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This paper is concerned with the existence and uniqueness of solutions to two-point boundary
value problems associated with general first order matrix difference systems. Modified Gram —
Schmidt process and modified QR-algorithm are presented to find the best least square solution
of the system of equations. An efficient closest point search algorithm is presented to further im-
prove the best least square solution. Modified encoding and decoding algorithms are presented in
the process of finding shortest lattice vector.

PaccmoTpeHo cymiecTBOBaHHE M €IMHCTBEHHOCTD PEIICHUH JBYXTOUEUHBIX T'PAaHUYHBIX 33]ad,
CBSI3aHHBIX C 0OOOIECHHBIMM MAaTPUYHBIMH PAa3HOCTHBIMH CHCTEMaMM HEpBOro mopsaka. s
HaXO0KJECHUS HAWITYYIllero PEeUIeHUs] CUCTEMbl YPaBHEHMH METOJOM HaMMEHBIIUX KBaJpaToOB
HCIIOJIb30BaH MoauduImpoBanHsbiii mporiecc I'pama—IIImuara n MouduupoBanHbiii QR-aro-
putM. 515 fanpHERIero yayquieHus peleHusl HAMMEHBIINX KBaJpaToB NpeacTasieH dddex-
TUBHBIH aJIrOPUTM MOKCKA OipKaiiiieil Touku. B mporuecce Hax0XISHUs KpaTuailero BeKTopa
PELIETKH MOTy4eHbI MOIH(DUIINPOBAHHBIEC AITOPUTMBI KOJAUPOBAHUS U JICKOUPOBAHHSI.
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1. Introduction. Difference equations play a crucial role in understanding dis-
crete phenomena of nature. The theory of difference equations is a lot richer
than the corresponding theory of differential equations. For example, a simple
difference equation resulting from a first order differential equation may have a
phenomenon often called appearance of «Ghost» solutions or the existence of
chaotic orbits that can only happen for higher order differential equations. Con-
sequently, the theory of difference equations is interesting in itself and assumes
great importance in solving real world problems. The application of the theory
of difference equations is already extended to various fields such as cryptology,
numerical analysis, finite element techniques, computer science and controlla-
bility. All these reasons inspired us to consider the general first order matrix dif-
ference system of the form

T(n+1)=AT (n) B+F (n), (1.1)
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where A4, B and F are all square matrices of order s and, whose elements are real,
defined on N,,*O ={ngy,ny tl,ny£2,..,n, tk,.}, where ke N" and n, € N, N be-

ing the set of integers.

In communication engineering, cryptology played a crucial rule to enhance
security. In the year 1992, the National Bureau of Standards (NBS), now the Na-
tional Institute of Standards and Technologies (NIST) initiated a program to pro-
tect computer and communication data. The intricacies of relating key varia-
tions or key variables is of special importance. In communication theory lattices
are used for modulation and quantization[1]. A comprehensive survey of clos-
est point search methods for lattices without a regular structure are presented in a
recent paper by E. Agrell et. al [2]. They also presented existing search strate-
gies in a unified framework and highlighted differences between them. The
closest point problem mainly deals with the problem of finding a given lattice A
and a given input point x € R", a vector y € A such that

|x=p|<|x-y]|, forall yeA,

where | - | denotes the Euclidean norm. In channel coding the closest point prob-
lem is often referred to as decoding and this is the terminology used by many au-
thors inrecent years. Ifalattice is used as a code for Gaussian channel, the maxi-
mum likelihood of decoding in the demodulator is a closest point search. Analo-
gously, if a lattice is used as a codebook for vector quantization and the mean
square error criterion is used then the encoding of each input vector is also clos-
est point search. The method for solving the closest point problem, in fact de-
pends on the structure of the lattice. Intuitively the more structure a lattice has,
the faster can the closest point be found. A common approach to the general
closest point problem is to identify a certain critical point region in R" within
which the optimal lattice point lie, and then investigate all lattice points in the re-
gion and thereby reducing the size dynamically. For a comprehensive review on
closest point search, we refer to an excellent survey made by E. Agrell et al [2].

