Напечатано в Украине.

# СТРОЕНИЕ И СВОЙСТВА НАНОРАЗМЕРНЫХ И МЕЗОСКОПИЧЕСКИХ МАТЕРИАЛОВ

PACS numbers: 61.05.cp, 61.46.Df, 61.46.Hk, 77.84.Cg, 81.20.Fw

## Одержання та кристалічна структура нанодисперсного $TiO_2$ , легованого ніобієм та цирконієм

## I. М. Будзуляк, Б. К. Остафійчук, Р. В. Ільницький, Л. М. Гуменюк, В. М. Пилипів, Р. А. Заторський

Прикарпатський національний університет імені Василя Стефаника, вул. Шевченка, 57, 76025 Івано-Франківськ, Україна

Досліджено кристалічну структуру і фазовий склад синтезованого методою золь-тель-технології нанодисперсного TiO<sub>2</sub>, леґованого ніобієм і цирконієм. Встановлено механізми заміщення Nb і Zr титану у кристалічній структурі. Виявлено, що при леґуванні ніобієм фаза анатазу зберігається при його нагріві до 1120 К, а леґований цирконієм ТіО<sub>2</sub> при даних умовах характеризується наявністю фаз анатазу, брукіту та рутилу із вмістом фази анатазу до 60% .

Исследованы кристаллическая структура и фазовый состав синтезированного методом золь-ґель-технологии нанодисперсного TiO<sub>2</sub>, легированного ниобием и цирконием. Установлены механизмы замещения Nb и Zr титана в кристаллической структуре. Обнаружено, что при допировании ниобием фаза анатаза сохраняется при термической выдержке до 1120 К, а легированный цирконием TiO<sub>2</sub> при данных условиях характеризуется наличием фаз анатаза, брукита и рутила с содержанием фазы анатаза до 60%.

Synthesis by sol-gel technology and investigation of crystal structure and phase composition of nanodispersed  $TiO_2$  doped with niobium and zirconium are presented. Substitution of titanium with Nb, Zr in the crystal structure of titanium dioxide is interpreted. As revealed, the niobium-doped anatase phase remains during annealing up to 1120 K, and the zirconium-doped TiO<sub>2</sub> under the given conditions is characterized by a presence of anatase (up to 60%), brookite, and rutile phases.

Ключові слова: діоксид титану, анатаз, леґування, золь-ґель-метода, рентґеноструктурний аналіз.

(Отримано 3 грудня 2013 р.)

1609

### 1. ВСТУП

Одержання нанодисперсного діоксиду титану різних форм і модифікацій є досить актуальним на даний час, оскільки, нанорозмірний  $\text{TiO}_2$ , маючи значну питому поверхнею та структуру, здатну до інтеркалювання, є доволі перспективним матеріалом для літієвих джерел струму з інтеркаляційним механізмом струмоутворення. Окрім того,  $\text{TiO}_2$  широко використовується у формі наноструктур в сонячних батареях, що дозволяє одержати екологічно чисту енергію [1], на його основі виготовляють газові сенсори, функціональну діелектричну кераміку [2]. Висока фотокаталітична здатність відкриває широку перспективу для очищення навколишнього середовища за рахунок утворення нетоксичних продуктів впродовж реакції трансформації  $\text{TiO}_2$  [3]. Проте, в кожному конкретному випадку необхідна відповідна модифікація нанокристалічних форм діоксиду титану шляхом його леґування [4], термічного [5] та лазерного відпалів [6].

В даній роботі, для досягнення поставленої мети, досліджувався вплив леґування ніобієм та цирконієм нанорозмірного  $\text{TiO}_2$ , одержаного методом золь-ґель-технології, а також вплив домішок на трансформацію кристалічної структури. Леґований Nb i Zr діоксид титану, володіє рядом переваг, зокрема, йому притаманна краща термічна стабільність, більша площа поверхні і, відповідно, менші розміри частинок [7].

