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Introduction. Notwithstanding the correct 
way to estimate thermal and diffusional relaxation 
time is well known and straightforward, in some 
publications estimates of thermal relaxation time 
contain major errors. Most typically, when esti-
mating the thermal relaxation time based upon 
dimensional analysis, tr=CL2 , where L is a layer 
thickness and κ is heat diffusivity, one assumes by 
default that the numerical factor, , is of the order 
of unity while for a 1D geometry it is, in fact, 1/π2.
As a consequence, a statement that a character-
istic thermal relaxation time for a lithosphere of, 
say, L=200 km thickness is of the order of a billion 
years is incorrect. The same relates to an estimate 
of time necessary for a thermal perturbation at a 
depth L to manifest itself in the surface heat flow. 
Actually, in both cases the characteristic time is 
of L2/π2κ, i. e. as short as ca. 140 m.y. for L=200 km
and κ=10–6 m2s–1.

In the present letter we remind at the begin-
ning what is meant by the term «the relaxation 
time», and then discuss a few most common prob-
lems where this value is useful. To be specific, in 
what follows we speak of the thermal relaxation 
although all results up to notation are valid for the 
problem of the diffusional relaxation.

For those who are not interested in the mathe-
matical details, Table 1 summarizes the relaxation 
time expressions for a number of boundary condi-
tions and the geometry of the system (one-dimen-
sional or spherically symmetric). Also, Table 2 lists 
the thermal relaxation time estimates for the conti-
nental (Precambrian) and oceanic lithosphere. The 
estimates assume κ=0.8·10–6 m2s–1. The values of 
Archaean and Proterozoic lithosphere thickness-
es are from [Artemieva, 2009]. In the suboceanic 
mantle, a thickness of the conductive lithosphere 
as well as a thickness of the thermal boundary lay-
er (the lithosphere together with a layer accom-
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modating a transition to the convecting mantle) 
depends on rock rheology and potential tempera-
ture, Tp, of the mantle convection [Khazan, Ary-
asova, 2014]. The values in Table 2 are based upon 
the laboratory data by Hirth and Kohlstedt [2003] 
and Tp range of 1350 °C to 1300 °C (see details in 
[Khazan, Aryasova, 2014]).

It is instructive to observe in Figs. 1 and 2 how 
a layer thermally perturbed at its base approaches 
a new steady state.

The definition of relaxation time. Let a depen-
dence of a system on time, t, be characterized by 
a function A(t) with the value A=A0 of the function 
corresponding to the stable equilibrium. The latter 
means that if the system is brought out of the equi-
librium then the sign of the rate dA/dt is opposite 
to that of the deviation A–A0 and dA/dt vanishes 
at A=A0. Therefore, the series expansion of dA/dt
contains only odd powers of A–A0. In the simplest 
case only linear term remains:

0( )dA A A
dt

, (1)

where γ is a positive factor.
The solution to Eq. (1) is as follows

0 1 0( ) ( ) tA t A A A e , (2)

where A1 is the initial value of A, i. e. (0)=A1.
One can see from Eq. (2) that the absolute value 

of the system deviation from the equilibrium, |A(t)–
A0|, decreases exponentially, and the time required 
for |A(t)–A0| to decay from its initial value |A1–A0|
to 1/e of that value is tr=1/γ. This time interval is 
commonly referred to as the relaxation time. Note 
that the relaxation time is independent of the ini-
tial deviation.

Thermal relaxation time for an infinite ho-
mogeneous layer with fixed temperature at the 
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Fig. 1. The temperature increment (Eq. (14); the term in square brackets) vs. time in units of the characteristic relaxation 
time (Eq. (13)).

Ta b l e 1. Thermal/diffusional relaxation time, tr , depending on the geometry and the boundary 
conditions of the problem (κ is thermal diffusivity, D is diffusion coefficient)

Problem Boundary conditions Relaxation time

Relaxation of the temperature in 
a layer of thickness L after an in-
stantaneous change of basal tem-
perature.

Temperature boundary condition on both 
boundaries

2

2r
Lt =

Time necessary for a thermal 
perturbation at a depth L to mani-
fest itself in the surface heat flow

The same
2

2r
Lt =

Relaxation of the temperature in a 
layer after an instantaneous change 
in heat flow through its base

Temperature and heat flow boundary con-
ditions on top and bottom boundary, res-
pectively

2

2

4
r

Lt =

Relaxation of the temperature (mi-
nor element abundance) in a sphe-
rical body

Zero temperature (zero abundance) boun-
dary condition. In the center of the body 
the temperature (abundance) is finite.

2

2r
Rt = ,

2

2r
Rt

D
=

boundaries. To be specific, we assume that the 
layer is horizontal, the axis z is directed downward, 
and the temperature at the surface is zero.