This paper is organized as follows. In section 2, we present the general so-
lution of the homogeneous matrix difference system

T(n+1)=AT(n)B (1.2)
in terms of two fundamental matrix solutions of 7 (n+1)=AT (n) and T (n+1) =
= B"T(n) and then develop a particular solution of (1.1) by using variation of pa-

rameters formula. Section 3, presents a criteria for the existence and uniqueness
of solution to two-point boundary value problem

T(n+1)=AT (n) B+F (n),
MT (ny)+NT (n,)=a, (1.3)
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where ny,n, e N, ,n,<n,, M, N and o are given constant square matrices of
0> f ng 0 f ) 9

order s. In section 4, we present a generalized inverse concept and the method of
residual to find the best least square solution of the system of equations Ax = b.
Modified Gram—Schmidt process is presented in section 5. Closest point search
algorithm is presented in the last section. Section 5 also presents MINLS algo-
rithm and then the best least square solution using modified QR algorithm.

2. Solution of the non-homogeneous system. In this section, we present
the general solution of the homogeneous system (1.2) in terms of two fundamen-
tal matrix solutions and then develop variation of parameters formula for the
non-homogeneous difference system (1.1). We shall denote @ (n,n,) and
Y (n,n,)as the fundamental matrix solutions of 7' (n+1)=AT (n)and T (n+1) =
=B T (n) respectively. With this notation, the proof of the following lemma is
immediate.

Lemma 2.1.0(n,n;)is a fundamental matrix solution of 7(n+1)=
=AT(n)if, and only ifo" (n,ny)1s a fundamental matrix solutions of 7(n+1) =
=T(n) A" (+refers to the transpose of the complex conjugate matrix).

Theorem 2.1. Let ® (n,n,)and W (n,n,)be two fundamental matrix solu-
tion of T(n+1)=AT (n)and T (n+1)=B" T (n)respectively. Then any solution
T (n) of (1.2) is of the form T'(n) =® (n,n,) C\y* (n,ny) where C is a constant
square matrix of order s.

Proof Weseek a solution 7' (n) of (1.2) in the form 7 (n) o) (n,ny) K (n),
where K(n) is a square matrix of order s whose elements are defined on N ;0.
Then

O (n+lny) K(n+1)=AD (n,ny) K (n)B< AD (n,ny) K(n+1)=
=AD (n,ny)K(n) B < K(n+1)=K (n)B< K" (n+1)=B K" (n).

Since y (n,1,) is a fundamental matrix solution of 7(n+1) = B T(n), it fol-
lows that there exists an (sxs)constant matrix C" such that K : (n) =\|} (n,ny)C :
and hence T (n) =® (n,ny) K (1) =® (n,n,) Cy” (n,n,). )

Theorem 2.2. Any solution 7(n) of (1.1) is of the form 7(n) =® (n,n,) x
x Cy (n,ny)+T (n), where T (n)is a particular solution of (1.1).

Proof.Itcan easily be verified that 7 (n) defined by T(n)=® (n,n,)x
X C\j_j ’ (n,ny)+T(n)is a solution of (1.1). Now, to prove that every solution of
(1. 15 is of this form, let 7' (1) be any solution of (1.1) and T (n) be a particular so-
lution of (1.1). Then T (n) — T (n)is a solution of (1.2). Hence by theorem 2.1,
T (n)=T (n)=® (n,ny) Cy” (n,ny).
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Therefore T(n) =T (n)+® (n,n,) C\Il* (n,ng).
Theorem 2.3. A particular solution T'(n) of (1.1) is given by

n-1
T (n)= Y ® (nj+) FWU)y  (n,j+D)
J=Ngy
P ro o f. Any solution of the homogeneous system (1.2) is of the form
T (n)=® (n,n,)Cy “(n, n, ). Such a solution cannot be a solution of (1.1) unless
F (n)=0.Let Cbe a function of n defined on N ;[0 and seek a particular solution
of (1.1) in the form T'(n) =® (n,n,)C (n)\v*(n,no).