#### 2. МЕТОД ОДЕРЖАННЯ ТА ДОСЛІДЖЕННЯ

Синтез діоксиду титану здійснювався шляхом постійного ретельного перемішування ізопропанолу із ізопропоксидом титану  $Ti(OCH(CH_3)_2)_4$  (в рівнянні  $Ti(OR)_4$ ) до одержання високодисперсного колоїдного розчину — золя. Процес гідролізу відбувався при додаванні водного розчину соляної кислоти (HCl) із pH = 2. Даний процес може бути представлений рівнянням [8]:

$$Ti(OR)_4 + H_2O \rightarrow Ti(OH)_4 + 4ROH.$$
(1)

Після цього, одержаний розчин перемішували протягом 24 годин при температурі 330–340 К, внаслідок чого відбувалася конденсація із утворенням ґелю:

$$Ti(OH)_4 \rightarrow TiO_2 \cdot H_2O + (2-x)H_2O.$$
(2)

Одержаний ґель відділяли від колоїдного розчину центрифугуванням, промивали етанолом і висушували на повітрі при температурі 330–340 К. Аналогічно одержувався леґований цирконієм і ніобієм нанодисперсний діоксид титану із вмістом вказаних елементів до 20% за молярною масою. Леґування діоксиду титану цирконієм і ніобієм здійснювалося за схемою представленою на рис. 1 з додаванням до ізопропоксиду титану прекурсору домішки. Для леґування TiO<sub>2</sub> цирконієм, використовували бутоксид цирконію  $Zr(OC(CH_3)_3)_4$ , а при леґуванні TiO<sub>2</sub> ніобієм — етоксид ніобію Nb(OCH<sub>2</sub>CH<sub>3</sub>)<sub>5</sub>.

Одержані матеріали піддавали термічній обробці в околі температур 670 і 1120 К на повітрі протягом однієї години. В результаті проведеного синтезу одержано серію нанодисперсних порошків: нелеґованого діоксиду титану (TiO<sub>2</sub>); діоксиду титану, леґованого цирконієм (TiO<sub>2</sub><Zr>); відпаленого леґованого цирконієм TiO<sub>2</sub> при температурах 670 К (TiO<sub>2</sub><Zr>(670 К)) і 1120 К (TiO<sub>2</sub><Zr>(1120 К)); діоксиду титану, леґованого ніобієм (TiO<sub>2</sub><Nb>) та відпаленого при 670 К (TiO<sub>2</sub><Nb>(670 К)) і 1120 К (TiO<sub>2</sub><Nb>) відповідно.

Рентґеноструктурний аналіз (РСА) одержаних матеріалів проводився з використанням дифрактометра ДРОН-3.0 (Си $K_{\alpha}$ -випромінення) у диференційному режимі вимірювань дифрактограм, які знімали методом крокового сканування в інтервалі кутів 20–70°. Крок сканування становив 0,05°, час експозиції в точці — 6 с. Обробку даних дифрактометричного експерименту здійснювали шляхом використання програми повнопрофільного аналізу рентґенівських спектрів від суміші полікристалічних складових Full Proff.

## 3. РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ

Вибір методу синтезу TiO<sub>2</sub> дозволяє одержати ту чи іншу модифікацію діоксиду титану, зокрема, рутил, анатаз чи брукіт. За допомогою PCA виявлено, що TiO<sub>2</sub>, синтезований методом золь-ґельтехнології, являє собою суміш фаз анатазу та брукіту, вміст останнього становив всього  $\cong 4\%$  (рис. 2). Як відомо [9], брукіт є термічно



**Рис. 1.** Схема послідовності одержання леґованого нанодисперсного TiO<sub>2</sub> методом золь-ґель-технології.



Рис. 2. Рентґенівська дифрактограма нелеґованого діоксиду титану.

нестабільним, його трансформація в рутил відбувається при 870 К. Одержати брукіт можна при високих тисках і температурах (200°C  $\leq T \leq 400$ °C і  $10 \leq P \leq 400$  бар) [10]. В нашому випадку, наявність цієї поліморфи згідно [11] пояснюється величиною pH середовища, в якому синтезувався TiO<sub>2</sub>.

Нагрів діоксиду титану до 1120 К призводить до повної трансформації анатазу та брукіту (рис. 2) у рутил (рис. 3). Окрім того, зменшується ширина ліній рентґенівської дифрактограми, що характеризує збільшення розмірів областей когерентного розсіяння (ОКР) [12].



Рис. 3. Рентґенівська дифрактограма нелеґованого діоксиду титану, відпаленого при 1120 К.

