
M. Radziewicz
Szczecin University of Technology
(�Zolnierska 49 st., 71-210 Szczecin, Poland,
E-mail: mradziewicz@wi.ps.pl)

Translation of VHDL Sequential Statements

(Recommended by Prof. V. Simonenko)

VHDL is one of the most popular languages used in logic synthesis tools. It has variety of state-

ments which make it powerful and flexible tool. But, as the result, it is rather difficult to create a

compiler of VHDL language, especially the one which will be used in a logic synthesis. There is

little information about translation algorithms used to generate hardware representation from

VHDL sources. The algorithms for few sequential statements of VHDL language are developed.

Apart from the algorithms themselves the paper presents a lot of information about translation

process itself and all possible problems which may occur during it. Proposed solution was

implemented in a compiler which uses Boolean equations as an output format. The paper includes re-

sults of tests which were performed to check practical usability boundaries of proposed algorithms.

VHDL – îäèí èç íàèáîëåå ïîïóëÿðíûõ ÿçûêîâ, èñïîëüçóåìûõ â ñðåäñòâàõ ëîãè÷åñêîãî

ñèíòåçà. Îí ñîäåðæèò ìíîæåñòâî îïåðàòîðîâ, êîòîðûå îáåñïå÷èâàþò åãî ìîùíîñòü è

ãèáêîñòü, ïîýòîìó ñîçäàíèå êîìïèëÿòîðà ÿçûêà VHDL, îðèåíòèðîâàííîãî íà èñïîëü-

çîâàíèå â ëîãè÷åñêîì ñèíòåçå, – ñëîæíàÿ çàäà÷à. Èíôîðìàöèè îá àëãîðèòìàõ òðàíñëÿöèè,

ïîñòóïàþùåé îò ðàçðàáîò÷èêîâ VHDL, íåäîñòàòî÷íî äëÿ ñîçäàíèÿ òåõíè÷åñêèõ ñðåäñòâ.

Ðàçðàáîòàíû òàêèå àëãîðèòìû äëÿ íåêîòîðûõ ïîñëåäîâàòåëüíîñòíûõ îïåðàòîðîâ ÿçûêà

VHDL. Ïðåäëîæåííîå ðåøåíèå ðåàëèçîâàíî â êîìïèëÿòîðå, èñïîëüçóþùåì ëîãè÷åñêèå

óðàâíåíèÿ êàê âûõîäíîé ôîðìàò. Ïðèâåäåíû ðåçóëüòàòû òåñòîâ, âûïîëíåííûõ äëÿ ïðî-

âåðêè ãðàíèö ïðàêòè÷åñêîé ïðèìåíèìîñòè ïðåäëîæåííûõ àëãîðèòìîâ.

K e y w o r d s: electronic design automation, FPGA, VHDL, logic synthesis.

Introduction. The best thing about FPGA [1] chips is their constant grow in

terms of complexity, speed and general abilities to carry sophisticated algo-

rithms inside. In order to take full advantage of those new chips, design software

must be improved as well. Nowadays, a typical synthesis tool is usually based on

one of hardware description languages (HDL). Despite the number of differ-

ences, those tools are quite similar because a synthesis design flow is rather hard

set. It helps designers to switch between products of different vendors.

HDL languages has gone long way from their beginnings. Now it is impos-

sible to imagine digital circuit design without them. The languages of course dif-

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2008. Ò. 30. ¹ 2 69

��������	�
��	

���	����������	��

fer from each other, because they have been created with a certain initial set of

constrains or to solve specific design problem. For example, a main domain of

Verilog was to help simulations whereas for VHDL it was a documentation of

projects. They are also based on classical programming languages like C or

ADA from which they partially adopted syntax and semantic.