Since T (n) must satisfy (1.1) we have

O (n+1,19) C (n+) " (n4+1,10) =AD (1,1y) C (n) " (n,ny) B+F (n)

& O (n+1,ny) AC (n)y " (n+1,ny) =F (n) <

& AC (1) =® (g, n+1) F (n)y " (ng,n+1) <

n-1 —
= C(n)=(Cn0 +> 0 (no,j+l)F(j)\4_1*(n0,j+l)J.

J=ng
Thus
_ n-l1 _
I(n)=0 (n,nO)Cnoq_l (n,ng)+®@ (”ano)( Z‘D (ng,j+DF )y (n07j+1)] =
J=ng -
=® (n,ny)Cy " (n,ny)+T(n).
3. Two-point boundary value problem. In this section, we consider the

two-point boundary value problem associated with the non-homogeneous gen-
eral matrix difference system (1.1), satisfying the boundary condition

MT (ny)+NT (n,)=a, 3.1
where ng, n, e N :O , g <n . Substituting the general form of the solution given in
(2.1) in the boundary condition matrix (3.1), we get M®(ny,ny)C,, v’ (ng,ny)+

_ n—1 .
+ MO (ny, j+)F(Ny (np, j+D)=a=M Y O (ns, j+D)F )y (ng,j+1).

J=ng
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The above equation is equivalent to
MIC}'IONI +M2Cn0N2:Y, (3.2)

where

n-1 —
and Y =a—-M Z O (n;,j+1) F(j)w*(nf,j+1) are all known square matrices
J=1 -
of order s. Note that NV, and N, are in fact fundamental matrix solutions and hence
invertible in the usual sense. For the analysis of C ny» WE employ the following

notion on kronecker product of matrices. Note that ® (n,,n,) =y (ny,ny)=1.

If A, B € R are two square matrices of orders s, then their Kronecker prod-
uct or tensor product denoted by (4 ® B) is defined as

A®B=a;B for alli=12,..,s; j=12,..,s=|ay B a,,B -+ a,B
agyB ay,B - a B

2,2
and is in R* ™ With this one can easily verify that if

A=(M, ®N{)+(M,®N),

then (3.2) is equivalent to be
AC, =y, (3.3)

. 2 2 . . 2
where 4 is an (s” xs”) matrix and C,, and y are column matrices of order s~ x1

corresponding to the square matrices C,, and Y. In fact by viewing (3.3) as a
system of s” scalar equations for the elements of C 7y (3.3) is exactly the same set
of equations written in a vector form.

4. Closest point search in lattices. The problem of finding a shortest,
non-zero lattice vector in a lattice of dimension s” is a landmark problem in com-
plexity theory. Lenstra A. K., Lenstra H. W. and Lavasz L. [3] known as LLL —
algorithm is used in basic reduction criteria. Kannan [4] has proposed an algo-
rithm to find the shortest lattice vector in time n°"), which was later improved
by Helfrich [5] to n”/***™ . The LLL reduction is often used in most cases
whereas the Korkine—Zotareff (KZ) reduction is time consuming. In this sec-
tion, we present the modified Gram—Schimidt process of Rice [6] for the com-

ISSN 0204-3572. dnekTpoH. mogenupoBaHue. 2007. T. 29. Ne 3 31



B. R. Sastry, K.N. Murty, V.V.S.S.S. Balaram

putation of a best least square solution of (3.3) in the general case. For, we con-
sider the general first order matrix system of equations

Ax =b, 4.1)

where 4 is an (mxn) matrix and x is an n-vector (unknown) and b is a given (mx1)
vector. The problem is to find the existence of solutions of the system (4.1). If 4
is singular and if R (4) and N (A4) represent respectively, the range and null
spaces of 4, then (4.1) will have solutions if b€ R(A4). In this case if x is any
n-vector in N (4) and x is any solution of (4.1) then the vector x +x will also be a
solution. If b ¢ R (A), then the problem (4.1) will not have solutions.

If A is an (mxn) rectangular matrix, then for a given 4€ R™" (or C"™") and
be R"™, the linear system (4.1) is consistent if, and only if b € R (4). Otherwise,
the residual vector

R=b-Ax (4.2)

is non-zero for all x e R", and it may be desired to find an approximate solution
of (4.1), by which we mean a vector x making the residual vector (4.2) «closest»
to zero in some sense.