The heat propagation in the layer is described
by the 1D heat equation:

2

2 ( )T T Q z
t z

, (3)

where T(t,z) is temperature, t is time, z is depth, κ 
is the heat diffusivity, and Q (z) is to account for 
the heat generation.
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Assume that at t<0 the layer was in its steady 
state T01(z), satisfying the steady state version of 
Eq. (3)

2

2 ( ) 0T Q z
z

, (4)

with the basal temperature T(L)= 1.
At t=0 the basal temperature changes stepwise 

from 1 to 2= 1  and the layer relaxes to the 
new steady state

02 01( ) ( ) zT z T z T
L

, (5)

satisfying Eq. (4) with the basal temperature 
T02(L)= 2.

The solution T(t,z) to Eq. (3) with the boundary 
conditions T(t,0)=0, T(t,L)=T2 and the initial condi-
tion T(0,z)=T01(z) may be expressed as

02( , ) ( ) ( , )T t z T z u t z , (6)

where u(t,z)=T02(z)–T(t,z) is the difference between 
the steady state temperature, T02(z), and the cur-
rent one, T(t,z). |u(t,z)| is maximum at t=0 and tends 
to zero with time. u(t,z) is the solution to Eq. (3) 
without sources

2

2

u u
t z

, (7)

with zero boundary conditions u(t,0)=u(t,L)=0 and 
the initial condition u(0,z)=T02(z)–T01(z Tz/L. In 
terms of dimensionless coordinate z/L, ,
and time t /L2 the boundary value problem Eq. 
(7) for function w T T may be rewritten as

2

2

w w
t
= , w w w . (8)

To apply the standard method of separation 
of variables we make the substitution of the form 

( , ) ( ) ( )w  and for the space part  obtain 
an eigenvalue problem:

" 0, (0) (1) 0 , (9)

where λ is the separation parameter.
A general solution of Eq. (9) satisfying the 

boundary conditions is

( ) sinn n nC , 2 2
n n , 1,2,...n = . (10)

Solving also the equation for the time part 
one may write a general solution to problem Eq. 
(8) as an exponentially converging series:

2 2

1
( , ) sinn

n
n

w C e n
=

. (11)

Here Cn=2(–1)n+1 n is Fourier coefficients of 
sine expansion of the initial condition w .

Since the series (11) converges exponentially, 
the dimensionless relaxation time may be esti-
mated based upon its first term:

2
1

1 1 0,101r . (12)

The dimensional relaxation time is as follows:

2

2r
Lt = . (13)

Now, one may estimate from Eq. (13) that the 
characteristic relaxation time of Archaean litho-
sphere of L=200 km thick is tr=168 m. y. while for 
a 40 km crust tr=6.8 m. y. (in both estimates the 
value κ=0.8·10–6 м2с–1 is used).

The closed dimensional solution to Eq. (3) may 
be written as:

01( , ) ( )T t z T z= +

2 2
2

1

( 1)1 2 sin
tn n

L

n

z L zT n e
L z n L=

. (14)

The second term in the latter equation char-

Ta b l e  2. Some useful estimates of the relaxation time

Thickness, km Age, Ma tr, Ma

Continental lithosphere
Archaean
Proterozoic

180—250
150—180

>2500
500—2500

137—264
95—137

Suboceanic mantle 
Lithosphere
Thermal boundary layer

50—70*
75—110*

<200 11—21
25—49

* The range of thicknesses corresponds to the range of values of the mantle convection potential temperature of 1350 °C to 
1300 °C (see text).
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acterizes an increment of the temperature due to 
a thermal perturbation at the bottom of the layer. 
This term is zero initially and tends to ΔTz/L af-
terwards. The most slowly the temperature ap-
proaches to its steady state value in the vicinity of 
the surface, i.e. the farthest from the perturbation 
source. However, even in the close vicinity of the 
surface, e. g. at z/L=0.01, this term is of 0.3ΔTz/L at 
t=tr, 0.73ΔTz/L at t=2tr, and 0.9ΔTz/L at t=3tr. The 
approach of the temperature to the new steady 
state is illustrated in Fig. 1.

It is also instructive to calculate the variation 
of the heat flow q(t, T(t  due to the ther-
mal perturbation operating at the depth L. It is 
straightforward to see from Eq. (14) that

01( , ) ( )q t z q z= +

2 2
2

1
1 2 ( 1) cos

tn
n L

n

zq n e
L=

, (15)

where q01 T01  is the initial value of the 
heat flow at the depth z, and q T/L is the ad-
ditional steady state heat flow due to the pertur-
bation. The relaxation of the heat flow at differ-
ent depths is illustrated in Fig. 2. In particular, it 

follows from Eq. (15) that the characteristic time 
necessary for the perturbation operating at the 
depth L to affect the surface heat flow is tr. Actu-
ally, the surface heat flow increment (the second 
term in the right hand side of Eq. (15) taken at z=0) 
is of 0.3Δq at t=tr, 0.7Δq at t=2tr, and 0.9Δq at t=3tr.