VHDL [2] is one of the most popular hardware description languages. The

purpose of its creation was to provide better documentation means. Now it sup-

ports simulation and synthesis process as well. Its syntax is very clear and easy

to understand. The language provides variety of programming constructs which

help designers in their tasks. Strong simulations support helps in a verification

process. But what is an asset from a hardware designer point of view, can be a

very big flaw for people who make such tools. And in fact it is. A process of cre-

ating new synthesis software based on VHDL is very long and difficult. There is

very little information about the subject, because most of the tools are commer-

cial products. Small number of academic publications, which usually do not

cover the subject entirely. The point of this article is to fill gaps in knowledge

concerning design process of logic synthesis tools which are based on HDL. In-

formation presented in the paper is the result of a project whose goal was to cre-

ate synthesis software at least as powerful as Synopsys’s FPGA Express©. The

tool uses Boolean equations as its output format. That unusual representation has

several vital advantages:

it is purely mathematical form, completely hardware independent,

there are various well known optimisation methods for Boolean equations,

it can be simulated.

This paper focuses on sequential statements of the VHDL language. They

form well distinguished part of all translation problems.

Related works. As it was stated earlier, a number of publications related to

the topic is quite limited. The reasons are obvious. Most of EDA tools are property

of commercial companies. It is unlikely to expect them to share their secrets with

others in order to improve generally accessible knowledge. Synthesis tools mar-

ket is worth a lot money, so competition is high. Typical manuals which come

with design software, usually present only basic usage information. It does not

explain how the tool works inside, and why it does particular thing in a certain

way. Such information is sufficient for hardware designer even if it is not com-

plete. The tool is like a ‘black box’. Something goes in, something goes out, but

nobody really knows what exactly happens inside. Design software suppliers

provide as little information as possible. They cannot be blamed for these prac-

tices because they just intend to protect their market advantage.

There are many software companies which specialise in hardware design

applications. Nowadays these tools support the whole design process, not only

synthesis. It is an ‘all-in-one’ approach which makes a hardware designer’s job

M. Radziewicz

70 ISSN 0204–3572. Electronic Modeling. 2008. V. 30. ¹ 2

easy. Usually the whole package contains: an integrated development environ-

ment, a simulator, and a synthesiser. A part from that there a few supporting

tools like floor plan editor and variety of optimisers. Those tools accepts many

different input formats. The most widely know companies and products are:

Synopsys (FPGA Express, Design Compiler), Altera (MAX+PLUS II,Quartus

II), Xilinx (ISE), Mentor Graphics (Leonardo Spectrum), Cadence.

In order to synthesise VHDL code using commercial tool, designer must

choose a target FPGA chip beforehand. The output of the tools is made for spe-

cific integrated circuit and cannot be used with the other. That lack of good de-

scription of commercial applications is understandable. Real puzzle is, why the

number of academic publications is so limited. Nonetheless there are few works

worth mentioning.

Alliance is a complete set of tools [3, 4] for synthesis of VHDL code. First

version was very limited. It could accept only a very small subset of VHDL

statements, and it was impossible to mix in one input file different coding strate-

gies (behavioural, data-flow, and structural) [5]. After some time a serious im-

provement has been noticed. Nowadays, many previous restrictions are no lon-

ger valid. The improvement has been achieved with help of a completely new

application to the whole design toolbox. Its task is to convert any VHDL file to

the form which can be accepted by the rest of programs [6]. As it comes to the

documentation, a typical user manual is provided. There is no information about

how the tools work.

Another approach uses Extended Timed Petri Net (ETPN) which is exten-

sion of Petri Net as an intermediate form [7— 9]. The method in its first step ob-

tains a data-flow graph and an ETPN which serves as control logic for the design

translated from VHDL code. Afterwards the ETPN is being optimized. Final

step is to generate a structural VHDL representation which stands for an output

of the tool. The whole process was implemented in a tool named CAMAD[10].

The third conception presents Mekenkamp [11,12]. It proposes to translate

VHDL code into an intermediate form called SIL. Afterwards all necessary syn-

thesis operations (e.g. loop unrolling) are done on the SIL [13] model. In the end,

an optimized SIL is translated back into VHDL code.

As it comes to the Boolean equations and their usage as an output format, the

Altera Corporation and its software MAX+PLUS II and Quartus II support it in a

limited way. They can be seen in a floor plan editor window [14,15] and compi-

lation report.

Translation from VHDL sources to Boolean equations. Boolean equa-

tions which were utilised in the project are very simple. There are only three logi-

cal operations used: and, or, not. A Boolean equation is created only if there are

assignment statements inside process body. For each single bit of a signal or

Translation of VHDL Sequential Statements

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2008. Ò. 30. ¹ 2 71

variable there will be exactly one equation produced. The equation can be in one

of the two forms:

simple, when it represents combinational logic,

complex, when it represents sequential logic.