The following theorem shows that | Ax—b || is minimized by choosing
x =A"b, where A" is such that

AA* A=A, (4.3)
(AA7) =A44". (4.4)

Theorem4.1. Let4e R™(C™") and be R"(C"),then| Ax —b | is smal-
lest when x =4*h where A" satisfies (4.3) and (4.4). Conversely, if 4" € R™""
has the properties, that for all b, | Ax —b ||is smallest when x =A"b, then A" satis-
fies (4.3) and (4.4).

.P roo f. We write Ax —b =(Ax —Py( 4)b)+(Pr(4yb—b). Where Py, is the
projection matrix on R(4). Then

o =B =[x = Py b* +|Prcayb=H]"- (4.5)

Since (Ax —Pr 4 b) € R(A) and —(I =Py 4y) x € R (A); it follows that (4.5)
assumes its minimum value if, and only if

Ax =Py 4)b (4.6)

which certainly holds, if x =4%h for any A" satisfying (4.3) and (4.4). Hence

AA =P, . Conversely, if 4" is such that for all b, | Ax —b || is smallest when

x =A"b, then by (4.6) we have A4"b =Py ;) and hence A4"b =Py, . Thus 4"
satisfies (4.3) and (4.4). Hence the proof.
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Suppose A" satisfies the following two conditions:
ATAA =47, (4.7)
(A" 4) =4 A. (4.8)

Then we have the following theorem.

Theorem 4.2. LetAe R™(C™"), xe R"(C™).If Ax = b has a solution
for x, the unique solution for which | x || is smallest is given by x =4"b, where
A" satisfies (4.7) and (4.8). Conversely, if A" € R"™(C"™™"), is such that, when-
ever Ax = b has solution, x =A"b is the solution with minimum norm, then 4"
satisfies (4.7) and (4.8).

Proof. By Theorem 4.1, equation (4.1) has a unique solution say x in
R(A"). Now the general solution is given by

X=xg+y

for some y e N (A4). Clearly HxH2 = Hx+OH2+HyH2 proving that | x| >|x,| and

equality holds only if x = x,.

5. Modified Gram—Schmidt process. Let 4 be an (mxn) matrix of rank
p <min{m,n}. The algorithm discussed here depends upon the rank factoriza-
tion of the form AP = QOR, where P is an (nxm) permutation matrix such that the
first P columns of AP are linearly independent, QO is an (mx p) matrix with
orthonormal columns, and R is an upper-trapezoidal of rank p. We shall denote
Im(A)={Ax e R™/x € R"}, the column space of 4 and ker (4) ={x € R" / Ax =0}.
We further need the following results for constructing least square algorithm and
the best least square algorithm [6].

Results 5.1. Let 4 be an (mxn) given matrix of rank p. Then there exists a
factorization AP = QR with the following properties:

(i) P is an (nxn) permutation matrix with the first p columns of AP form a
basis of Im(4);

(i1) Q is an (mx p) matrix with orthonormal columns and R is a (p x n) upper
trapezoidal matrix of the form R =[R, , R, Jwhere R, is a non-singular (px p) up-
per triangular matrix and R, is a px(n— p) matrix.

Result5.2. Let 4 be an (mxn) matrix with rank p. Write 4 =[a, ,a,,..,a, ],
where a; € R™ and let P be an (nxn) permutation matrix such that AP = OR
where Q is an (mx p) matrix with orthonormal columns and R is a (pxn) upper
trapezoidal of rank p. Then the first p columns of 4P are linearly independent
and all the least square solutions of this system Ax = b can be obtained by solving
the consistent system RP'x=0’b.
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If we write R =[R,,R, ], R, 1s a (px p) upper triangular, then

B ul?
sz[ } ,
% n—p

where ve R"? is arbitrary and u =R, ' (Q" b—R,v) are the least square solu-
tions of Ax = b. A basic least square solution is obtained by making v = 0.