В леґованому цирконієм діоксиді титану, відпаленому при 670 і 1120 К, переважаючою є фаза анатазу (рис. 4), вміст якої становить  $\cong 80\%$  і 60% відповідно. Відпал Ті $O_2 < Zr >$  при 670 К змінює його кристалічну структуру, на що вказує збільшення інтенсивності піків та звуження уширених рентґенодифракційних максимумів. Крім цього, відбувається поява піків при  $2\theta = 27,18^{\circ}, 54,72^{\circ},$  які властиві рутилу [13]. Після відпалу при 1120 К, відсотковий вміст рутилу становив  $\cong 30\%$ , що в порівнянні із нелеґованим TiO<sub>2</sub> (рис. 3) характеризується стабільністю фази анатазу. Таким чином, дані рентґенофазових досліджень, вказують на те, що домішка Zr перешкоджає трансформації анатазу в рутил. Відсутність піків, які відповідають цирконієвмісним фазам, на дифрактограмах TiO<sub>2</sub><Zr> (рис. 4) є свідченням того, що цирконій заміщує йони титану в кристалічній структурі ТіО<sub>2</sub>.

Порівняльний аналіз рентгенівських дифрактограм для нелеґованого  $\text{TiO}_2$  та  $\text{TiO}_2$ , леґованого цирконієм, представлено у табл. 1. Заміщення йонів Ti на Zr призводить до розширення ґратки. Сталі кристалічної ґратки леґованого цирконієм TiO<sub>2</sub> становлять a = 3,823 Å, c = 9,550 Å, тоді, як для нелеґованого діоксиду титану вони рівні a = 3,797 Å і c = 9,475 Å. При нагріві зразків до 670 K відбувається збільшення кількості анатазу в результаті трансформації частини брукіту в анатаз. Для TiO<sub>2</sub><Zr>(1120 K) спостерігається зменшення вмісту анатазу та брукіту, що обумовлено їхньою трансформацією в рутил, кількість якого становить  $\cong 27\%$ .

Структура одержаного аналогічним способом діоксиду титану,



**Рис. 4.** Рентґенівські дифрактограми для леґованого цирконієм  $TiO_2$  до відпалу (1) та після відпалу при 670 К (2) і 1120 К (3).

| Фаза   | Сталі<br>ґратки         | $\mathrm{TiO}_{2}$                                                                  | ${ m TiO}_2 \!\! < \!\!  m Zr \!\! >$                                               | ${{ m TiO}_2 < \!\! { m Zr} \!>}, \ 670  { m K}$                                   | ${{ m TiO}_2}{<}{ m Zr}{>},\ 1120{ m K}$                                              |
|--------|-------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Анатаз | а<br>b<br>c<br>Вміст, % | $\begin{array}{c} 3,799\pm0,009\\ 3,799\pm0,009\\ 9,477\pm0,027\\ 96,16\end{array}$ | $\begin{array}{r} 3,823\pm0,009\\ 3,823\pm0,009\\ 9,550\pm0,027\\ 80,27\end{array}$ | $\begin{array}{r} 3,800\pm0,004\\ 3,800\pm0,004\\ 9,540\pm0,013\\ 87,5\end{array}$ | $\begin{array}{r} 3,797\pm0,0005\\ 3,797\pm0,0005\\ 9,586\pm0,002\\ 62,12\end{array}$ |
| Брукіт | а<br>b<br>c<br>Вміст, % | $9,055 \pm 0,070 \\ 5,472 \pm 0,033 \\ 5,341 \pm 0,032 \\ 3,84$                     | $9,261 \pm 0,070 \\ 5,456 \pm 0,033 \\ 5,262 \pm 0,032 \\ 19,73$                    | $9,247 \pm 0,039 \\ 5,464 \pm 0,020 \\ 5,186 \pm 0,014 \\ 12,5$                    | $9,288 \pm 0,012 \\ 5,487 \pm 0,006 \\ 5,176 \pm 0,004 \\ 10,28$                      |
| Рутил  | а<br>b<br>c<br>Вміст, % |                                                                                     |                                                                                     |                                                                                    | $\begin{array}{c} 4,605\pm0,001\\ 4,605\pm0,001\\ 2,976\pm0,001\\ 27,6\end{array}$    |

ТАБЛИЦЯ 1. Сталі кристалічної ґратки (Å) леґованого цирконієм ТіО<sub>2</sub>.