In the second case, there are at least two equations. They stand for the base

to build a flip-flop or a latch. The memory elements are constructed from prede-

fined templates. Above rules are valid even if there are more than one assign-

ment statements for a particular signal or a variable\footnote{As it comes to

variables, there are exceptions}. Now it is time to discuss problems which may

occur during translation process of VHDL sequential statements. Each instruc-

tion will be presented independently.

Assignments. When it comes to generating Boolean equations, VHDL

statements can be divided into two groups:

those which provide new equations,

those which use previously generated equations.

The first group is very small and consists of only one type of statement: the

assignments. So if there are no assignments in the process body, Boolean equa-

tions will not be produced at all because the rest of VHDL constructs rely on

what assignments provide. There are two problems concerning assignments

translation process:

assignment target identification,

significant differences between variables and signals.

The first job is to find out what a particular assignment statement is chang-

ing. Because of VHDL’s complexity this task is quite difficult and operates on

several levels which are: variable(signal), field or dimension (there can be several

such levels), and in the end at bits level. Every level of identification is related to

a specific VHDL concept. The variable level deals with aggregates mechanism,

which is an ability to change value of more than one variable at a time. Next level

concerns record and array (multidimensional as well) data types. Additional

problem at this level is a slice mechanism. The last level reflects a fundamental

feature of VHDL data entities. They are all in fact built from single bits.

The difference between variables and signals is another major problem. The

value of a variable is changed immediately after an assignment. As it comes to a

signal, it keeps its old value until the end of the process occurs. Another issue is

that only the last assignment to a signal is valid, all the previous ones have to be

discarded.

Variables represents memory. The main assumption is that every time a

memory is written, it is done to a different address. As the result, a new variable

is created (in semantic meaning), every time a value of the original one is

changed.

M. Radziewicz

72 ISSN 0204–3572. Electronic Modeling. 2008. V. 30. ¹ 2

Boolean equations which have been generated, are stored inside a data

structure called Equation Container (EC). Apart from equations the structure

holds additional semantic information. There is one such structure for each vari-

able or signal. The EC was designed to carry all data types allowed by VHDL.

A process of generating Boolean equations for an assignment statement

consists of several steps:

1. Generation of Boolean equation for the right side of the assignment. That

part slightly exceeds the main topic of the article and is well presented in follow-

ing publications: [16—18].

2. Identification of the target (or targets) of the assignment. It was partially

presented above. The point is to find all signals (variables) and their bits which

were affected by the particular assignment. The possible problems were covered

earlier in the paper.

3. Creation and update of EC structure for each target. In this step the equa-

tions are stored inside EC structures along with additional semantic information.

If it is the first assignment for the target, just a clean EC is created and filled with

equations. Additionally for a variable, a special field is set indicating that it was

written. Things work differently if there is an EC structure created before. For a

signal the case is simple: new equations replace the old ones. A variable assign-

ment requires a new EC structure to be created. It will contain all the newly gene-

rated equations, but not only them. If there are empty fields (bits) in it, they

should be filled with equations from the old EC structure, of course, if it contains

the lacking ones.

Example 1. Generating Boolean equation for a signal assignment:

entity test is
port (

a,b,c : in bit_vector(0 to 1);
z: out bit_vector(0 to 1)

);
end test;

architecture arch of test is
begin

process
begin

z<=a;
z<=b;
z<=c;

end process;
end arch;
— Equations

Translation of VHDL Sequential Statements

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2008. Ò. 30. ¹ 2 73

z(0)=(c(0));
z(1)=(c(1));

Example 2. Generating Boolean equations for a variable assignment:

entity test is
port (

a,b,c: in bit;
z,z1: out bit
);

end test;

architecture test5 of test is
begin

process
variable tmp: bit;

begin
tmp:=c or a;
z<=tmp and b;
tmp:=a;
z1<=tmp and b;

end process;
end test5;
— Equations
tmp_1_0=(c|a);
z=(tmp_1_0&b);
tmp=(a);
z1=(tmp&b);

If statement. An if statement allows conditional code execution. Only one

branch can be activated at the time. If the activation condition of a particular

branch is fulfilled, the code inside is executed and then control goes to the first

statement after the if block. The main concept of a translation process is to join all

the equations obtained from assignments (or other instructions) located inside if
branches by those created from if’s branches’ conditions. There will be one equa-

tion for every different target. The whole procedure can be divided into follow-

ing steps:

1. Generation of Boolean equations for if conditions. Equations which will

be created must guarantee that only one branch could be activated.

