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AN OPTIMIZATION PROBLEM OF PACKING IDENTICAL
CIRCLES INTO A MULTIPLY CONNECTED REGION

Part 2. A solution method and its realisation

Paccmampusaemca onmumusayuonnas 3a0aua ynakoski 00OUHAKOBbIX KPY208 8 MHO20CEAIHYIO
obaacms, epanuya KOMopou cocmoum u3 ompe3Kos 0y2 OKpPYI*CHOCMeEll U OMPe3K08 NPAMBbIX.
Ha ocnosanuu ceoiicme mamemamuueckoii Mooenu npeondzaemcs Memoo peuweHus 3a0ayu.
Memoo npeononazaem KoMOUHAUUIO MeMOOA NOLYHEHUS. HAYATbHBIX MOYeK, MOOUDUYUpo-
BAHHO20 MEMOOA 603MOICHBIX HANPABIEHU 0I5l NOUCKA TOKATbHBIX MAKCUMYMO8 U MOOUPU-
YUPOBAHHO20 MeMOOA CYAHCAIOWUXC OKpecmHocmell Ol NOUCKA NPUOIUdiCcenus K 2100a1bHO-
My maxcumymy. Ilpusooames wucienHvle npumepbi.

Posenadaemoca onmumizayitina 3a0ava naxKy8anHs 0OHAKOBUX Kil y 6azamo3é a3Hy 001acms,
2panuys AKoi cKk1adacmvca 3 8i0pisKie 0ye oKonie ma 8iopiskie npamux. Ha niocmasi énacmu-
gocmetl MamemMamuyHoi MoOeni NPOROHYEMbC Memoo0 po3s'sazanns 3adadi. Memoo nepedba-
uae KOMOIHAYII0 MemMody 00ePIHCAHHS NOYAMKOBUX TMOYOK, MOOUDIKOBAHO20 MEMOOY MONCIU-
BUX HANPAMIG 051 NOULYKY JTOKATIbHUX MAKCUMYMI8 mMa MOOUPDIKOBAHO20 MEMODY 38YIICY6Ab-
HUX OKOJi8 OJis1 NOULYKY HAONUNCEHHS 00 2100anbHo20 makcumymy. Haeoosmbcs wucnosi npu-
KAAOU.

The paper deals with an optimization problem of packing identical circles into a multiply con-
nected region whose frontier consists of arcs of circles and line segments. On the ground of the
characteristics of a mathematical model a solution method is offered. The method consists of a
combination of a method of generating starting points, a modification of the feasible directions
method to search for local maxima and a modification of the decremental neighbourhood
search method to find an approximation to a global maximum. Numerical examples are given.

The statement of the considered problem and its mathematical model is presented in [1]. In
this paper on the basis of characteristics of the mathematical model a solution method is offered.

In what follows, problems given in [1] we denote as follows:
a) the problem (1)-(2) — the problem 4;
the problem (3) — the problem B.

General solution strategy

According to the mathematical model a solving of the problem is reduced to a performance
of some stages. At each of ones the problem B of packing # circles of the given radius r is solved.
Firstly, a preliminary estimation of the number of circles to be packed is realized. By virtue of item
9 of mathematical characteristics given in [1] we search for an approximation to a global maximum
of the problem B using the decremental neighbourhood search method [2, 3] (in what follows
DNS). Random vectors which define starting locations of circles into the region are generated by
the DNS. On the basis of the vectors starting points from the feasible region are constructed and
local maxima of the problem B are computed. At each stage of the DNS the best local maximum is
stored. If process obtaining the best local maximum is decelerated then solution process converges
quickly to some local maximum. This local maximum is taken as an approximation to a global one.
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Starting from characteristics above for successfully solving the problem 4 it needs to fulfil
the following steps.
Step 1. Define n, so that a containment of n, circles into P is guaranteed. Then take
n=ny+ 1 and pass to the next step.
Step 2. Give r;=r/2, and generate uf’ eP,iel,, lel, =(2,..,A), by a random way
1
nl

utilizing a modification of the DNS so that X" = (u" ,u}',...,u" ,Er,%r,...,%r) ew,.

n

Step 3. Take the points X" as starting points and search for local maxima X", [ € J, , of
the problem B.
Step 4. Select the best local maximum X"* = arg max{Fn (X", 1eJ, }

Step 5. If F, ()N( ") =nr then a global maximum of the problem B is achieved. In this case
take n =n + 1 and solve the problem B again, i.e. return to the step 2.