леґованого ніобієм, відрізняється від  $TiO_2 < Zr >$  перш за все тим, що даний матеріал є монофазним.

На дифрактограмі (рис. 5, крива 1) зафіксовані максимуми при кутах  $2\theta = 25^{\circ}$ , 37,6°, 47,5°, 53,5°, 55,1°, які властиві анатазу. Максимуми на рентґенівських дифрактограмах уширені, що свідчить про нанодисперсність TiO<sub>2</sub><Nb>. Розміри йонів ніобію є меншими від йонів цирконію Ti<sup>+4</sup> (0,61 Å), а Nb<sup>+5</sup> (0,64 Å) [14], тому при леґуванні TiO<sub>2</sub> ніобієм відбувається заміщення Ti йонами Nb і утворення



**Рис. 5.** Рентґенограми для леґованого ніобієм  $\text{TiO}_2$  до відпалу (1) та після відпалу при 670 (2) і 1120 К (3).

| Фаза   | Сталі<br>ґратки         | $\mathrm{TiO}_{2}$                                                                  | ${ m TiO}_2 \!\! < \!\!  m Zr \!\! >$                                                         | ${{ m TiO}_2 < \!\! { m Zr} \!>}, \ 670  { m K}$                                    | ${{ m TiO}_2}{<}{ m Zr}{>},\ 1120{ m K}$                                                        |
|--------|-------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Анатаз | а<br>b<br>c<br>Вміст, % | $\begin{array}{c} 3,799\pm0,009\\ 3,799\pm0,009\\ 9,477\pm0,027\\ 96,16\end{array}$ | $\begin{array}{c} 3,823\pm0,009\\ 3,823\pm0,009\\ 9,550\pm0,027\\ 80,27\end{array}$           | $\begin{array}{c} 3,800\pm0,004\\ 3,800\pm0,004\\ 9,540\pm0,013\\ 87,5 \end{array}$ | $\begin{array}{c} 3,797 \pm 0,0005 \\ 3,797 \pm 0,0005 \\ 9,586 \pm 0,002 \\ 62,12 \end{array}$ |
| Брукіт | а<br>b<br>c<br>Вміст, % | $\begin{array}{c} 9,055\pm0,070\\ 5,472\pm0,033\\ 5,341\pm0,032\\ 3,84\end{array}$  | $\begin{array}{c} 9,261 \pm 0,070 \\ 5,456 \pm 0,033 \\ 5,262 \pm 0,032 \\ 19,73 \end{array}$ | $9,247 \pm 0,039 \\ 5,464 \pm 0,020 \\ 5,186 \pm 0,014 \\ 12,5$                     | $\begin{array}{c} 9,288\pm 0,012\\ 5,487\pm 0,006\\ 5,176\pm 0,004\\ 10,28\end{array}$          |
| Рутил  | а<br>b<br>с<br>Вміст, % |                                                                                     |                                                                                               |                                                                                     | $\begin{array}{c} 4,605\pm0,001\\ 4,605\pm0,001\\ 2,976\pm0,001\\ 27,6\end{array}$              |

ТАБЛИЦЯ 2. Параметри кристалічної ґратки (Å) TiO<sub>2</sub><Nb>.

сполуки  $Ti_{1-x}Nb_xO_2$  [15]. Окрім того, часткове впровадження йонів ніобію в кристалічну структуру  $TiO_2$  сприяє утворенню анатазу [16].

Як виявилося, анатазна форма леґованого ніобієм  $TiO_2$  є термостійкою, по відношенню до трансформації в рутил (рис. 5, крива 3) при 1120 К. При даній температурі зафіксовано фазу диніобіту титану  $TiNb_2O_7$  вміст якої становив  $\cong 4\%$ . Утворення диніобіту титану, згідно [17], можливе у невідпаленому леґованому ніобієм  $TiO_2$ .

Сталі кристалічної ґратки леґованого ніобієм  $TiO_2$  представлені в табл. 2. При відпалі до 670 К  $TiO_2$ <Nb> сталі ґратки зменшуються до значення сталих ґратки нелеґованого  $TiO_2$ . При 1120 К відбувається утворення двофазної системи анатазу–диніобіту титану, без трансформації анатазу в рутил.