2. Searching for equations inside each branch. Equations are stored inside

the ECs. All the ECs inside a particular scope (process, if branch, case branch

etc.) are linked together in order to form list.

M. Radziewicz

74 ISSN 0204–3572. Electronic Modeling. 2008. V. 30. ¹ 2

3. Creating final equations. In this step a final equation is created, one for

each distinct target. The second task is to determine a type of logic of the equa-

tion. There is a simple rule which helps with this problem. The equation will be

of a combinational type if the target was assigned in every branch of the if state-

ment. The if must be completed which means that else branch have to be pre-

sented as well. The equations are created accordingly to formula.

X We Xi i

i

n

�

�

�

1

, (1)

where i — branch index; n — total number of branches; X — an assignment tar-

get; Xi — an equation for a right side of the assignment in i-branch; Wei — an en-

tering condition for the i-branch.

A formula (1) is correct for combinational logic sources only. A sequential

logic requires a latch to be created. In order to do so, two Boolean equations are

generated accordingly to formulas

D We X Zi i i

i

n

�

�

�

1

, (2)

C We Zi i

i

n

�

�

�

1

, (3)

where Zi — a special variable which is set to value 1 if there is an assignment for

a target X in the i-branch and to value 0 otherwise; D — data input; C — clock

input. The formula (2) represents the data input of the latch, the formula (3)

stands for the clock signal. The rest of the latch’s logic is obtained purely by us-

ing of a template.

If a variable or signal was previously assigned (before it was done for the

second time inside the if) it is sometimes possible to omit latch creation. In order

to achieve this, it is enough to use the old value of a variable for all those

branches which did not contain an assignment. Such approach is expressed

by formula:

X We X Z We Z Yi i i

i

n

i i i� �

�

� �

1

(!) , (4)

where Yi — the old value of the variable or signal (from previous assignment).

Entering conditions. In all equations presented so far there is an important

(and unexplained yet) part called the entering condition. In general terms, it is a

Boolean equation which when it is fulfilled activates a particular branch. There

Translation of VHDL Sequential Statements

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2008. Ò. 30. ¹ 2 75

is a one such equation for every branch and it is created from the original if state-

ments’ conditions

We W Wi j

i

j i

i�

�

�

�
�

�

	

�

�

�

1

, (5)

whereW j — a Boolean equation obtained from the expressions placed between

keywords if and then for all preceding branches;Wi — the same as the former,

but for the current branch.

Case statement. A case statement allows conditional code execution as

well as if, but each branch is treated independently. As the result there could be

activated more than one branch at the time. Such a situation cannot be synthe-

sised properly, therefore the original behaviour of the instruction must be altered

slightly. It was achieved by creation of few constrains which limits possible

cases’ forms. If the particular case statement is planned for synthesis they have

to be fulfilled. The requirements are as follows:

the control expression (the one after keyword case) must be of an integer or

enumerate type (enumerate type array as well);

entering values must be static;

entering conditions set for each branch has to be separable form the others;

the size of entering value and the control expression must be the same (mean-

ing a number of bits);

all possible values of the control expression} must be covered by entering

condition (use of an others branch is allowed).

The translation process works quite the same as for an if statement (formulas

(1) — (4). The dissimilarity concerns creation of entering conditions. it is done in

a different way. First of all, the equations for entering values must be created:

W

l n W S l

l n W S l

l n l p S l

k

k l

k l�

� � �

� � �

� � �

,

,

(),

! (),

! (),

1

0

�

�

�

�

��

�

�

l

p

0

1

(6)

whereWk — an entering value; S — a name of the control expression; S (l) —

single bit of the control expression; n — number of bits of entering value; p —

size (bits) of control expression; l — bit index.