Thermal relaxation time of a homogeneous 
layer in the case of the heat flow bottom bound-
ary condition. From the geophysical viewpoint, 
this problem does not make much sense because 
under natural conditions in the Earth a system in 
which one part supplies a constant heat flux into 
another part cannot occur. On the other hand, 
one can imagine a body irradiated by a beam of 
particles absorbed by the body surface and dif-
fusing inward. This situation is well described by 
constant particle flux boundary condition.

The evolution of the system with constant heat 
flow boundary condition is described by Eq. (3) 
with different boundary conditions:

2

2 ( )T T Q z
t z

; T(t,0)=0; 0
( , )T t L q
z

. (16)

Let T01(z) be the steady state solution to Eq. 
(16), i. e. the solution satisfying Eq. (16) with zero 

Fig. 2. Increment of the heat flux at different depths (Eq. 15; the term in the square brackets) vs. time in units of the characteristic 
relaxation time (Eq. (13)).
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left hand side. If at t=0 the heat flow through the 
bottom boundary changes by Δq, the bottom 
boundary condition becomes as follows:

( )
0

,u t L
q q

z
. (17)

After the relaxation is over, the new steady 
state is

02 01( , ) ( ) qzT t z T z . (18)

It is convenient to look for the solution to Eq. 
(16) with boundary condition Eq. (17) in the form

02( , ) ( ) ( , )T t z T z w t z= + , (19)

where w(t,z) is the solution to Eq. (16) without 
sources, with zero surface temperature, zero bot-
tom boundary heat flow, and initial condition 
w(0,z)=T(0,z)–T02(z)=z q .

Introducing now dimensionless coordinate 
z/L, time t/L2, and temperature u= w/L q, we 

arrive at the problem

2

2

u u
= , u

( ,1) 0u
= , u (20)

Similarly to the preceding problem Eq. (8), this 
one may be solved using the separation of vari-
ables method. The final solution may be written as

01( , ) ( ) qL zT t z T z
L

(21)

2
2

2
1
2

2 2
0

8 ( 1) 11 sin
2(2 1)

tn n
L

n

L zn e
z Ln=

.

Note that if the heat flows upward then Δq is 
negative. The characteristic relaxation time for 
this problem is

2

2

4
r

Lt = , (22)

i. e. in a factor of 4 longer than that for the problem 
Eq. (3) with temperature boundary condition at the 
bottom boundary. At t=tr the temperature incre-
ment (the second term in the right hand side of Eq. 
(21)) is about 0.6 of the steady state value q|z ,
at t=2tr is of 0.85 q|z , and at t=3tr is of 0.95 q|z .

Relaxation time of impurity abundance/tem-
perature in a sphere. Consider a problem of diffu-
sion of an absolutely incompatible impurity from 

a spherical «crystal» into melt. Since the distribu-
tion coefficient for the impurity equals to zero, the 
boundary condition for the problem is zero impu-
rity abundance. The second boundary condition 
is the finiteness of the abundance in the sphere 
center. Up to the notation, the problem is the same 
as the problem of a sphere cooling.

The governing equation for the diffusion prob-
lem is as follows:

2
2

1C CD r
t r rr
= ,

C(t,R)=0, C(t, C(0,r)=C0 r<R, (23)

where C(t,r) is abundance, r is the distance from 
the sphere center, R is the sphere radius, D is dif-
fusivity.

Similarly to preceding problems it is useful to 
introduce dimensionless radius r/R and time 

Dt/R2 and use the separation of variables meth-
od, i. e. look for the solution in the form C

. As usually, for the space part one obtains the 
eingenvalue problem

2" ' 0P P P ,

P(1)=0, , (24)

where λ is the separation parameter.
A general solution to Eq.(24), satisfying the 

condition of the abundance finiteness in the cen-
ter, is B -1/2J1/2

1/2 , where В is a constant, 
J1/2( ) is the first kind Bessel function of real ar-
gument and of order 1/2: J1/2( )1/2sin . The 
eigenvalue of the problem is 2 2, and a general 
solution to Eq. (23) is:

2 2
21

10

sin2 ( 1)
Dtn

n R

n

C nr Re
C nr R

+

=
. (25)

The complete content of the impurity in the 
«crystal» decreases with time in agreement with 
the next equation

2 2
2

2

0
3 2 2

10

4 ( , )
16

4 / 3

R

Dtn
R

n

r C t r dr
e

R C n=

= . (26)

The convergence of the abundance to the 
steady state zero value is controlled by the slow-
est varying first term of the series (26). Therefore, 
the characteristic time of the diffusional relaxation 
in the sphere of radius R is tr=R2 2D.
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It is shown that frequently used dimensional estimate of a layer thermal relaxation time, tr,
as L2  based on the layer thickness, L, and thermal diffusivity, κ, strongly overestimates tr. The 
correct estimate tr=L2 2  should contain a factor of 1/π2 which is of the order of 0.1.
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