Algorithms. Let A be an (mxn) matrix and b€ R™ is given and let rank
Abe p <min{m,n}. The following is the algorithm to compute least square solu-
tion. We use the notation a;:= b,-j if a; becomes bl-j for all i=1, 2,..., M,
and j=1,2, .., n

(i) Algorithm:

gi=a;i=1,2,...,m; j=1,2,...,n
ry =0, i=1,2,...,m;j=1,2, ..., ntl
si=j,j=1,2,..,n
p:=n
2 .
fork=1,2,..,n9; =Z\q,~j ,j=k,k+1,..,n

i=1
COMPUTE INDEX c, k< c <nsuchthat 5. =maxd;, 1 <j<n
IF 6.=0, go to 30
30 p:k—1 goto 40
interchange column & of Q with column C of O
interchange column k& of R with column C of R
interchange number 5, with number &,
interchange index S; with index C
=5,
Gk = qi T
Vg = quj, j=k+1,.,n
9 =415 Gk J =k+1,.,n
ren+ 1:=q,b.
40 forj=p+1,..,n

X =0.
Back solve the system of equations
ripxX;t ... +r1pxp=r1’n+1
T Xpt+ ... 11 Xy =V o0

Top Xp = Tpntl
to determine xj, xy, ..., Xp.
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Forj=n,n-1,..,1
k: =S;
ifk#j, xp > x;
x = (x1, X2, ..., X,) 1s a least square solution of Ax = b

(ii)Algorithm MINLS

IF p=n STOP

The least square solution already found is the minimal norm least square so-
lution of Ax = b.

Else vi=n—-p
bj=x, j=1,..,n
x;:=0, j=pt+l, .., n
fork=p+1,..,n
xk:=1.

Back solve the equation system Rx = 0, to determine xi, X2, ..., X,

J=k-p
aij=x;, i=1,2,...,n
X = 0.
Fori=n,n-1, .. 1.
k:zSi
IF K =#i, interchange aj; and a; forj=1,2, ..., v.

(i) Computation of the pseudo inverse.

If 4 is an (mx n) matrix, then we can utilize algorithm MINLS to compute
A", the pseudo inverse of 4. Using MINLS m times, solve for @] the minimal
norm least square solution of the problem Ax = ¢;, where e;,1 < i < m are the stan-
dard Euclidian basis for R”. Then 4" =[a; ,aj; ,.., a; 1.

The vector x =(x;,X,,..,x,) computed from the above algorithm is the
closet point search algorithm. This algorithm as detailed above is better than
the Sehnorr norm — Euchner strategy algorithm [7] and that of [2]. We can
apply this algorithm to find a unique solution of the boundary value problem
(1.3). We need the following DECODE algorithm and the closet Point al-
gorithm. Before we present these algorithms in the next section, we first
present with suitable examples to find minimum least square solutions of
equations Ax = b.
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Example 1. Consider the system of equations Ax = b, where

1 1 1 X, 4
A=|2 -1 -1, x=|x,|and b=|-1|
2 -4 5 X5 1
Using QR factorization, we find AP = OR, where
-1 2 2 -1 1 -1
Q:1 -2 1 -2|,R=30 1 -1}.
3 -2 -2 1 0 0 1

Note that Q is orthonormal and R is upper trapezoidal. Using the algorithms
given in sections 4 and 5, we find that the minimum least square solution is given
by MINLS x =[0.99999, 2.00001, 1.00000]".

Example 2. Consider the system of equations Ax = b, where

1 2 3 6
1 5 6 x 13
= , x=[x2|and b=
1 8 9
x3
1 11 12 24

This is an over determined system. Using the algorithms given in sections 4
and 5, we find that the minimum least square solutionis given by MINLS x =
=[1,0.5, 1.5]".
E xample 3. Consider the system of equations Ax = b, where
X

13 3 2 15
A4=[2 6 9 5|x="2|andb=| 6
1 3 -3 0 3 225

X4

Note that the system is an underdetermined system and its minimum least square
solution is MINLS x = [-0.211009174, —0.6330275230, 0.963302752,
0.1100917437".