Afterwards, they are used to create entering conditions:

We Wi k

k

m

�

�

�

1

.
(7)

During the last process it is important to check all the constrains presented

above. Implementation of them is not as easy as it may look.

M. Radziewicz

76 ISSN 0204–3572. Electronic Modeling. 2008. V. 30. ¹ 2

As it comes to the others branch it is sometimes more convenient to create

entering condition using a different approach:

We Wei

i

n

others
�

�

�

�
�

�

	

�

�

�!

1

1

.
(8)

Instead of looking for unused entering values, previously created entering
conditions are taken.

Variables and latches. Accordingly to what was said before, conditional

execution of VHDL code may leads to sequential logic. It happens if a value of a

signal must be remembered between consequent process activation. In case of

variables there are certain situations when it can be avoided. Variables live only

inside a body of a process, so they not affect outside environment directly [19].

Therefore previously presented restrictions can be altered a little. Speaking in a

nutshell a latch is created if:

the variable fails for general rule for choosing type of logic;

its value is used in the body of process before its initialisation.

To put these rules in practice, it is necessary to analyse the whole process
body.

Performance and computational complexity. Now it is time to verify the

presented approach. First step will show its theoretical performance, expressed

in terms of a computational complexity. Later the benchmark tests will be pre-

sented.

Estimation of computational complexity of a compiler is very difficult task.

First of all, an input set is unlimited in a form, and size. Secondly, a compilation is

compound and multi level process. It is nearly impossible to find a single distinct

operation which can be used as a base of calculations. In other words, obtained value

Translation of VHDL Sequential Statements

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2008. Ò. 30. ¹ 2 77

2
5 8 2

10

18

0

2000

4000

6000

T
im

e
,

m
s

Assignments B
ra

n
c
h
e
s

11 14 17 20

2
5

8

Assignments

B
ra

n
c
h
e
s

11 14 17 20

2

10

18

0

4000

8000

12000

16000

M
e
m

o
r
y

u
s
a
g

e
,

K
B

Fig. 1. Time of compilation of if statement in relation with a number of branches and assign-

ments inside

Fig. 2. Memory usage during compilation of if statement

of computational complexity cannot be precise. Nonetheless it should show enough

information to get general picture of compiler performance.

Because of lack of better methods, such estimation of computational complexi-

ty was done for the algorithms presented above. As a basic operation, generation of

single Boolean equation was chosen. The computation complexity for an assign-

ment and if(case) statement are expressed by formulas:O n� ,O n k� �()1 .The n is a

total number of bits for which Boolean equations were generated. For an if(case)

statement there is an assumption that every branch has the same amount of as-

signments (single bit).

As an example of real results, the Fig. 1 and 2 show how a time and memory

usage vary during compilation of an if. Surprisingly, benchmarks tests examples

which were used to check performance of implementation showed that theoreti-

cal deliberations were not far from reality. It can be seen clearly that correlation

between time and number of assignments is linear, exactly as in the formula (1).

For the two remaining instructions quite similar characteristics were obtained.

M. Radziewicz

78 ISSN 0204–3572. Electronic Modeling. 2008. V. 30. ¹ 2

Operation

Elements

Time, s Memory, MB

Gates Flip-Flops

Add 32929 32 13.83 6.45

Mul 98339 32 50.30 40.22

Div 128035 32 297.89 70.73

Table 1. Real life test example

Operation Size (gates)

Elements

Time, s Memory, MB

LUT IOB Flip-Flops

Add 100k 626 97 32 11 68,43

Mul 100k 1072 97 32 14 72,66

Div 200k 2775 97 32 39 104,40

Table 2. Real life test example — Xilinx ISE 6.2 for Spartan2E

Operation

Elements

Time, s Memory, MB

LUT IOB Flip-Flops

Add 679 98 32 19 42,40

Mul 1172 98 32 24 43,50

Div 2733 98 32 59 45,00

Table 3. Real life test example — Altera Quartus II 4 for Cyclone

Time of compilation and memory consumption are not the only measures

which can be used to assess performance and usability of HDL compiler. Other

parameters which can to be taken into consideration are:

size of generated integrated circuit (given as a number of gates for example);

power consumption;

the highest possible working clock.