Середні значення ОКР <d> синтезованих нанорозмірних матеріалів, які визначалися із основних піків дифрактограм за допомогою рівняння Шеррера [18], становили 5–15 нм.

### 4. ВИСНОВКИ

Внаслідок відпалу леґованого Zr і Nb нанодисперсного  $TiO_2$  встановлено наступні зміни його кристалічної структури та фазового складу.

1. Методом рентґеноструктурного аналізу з'ясовано, що при леґуванні  $TiO_2$  відбувається заміщення титану домішками цирконію і ніобію при їхньому вмісті 20% за молярною масою, що призводить до підвищення температури трансформації анатазу в рутил.

2. Встановлено, що в порівнянні із нелеґованим  $TiO_2$  леґований Zr і Nb анатаз характеризується підвищеною термічною стабільністю

#### при температурі 1120 К.

3. Одержано результати дослідження, згідно яких вміст анатазу у відпалених при 1120 К зразках  $TiO_2 < Zr > i TiO_2 < Nb >$  становив до 30% і 96% відповідно.

### ЦИТОВАНА ЛІТЕРАТУРА

- 1. I. F. Myroniyk and V. L. Chelyadyn, *Physics and Chemistry of Solid State*, 11, No. 4: 815 (2010) (in Ukrainian).
- 2. E. Sotter, X. Vilanova, and E. Llobex, *J. Opt. Adv. Mater.*, **7**, No. 3: 1395 (2005) (in Romanian).
- 3. Wan-Jian Yin, Shiyou Chen, Ji-Hui Yang, Xin-Gao Gong, Yanfa Yan, and Su-Huai Wei, *Appl. Phys. Lett.*, **96**: 221901 (2010).
- 4. M. V. Koudriachova and S. W de Leeuw, Solid State Ionics, No. 21: 26 (2002).
- 5. A. H. Dorian and C. C. Hanaor Sorrell. J. Mater. Sci., No. 46: 855 (2011).
- 6. M. Y. Segin, B. K. Ostafiychuk, and I. M. Budzulyak, *Eastern-European* Journal of Enterprise Technologies, 5, No. 5(47): 4 (2010) (in Ukrainian).
- 7. A. Zaleska, Recent Patents of Engineering, 2: 57 (2008).
- 8. S. Mahshid, M. Sasani Ghamsari, M. Askari, N. Afshar, and S. Lahuti, Semiconductor Physics, Quantum Electronics and Optoelectronics, 9, No. 2:65 (2006) (in Ukrainian).
- 9. R. Bhave, Synthesis and Photocatalysis Study of Brookite Phase Titanium Dioxide Nanoparticles (Thesis of Disser. for Master of Sci.—Material Science and Engineering) (Clemson: Graduate School of Clemson University: 2007).
- 10. A. Pottier, C. Chaneac, E. Tronc, L. Mazerolles, and J.-P. Jolivet, J. Mater. Chem., No. 11: 1116 (2001).
- 11. A. Pottier, S. Cassaignon, C. Chane'ac, F. Villain, E. Tronc, and J.-P. Jolivet, J. Mater. Chem., No. 13: 877 (2003).
- 12. J. Kasetsart, Nat. Sci., No. 42: 357 (2008).
- 13. Z. Liu, X. Zhang, S. Nishimoto, M. Jin, D. A. Tryk, T. Murakami, and A. Fujishima, *Langmuir*, No. 23: 10916 (2007).
- 14. X. Lu, X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang, F. Xu, and S. Huang, *Adv. Funct. Mater.*, No. 20: 509 (2010).
- 15. S. Phanichphant, C. Liewhiran, K. Wetchakun, A. Wisitsoraat, and A. Tuantranont, *Sensors*, No. 11: 472 (2011).
- 16. A. Teleki, N. Bjelobrk, and S. E. Pratsinis, *Sens. Actuat. B: Chem.*, No. 130: 449 (2008).
- 17. A. Trenczek-Zaj and M. Rekas, Mater. Sci., 24, No. 1: 53 (2006).
- 18. M. Muneer Ba-Abbad, H. Abdul Amir Kadhum, S. Abu Bakar Mohamad, and Mohd Takriff, *Int. J. Electrochem. Sci.*, No. 7: 4871 (2012).