6. Closest point search algorithm. The concept of public-key cryptogra-
phy algorithm have a long mathematical history right from 1976. Many of the
public-key cryptography were in secure. Of those still considered secure, many
are not practicable. Either they have too large a key or the Cipher text is much
larger than the plain text. Only a very few algorithms are both secure and practi-
cal. The method, we present here is more secure and more practical and is based
on closest point general lattice search algorithm. This algorithm can be regarded
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as a «front end» to Decode, where explicit pre processing and post processing is
performed to allow generator matrices that are not lower triangular and are not
even square matrices. We first present an algorithm that computes a closest vec-
tor without any representation choice, but the speed with which it reaches the re-
quired result varies significantly between two different representations. We then
present a DECODE algorithm which is of practical importance. The main ques-
tion we answer in this section is the following: How should a given search prob-
lem be preprocessed in order to make the most efficient use of DECODE ?

Definition 6.1. A matrix G is said to be a generator matrix if it has real en-
tries and rows of G are linearly independent over R.

Firstly, we assume that a generator matrix 4 and an input vector x are given.
Let 4 be an (mxn) matrix and x € R™. By means of a linear integer transforma-
tion, we first transform A into another matrix R, which generates an identical lat-
tice and then rotate and reflect R, into a lower triangular matrix R, so that
A(R3) = A(R2)=A(A).

It is very essential to rotate and reflect the input vector x in the same way, so
that the transformed input vector, say xs, is in the same relation to A (R3) as x is
related to A (A4). All this can be regarded as a change of coordinate system. Note
that by the above transformation the input vector x also changes, so that the
transformed input vector becomes x,. By reversing the operations of rotation and

. A C . . . .
reflection enables us to produce x, which is the lattice point closest to x in A (A4).

Following the above steps, we are now in a position to present the detailed algo-
rithm as follows.

Algorithm. CLOSEST POINT (4, x).

Input: A lattice point )lc\ € A(A) the closest to x.

Step 1. LetR, =WA where W is an (mx m) matrix with integer entries and
detW =+1

Step 2. Compute an (mx n) orthogonal matrix Q with orthonormal col-
umns such that R, = R; O, where R3 is an (mx n) lower-triangular matrix with
all diagonal elements positive.

Step 3.LetHy:=R;" .

Step 4. Letxy=x0".

A

Step 5. Letu; :=DECODE (R3, x3).
A A

Step 6.Return x :=u3R,.

Step 1 is in fact a basic reduction. If no basic reduction is needed, we can
take W as the unit matrix. Note that the speed and numerical stability of the
search can be improved significantly if proper search is made. Step 2 implies ro-
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tation and reflection of R, into lower triangular form. The usual method to
achieve this is modified algorithm of OR presented in section 4. In our context
OR decomposition of R, gives both Q" and R; with R; being equal to R”. All the
transformation can be thought of a change of coordinate system. Measure first
coordinate along v, (the first row of R;) the second in the rows spanned by v, and
v, and the third in the row spanned by vy, v, and v; and so on. The generator ma-
trix in this coordinate system will be in general square and lower triangular.
As an alternative to QR decomposition, R; can be obtained by Cholesky de-
composition and it states that one can find a lower triangular matrix (real) L such
that A = LL". In our context, R is equal to L and the rotation matrix is given by
O=R; 1TRZ. Another approach to find QR decomposition is decomposition of

A= LU, where L is lower triangular and U is upper triangular and in our context
O =R! R2.If 4 is an (mxn) positive definite matrix, its cholesky decomposition
is a factorization of 4 in the form A=UU " where U is an (mx m) — upper triangu-
lar matrix. Inour context, Ry is equal to U’ and the rotation matrix Qs given
by O =R; 'R2. All these algorithms can be found in [8]. One can also compute

OR by Householder’s reflection and the Householder matrix H is symmetric and
orthogonal. The Household reflection in fact reflect every vector x € R™ in the

2w! )
=H" , where v is the House-

hyperplane span {v}* and is given by H =7 —
viv

holder vector. However, the OR-method is the generally recommended method
for calculating the least square solutions so far and in this paper, we replaced OR
algorithm by the modified QR-algorithm and this method is the most effective
tools in finding the least square solutions of the system of equations Ax = b. Note
that the decomposition of 4 = OR is unique, what ever technique we adopt and
further in our modified QR-algorithm Q is orthonormal implies det (Q) =+1. For
A is an ill-conditioned matrix, the method we presented to our belief is the most
effective tool.