Step 6. If F, ()N( ") < nr and a stopping criterion of the DNS is not fulfilled then return to
the step 2.

Step 7. If the stopping criterion of the DNS is fulfilled and F, ()N( ") <nr, then take

u* =u"""" as an approximation to a global maximum of the problem 4 and the number of circles

packedisn —1.

Construction of starting point

For obtaining of starting points the rectangular lattice is constructed. The length of lattice
cell sides is accepted equal to #/2. This lattice arbitrarily is placed with respect to the region. Cells
which completely belong to the region are selected. The number £ of the cells is strictly more than
n. Centre coordinates of the cells form a vector p of length 2k. These vectors are generated by the
DNS.

The first 2n coordinates of vectors of kind p define the centers of circles and form vector
u". Then vectors V" and " define starting points X" = (1", V").

A starting point is constructed according to the following algorithm (fig.1).

Step 1. Cover the region P by a lattice whose basic parallelogram (cell) is a square

1 1 1 1
S=<(x, eRZ:——VSxS—r,——rS <—rp.
{( ») 7 STy 2}

Step 2. Define the number £ > n of squares such that

Fig. 1. A starting point construction:
a) — lattice construction; b) — placing of circles of radius 7/2 in lattice cells
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S, = (x,y)eR2:ai—lerSaiJrlr,bi—lrSySbiJrlr cP,
2 2 2 2

where (a;, b;) are centre coordinates of S, i € [, ={1,2,...,k} (fig. 1, a).

Step 3. Give randomly a vector p' = (Di, P, > Dy 52 Dy, ) € R*, where P, = (aij ,bij) .

It is evident that the number of the vectors p' is equal 4!, i. e. the vectors form a permuta-
tion set IT = R** without repetitions.

ni

Step 4. Give V" =(r/2,r/2,...,r/2) and form a vector u" = (u] ,ufi,...,u;’i) e R*" so that
%/—/

n

u;i =p, =(a; ,b ), jel,  ie. u" is obtained as a result of equating sequentially components of
J J 7

u" to the first n components of p’ =( Di»Pi, s+ Di 5 Py, ) - Hence, the number of u" is equal to

n

k!
nl(k—n)!’
Thus, taken (al.j ,b,.j) as centre coordinates of C; we obtain a placement of C; of radius 7/2,

j el ,into P without overlapping (fig. 1, b).

n?

Points of kind X" = (u",v") e R’ are taken as starting points to compute local maxima

of the problem B.

To the permutation set IT < R* there corresponds a set T < R™ of starting points and,
hence, a set L < R*" of local maxima of the problem B. Thus, a non-exhaustive search of local
maxima of set L can be reduced to a non-exhaustive search of points of ITc R* .

Local optimization

By virtue of items 68 of characteristics of the problem B given in [1] a feasible region can
be presented as a finite union of subregions which are described by systems of nonlinear inequali-
ties. It allows to reduce a search of a local maximum of the problem B to a computation of se-
quence of local maxima on the subregions. To this end we single out one of subregions which con-
tains a starting point. On this subregion searching for a local maximum is carried out. A local
maximum obtained can belongs to several subregions. If there exist a subregion for which the point
is not a local maximum then the point is taken as a starting point for searching for a new local
maximum on the subregion. If such subregion is absent then the point is a local maximum of the
problem B.

