flat wave is stable to the longitudinal modulation. If the wavelenth is smaller than a certain critical value, the wave is unstable to modulation.

ISSN 0233-7584. Мор. гидрофиз. журн., 2009, № 5