In steps 4—6 the input vectors are processed. They are transformed into the
coordinate system of R, decode, and transformed back again.

We now present DECODE algorithms.

Algorithm DECODE (H, x)

Input: an mxm lower triangular matrix A with positive diagonal element,
and an m-dimensional Vector x € R™ to decode in the lattice A(H ).

A A A
Output: an m-dimensional vector u € z" such that uH ' is a lattice point x
that is close to x.

1. m: =the Size of H \ * dimension* \
2. bestdist : =0 \ * current distance record *\
3. K:=m \* dimension of the matrix cude examination*\
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4. diss; =0 \* distance to examined layer *\
A
5. e xH \Fum= xv2 used to compute um’ *\1
1lv

6. up=ey \* examined lattice point \

_ A
7. y:= e’"‘hiuk \* m=\u,, —um\ [vL] is the orthonormal distance *\

Kk
8. Step k: = Sgn*(y) \*off set to next layer in (15)*\
9. loop

10. new dis : = Dist k +)°

11. if new dist < best dist then {

12. if k# 1 then {

13. €i-1,i * = €ki — Vhki fori— 1, 2, ceny k-1

14. k:=k—1
15. dist k: New dist
16. Up .= €
17.y: = S M
D
18. step k: = sgn*(y)
19. telse{
A
20.u:=u
21.best dist : = new dist
2. k=k+1

23w =uy +stepk

24,y = S "Mk

P
25.Step k : = Step k — sgn* (step k)
26.}
27. }else {
28.1f k = m then return ;,\t (and exit)
29.else {
30.k: =k +1 \*move up*\
31.uy = w+Step k \*next layer*\
2.y:= Gk "Mk
P
33. go to step 25
34.}
35.}

36. go to <loop>
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In the above algorithm m, & is the dimension of the sublayer structure that is
currently being investigated. In case A4 is an ill-conditioned, the algorithm finds a
k-dimensional layer, the distance to which is less than the currently smallest dis-
tance, this layer is expanded into (k — 1) dimensional sub layer. Conversely, if
the distance to the examined layer is greater than the lower distance the algo-
rithm moves one step up in the hierarchy of layer. This is done in case 6. Case B
is invoked when the algorithm has been successfully moved down all the way
down to the zero dimensional layer without exceeding the lowest distance (that
is, a lattice point). This lattice point is stored in the output, the lowest distance is
updated, and the algorithm moves back up again, without restarting [2]. Note
that in [2], the closest point search algorithm is based upon carefully selected
preprocessing. Such a selection is not possible in each and every case. The meth-
ods we presented in section 4 and 5 will eliminate such careful selection and
minimizes decoding time and at the same time reduce the complexity of the clos-
est point search significantly.

PosrnstHyTO iCHYBaHHS Ta €IUHICTH PO3B’A3yBaHb JBOTOYCUHHX IPAHIYHUX 337124, 3B’ A3aHUX 3
y3arajJbHEHUMH MAaTPUYHUMH Pi3HULEBUMHU CUCTEMaMU IEPIIOro NopsaKy. [ momyKy Haid-
KpAIIOTo PO3B’I3yBaHHS CUCTEMH PIBHSHb METOJOM HalMEHIINX KBaJpaTiB BUKOPUCTAHO MO-
nudikosanuii npouec I'pama—IIImiara i mogudikoBanuit QR-amroputm. st noganbioro mo-
KpallleHHs PO3B’sI3yBaHHS HaWMEHIINX KBaJpaTiB HaBEJEHO €()EKTHBHHUN alrOpUTM IOLIYKY
Hal6mKk4oi Touku. Y mpoleci NOIyKy HalKOpPOTIIOrO BEKTOPA PELIITKU 3HalieHo Moaudi-
KOBaHi aTOPUTMH KOJyBaHHS Ta JEKOTyBaHHS.
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