A search of a local maximum of the problem B can be reduced to solving the following se-
quence of nonlinear programming problems (NLP)

F(X")=maxF,(X"),s.t. X" e Wy sJ=12,m <<ny, (1)

VVm/ :{Xn€R311:1-iS,(ui ,/;,j)ZO, iel

n’

Q;(uu;,1,1;,)20, 1, j€l,,i< j,

)

.9
J

r—r20iel,,n>0,iel,}.

To solve the NLP (1)—(2) the modification of the Zoutendijk method of feasible directions
[4] together with the concept of g-active inequalities [2, 5] are used. The modification realizes the
usual iterative process

X" = X w1z k=12,...,0,
where Z* € R*" is a solution of the following linear programming problem

maxo, s.t. (af,Z%) e G", 3)
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Fig. 2. A scheme of local optimization:
a)— X" is a local maximum with respect to ,; b) — X" is a local maximum with respect to w.

G ={a*.Z" e R (VE,(X™), 2" )2 of (v, (X™),Z" )2 w, @
J=120 g (e —1 < 2F <1i=12,..3n)

(VFn (X"™),z* ) is the scalar product of the gradient of F,(X") and the vector Z', (V‘Pk/ (X"™),z k)
is the scalar product of the gradient of ‘Pk/ (X") that is the left side of an g-active inequality of a
system of kind (4) (given in [1]) and Z, W, = af if Y o(X ") is a concave function and W, = 0
if otherwise. The problem (3)-(4) is solved by the interior/ point method [6].

A scheme of local optimization is presented in fig. 2. A transition from one problem of

form (1)—(2) to another is carried out as follows. Let X" € W, be a starting point. We single out an
inequality system of kind (4) (given in [1]) which specifies a subregion W, < W, such that

X" e . Taken X" as a starting point we solve the problem

ni
F(X"™)=max F,(X"),st. X" eW, .

The point X" can be a local maximum with respect to either W, (fig. 2, a) or W,
(fig. 2, b).

In order to define whether X" is a local maximum with respect to W, (i. e. a local maxi-
mum of the problem B) we single out g-active inequalities at the point X"
(given in [1]) and solve the following linear programming problem

from the system (2)

maxa,s.t. (a,2)eG,

G ={(,2) e R :(VE,(X"),2)2 o, (VW,(X"), 2)> w,,
J=12,0(e)~1<z<1,i=12,..3n}.
If a<0,then X" is a local maximum of the problem B. If o.> 0, then X" is not a lo-
cal maximum of the problem B (fig. 2, b) and it enables to compute a point X" = (X" +1Z) e W,

at which F,(X""*) < F,(X").
After that we form a new inequality system of kind (4) (given in [1]) that specifies a new
subregion W, < W, such that X"e W, . Taken the point X" as a starting point we solve the

following NLP:
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F (X" )=max F,(X"),st. X" eW,, .

The process is continued until a local maximum of the problem B is reached. In this case
X" =x"" (fig.2).

Global optimization

Let us assume that each starting point is a random event. This means that the local maxi-
mum corresponding to the starting point is a random event as well. Numerical experiments show
that random sample histograms of objective function values at local maxima corresponding to ran-
dom samples of starting points are close to the normal distribution. This assumption enables to use
the three sigma rule when looking for an approximation to the global maximum of the problem B.
The probabilistic properties allow using the DNS to search for an approximation to a global maxi-
mum. This probabilistic method is more effective than the Monte-Carlo method [3].

The basic idea of the DNS can be presented by the following simplified scheme. Firstly, a

random sample from the set ITc R** is realized and an appropriate set of local maxima is com-
puted. Then a starting point, at which the value of the objective function is greatest, is singled out.
The point is taken as a centre of a neighbourhood of radius 3 (diameter of IT), and a random sample
from the neighbourhood is performed. After that we compute an appropriate set of local maxima. A
starting point corresponding to a local maximum at which the objective function reaches the great-
est value is selected. If the value is less than the previous one then the radius decreases and a new
random sample from the neighbourhood is realized. If the value is strictly greater than the previous
one then a starting point corresponding to the value is taken as a centre of a new neighbourhood of
the previous radius and a random sample from the neighbourhood is performed. The computational
process is continued until the neighbourhood radius becomes less than given one. A local maxi-
mum at which the objective reaches a maximal value is taken as an approximation to a global
maximum.
A modification of the DNS consists of the following stages.

L. Initialization stage of the DNS

On this stage we search for promising centres of neighbourhoods for the next stage (a re-
current stage of the DNS) as follows.

Firstly, a random sample of vectors from the set I1 is generated. On the ground of the vec-
tors starting points are formed and appropriate local maxima are computed. The vectors to which
correspond o the best local maxima are taken as centres of neighbourhoods. In order to choose
promising vectors from the set I for the subsequent iterative process random samples are gener-
ated in the neighbourhoods. An arithmetic average and a mean-square distance of the samples are
calculated for each neighbourhood.

Step 1. Realize a random sample II, Il consisting of A points, construct a set

T, = {X Vjeld, = (1,2,...,X)}C T of starting points and form an appropriate set
Ly= {X Ve JX}C L of local maxima. Thus, to each p’ I, there corresponds a local maxi-
mum X" eL,.

Step 2. Choose points X" e Ly, lel, ={,2,..,0} so that

Fy(X") > Fy(X"2°)> > F(X"") > max{F, (X""): X" e L\{X"" 1 e 1,}}.

i *

Hence, to each local maximum X"'* there corresponds the point p” eIl,, [ €1, .
Take the points p’' eTI, as centres of neighbourhoods N, —Tl,, /eI, of radius
p’ <B . Derive random samples S,, — N,, <1, consisting of A points. The value p” = 0,258

allows to estimate "behaviour" of F,(X") at local maxima closeto X", [ e1,.
Step 3. Form sets T, c T and L, < L corresponding S, € N, [ €1,.
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Step 4. Compute an arithmetic average m, and a mean-square distance o, /€1, of
values of F, (X") foreach L, .

Step 5. Determine the point p°, corresponding to the local maximum

X" = argmax{Fn (X"),st. X" e ULOI} .

=1

II. Recurrent stage of the DNS

On the basis of the statistical characteristics of random samples of the previous stage new
promising centers are found. The choice of the centers is carried out on the ground of assumption
about the normal distribution law of objective function values at local maxima. It allows to use the
three sigma rule. If after performance of a given number of iterations of the DNS values of objec-
tive function at local maxima are not improved then radii of the neighbourhoods fast decreases.

The iterative process begins from k= 1.

Let the (k—1)-th iteration have been fulfilled. As a result of the iteration a set Ly is

formed, m1y; Ou-ni»>i=1,2,3,are computed and a point 1~7k - corresponding to the local maxi-

3
mum X "¢ = argmax{Fn (X"),st. X" e UL(“),} , is obtained.
i=1
Step 1. Single out centres ¢ of neighbourhoods Ny, i = 1, 2, 3, the following way:
B R (X s F (X,
B R (X < B (X,
if k=1, then c*' = p°;
AN M = p* ' and X nk-b € Ly iy
— =% D2 4f either ¢ = ]Nak_l and X"*-D* € Ly 5y, OF = f)k_z,

kD3 Gk HE ang YtkD® € Ly 1y

if k=1, then c** = p/', where p’' is a centre of Ny, at which p° is obtained;

k3 = kD (k=1)i

, Where ¢ is the centre of N;_y), , at which

max{mg_p; +0c,_,,,i=123}, 0<0<3 (ifk=1,theni=1,2, ..., ®) is obtained.
Step 2. Define radii p,; of the neighbourhoods N,,,i=1, 2, 3, as follows:

. *
WPy i m_py; +00; ), < fiy,
Pri =

1 . .
;p(k—l)i <py it my_y, +00;_y, > £,
F ()N(n(k—n*)if F ()N(n(k—n*) SF ()?n(k—2)*)’

where f,_, = ~ . ~ . ~ .
k-1 {Fn(Xn(k—Z) )lf Fvn(XVl(k—l) )SFn(Xn(k—Z) )’

o, if F, (X" D) < F (X"* D" and F (X"* ") < F (X",

PN b <Bit (705 £ (R0,
1
p=0.8 is a factor which decreases or increases neighbourhood radii on each stage of the

DNS, p, =0.6 is a factor which guarantees rapid decreasing of neighbourhood radii in the case of

absence of an improvement of X™* . If k =1 then Pr =P =Pr2 =Pz =B
Step 3. Realize random samples S;; — N,;, construct sets T; cT and L, < L, compute

ISSN 0131-2928. Ipo6r. mawunocmpoenus, 2011, T. 14, Ne 2 57



[MPUKIIAAHAA MATEMATHUKA

my,, 6,,i=1,2,3, and obtain a point p*.
Step 4. Verify a stopping criterion. If the number of identical values of F,(X") on each of
Ly, i=1, 2,3 is greater than 0.6\ , then we finish the solution process. It should be noted that if the

radius value in the DNS is close to the minimal admissible one (x/Er ), then the number of identical
local maxima and local maxima, at which the objective has the same value, increases significantly.

Step S. Set k<« k+1.

The input parameter A must be chosen carefully since an excessive value of A leads to a
high computational burden. On the other hand, a too small A results in a solution deterioration. It
follows from statistical experiments that the value of A has to be greater than or equal to 50 to pro-
vide a reliability of m,; and o,;. In additional, a value of A independs on the problem if n > 20.

Computation experiments

All the computational experiments were run on PC with the following main characteristics:
Intel Core2Duo E4500 processor and 2 Gb of RAM. The linear programming problems (3)—(4) are
calculated by means of HOPDM package (version 2.13) [6]. It should be noted that at present there
is a number of modern solvers (for example, Meszaros solver [7], which efficiently solve linear
programming problems by the interior point method. The solvers shall allow essentially reducing a
runtime.

When looking for approximations to global maxima of problems of kind B we take A = 50,
i.e. we compute 50 local maxima into each neighbourhood.

Comparison of results

Since, all known us researches do not solve packing problems of identical circles into an
arbitrary multiply connected region then we compare computational results of packing circles into
squares and rectangles with the benchmark results presented in [8].

For testing our approach we solve a number of numerical examples of circle packings in
the unit square and rectangles presented in the site www.packomania.com. The computational re-
sults obtained show that the approach produces the same high performance solutions when using at
most 10-30 starting points.

The solution results of the problems 1.1-5.9 in [8] are obtained by our approach as well.
Table presents a performance of GENPACK [8] and our approach for first block of problems 1.1—
1.9 given in [8] for which we obtain two improvements.

Figure 3 shows improvements of the results of packing problems presented in [8].

Performance of GENPACK and our method for problems given in [8]

Results
Problem Obtained | obtained by means | obtained by means
in [10] of GENPACK in [8] of our method
. Number | Number . Number .
Name | .. BO).( Clr?le of packed | of packed Time, of packed Time,
dimensional | radius . . second . second
circles circles circles
1.1 160x80 6 90 91 734.05 92 5351
1.2 100x200 8 84 84 5791.83 84 4461
1.3 120x240 10 73 74 4065.91 74 3879
1.4 100x80 5 86 86 37108.39 86 9785
1.5 120x80 6 68 68 23.35 68 2311
1.6 120x100 6 87 87 2273.14 87 3456
1.7 80x80 5 68 68 12336.67 68 9874
1.8 100x100 6 70 71 225.57 71 2869
1.9 120x120 7 73 74 18.53 75 3985
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Fig. 3. Improved results:
a) — the result of the packing problem of circles of radius 7 in the square 120x120;
b) — the result of the packing problem of circles of radius 6 in the rectangle 160x80.

Figure 3,a illustrates the packing problem of circles of radius 7 in the square 120x120 (the
problem 1.9 in [8]). The result in [8] is improved by one circle.

Figure 3,b illustrates the packing problem of circles of radius 6 in the rectangle 160x80
(the problem 1.1 in [8]). The result in [8] is improved by one circle.

Numerical examples

Abilities of the mathematical model offered and solution methods are demonstrated by a
choice of test instances.

Let there be a set of identical circles and a multiply connected region P presented in
fig. 1, a (given in [1]). The frontier of P, (fig. 1, b) (given in [1]) is given by the sequence of the
following line segments and arcs of circles: [xl,yl,xz,yz], [xz,yz,x3,y3,fl,)71,ﬁ], [x3,y3,x4,y4],

[x4,y4,x5,y5], [x5,y5,x6,y6], [x65y69x7’y75)?2’3729}72]= [x79y7’x8’y89;c35y3’}73]’ [x89y89x99y9]’
[x93y95x109y10]’ [xloa)ﬁo’pr/l]a where (x1,1) =(10,60), (x2,,) =(17.6,75.19),
(x5,15)=(28.15,77.41), (x4,v4)=(30,70), (x5,5) =(60,80), (x4,76) = (62.88,70),
(x7,¥7)=1(80.26,39.84),  (xg,5) =(62.34,30.95),  (x9,¥5) =(45,35),  (X;0,)10) =(28,25),
(%, 01) =(20,90), (x;,¥,) =(63,50), (x3,¥;) =(75,28), r; =15, , =20, r; =13.

The prohibited areas are represented as follows:

2
A = CHU[UM,q] , lel, ={123}, (5)
gq=1

where C, = {(x,y) € R* : (x —45)> + (y - 55)> —4* <0},
Ch,=1{(x,y) e R*:(x—25)" +(y—65)*—4> <0},

Cs={x,y)e R*: (x— 65)2 +(y— 50)2 —4%< 0}, My, My», My, M>y, M3, and M3, are the triangles
given by their vertex coordinates: (45, 55), (50, 50) and (40, 50); (45, 55), (40, 60) and (50, 60);
(25, 58), (30,53) and (20, 52); (25, 58), (20, 63) and (30, 63); (65, 52), (70,47) and (60, 47);
(65, 52), (60, 57) and (70, 57) respectively.

In the paper we present result of packing circle into given region P if » =2.5 (fig. 4). Fig-
ure 4, a illustrates the packing of 90 circles of radius 2.5 corresponding to an approximation to a
global maximum of the problem 4, and fig. 4, b illustrates the packing of circles corresponding to
an approximation to a global maximum X" of the problem B when packing n = 91 circles. The ra-
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Fig. 4. Results of packings if r = 2.5:
a) — the result of packing of 90 circles; b) — the result of packing of 91 circles

dius of the black-out circle in fig. 4, b is equal to 2.45, i. e. 91 circles of radius 2.5 can not be
packed into P.

Dependences of the runtime on the number of circles being packed are shown in fig. 5. The
graphic depicted in fig. 5, a shows the runtime #, which is expended to pack n circles. It should be
noted that the runtime ¢, strongly depends on the estimation of n, of circles that can be packed into
P. Figure 5, b shows the runtime #, which is expended to solve the problem B and to prove that
n + 1 circles can not be packed into P.

It follows from the graphics shown in fig. 5, b that if #n > 60, then the runtime essentially
increases. In this case an application of the DNS demands a paralleling of the computational proc-
ess.

Conclusions

This work presents a solution method to solve the problem of packing identical circles into
a multiply connected region. The computational results demonstrate that the proposed approach
produces high performance solutions. The comparison of obtained results with the world analogues
shows that the approach is promising.

We offer an efficient methodology to reduce the computational burden when searching for
local maxima. It should be noted that the basic part of runtime is expended to prove that no more
circle can be packed. The runtime depends strongly on a complexity of the placement region shape
(i.e. on the number of prohibited areas and the primary objects of type O and Q4 [1]) that form the
region P).
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Fig. 5. Dependences of the runtime on the number of circles:
a) — the runtime #;; b) — the runtime #,
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