For a purpose of studies presented in the paper the first parameter was taken

into account and verified. In order to do that another test was performed this time

using more complex VHDL source. The point was to check how the compiler be-

haves when it has to handle industry level test case. As a test subject floating-point

arithmetical operations were chosen. They are reasonable complex examples but

still able to implement without much of sequential logic which was very important

as the article main topic is related to combinational logic. The Table 1 presents such

information, Tables 2 and 3 give a snapshot of commercial tools efficiency. The

commercial tools used for comparison purposes require to choose one of a few

target architectures before a synthesis process can be started. Both tools were de-

signed by companies which main aim is to produce FPGA chips. As the result

the tools support only those FPGAs which belong to the same firm. So the com-

parison is not as accurate as it should be, but the main point is to show how a tool

presented in the paper behaves, and this task has been realised well enough.

Conclusions and future works. Presented results show that tool based on

knowledge presented in this article is not far behind typical commercial products.

Considering the fact the compiler was in its beta version, and there are still a lot

of things which could be better implemented, the obtained performance is quite

promising. The results proved that Boolean equations can be used as an output

format of a synthesis compiler.

Future works should concern possible performance improvement and addi-

tion of synthesis control options for a compiler. It would give designers better

way to implement their projects.

VHDL – îäíà ç íàéïîïóëÿðí³øèõ ìîâ, ÿê³ âèêîðèñòîâóþòü ó çàñîáàõ ëîã³÷íîãî ñèíòåçó.

Âîíà âì³ùóº áåçë³÷ îïåðàòîð³â, ùî çàáåçïå÷óþòü ³¿ ïîòóæí³ñòü òà ãíó÷ê³ñòü, òîìó ñòâîðåí-

íÿ êîìï³ëÿòîðà ìîâè VHDL, îð³ºíòîâàíîãî íà âèêîðèñòàííÿ ó ëîã³÷íîìó ñèíòåç³ º ñêëàä-

íîþ çàäà÷åþ. ²íôîðìàö³ÿ ïðî àëãîðèòìè òðàíñëÿö³¿, ùî íàäõîäèòü â³ä ðîçðîáíèê³â VHDL,

º íåäîñòàòíüîþ äëÿ ñòâîðåííÿ òåõí³÷íèõ çàñîá³â. Ðîçðîáëåíî àëãîðèòìè äëÿ äåÿêèõ ïî-

ñë³äîâí³ñíèõ îïåðàòîð³â ìîâè VHDL. Çàïðîïîíîâàíå ð³øåííÿ ðåàë³çîâàíî ó êîìï³ëÿòîð³,

ÿêèé âèêîðèñòîâóº ëîã³÷í³ ð³âíÿííÿ ÿê âèõ³äíèé ôîðìàò. Íàâåäåíî ðåçóëüòàòè òåñò³â,

âèêîíàíèõ äëÿ ïåðåâ³ðêè ìåæ ìîæëèâîñò³ ïðàêòè÷íîãî âèêîðèñòàííÿ çàïðîïîíîâàíèõ

àëãîðèòì³â.

1. Clive «Max» Maxfield.—Design Warrior’s Guide to FPGAs. — Elsevier, 2004. — 560 p.

2. IEEE Standard VHDL Language Reference Manual.— IEEE Std 1076-1987. — IEEE Stan-

dards Board, 1991.

Translation of VHDL Sequential Statements

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2008. Ò. 30. ¹ 2 79

3. Greiner A., Pecheux F. Alliance: A complete set of cad tools for teaching VLSI design.—

1992. — 8 p.

4. Equipe Achitecture des Syst�mes et Micro-�lectronique.// Alliance: A Complete CAD Sys-

tem for VLSI Design. — Laboratoire MASI/CAO-VLSI, Institut de Programmation Univer-

sit� Pierre et Marie Curie (PARIS VI). — 2004. — 12 p.

5. Equipe Achitecture des Syst�mes et Micro-�lectronique// Alliance documentation for ver-

sion 3.2.— Laboratoire MASI/CAO-VLSI, Institut de Programmation Universit� Pierre et

Marie Curie (PARIS VI). — 1992. — http://www-asim.lip6.fr/recherche/alliance/olddoc/.

6. Equipe Achitecture des Syst�mes et Micro-�lectronique// Alliance documentation for ver-

sion 5.0. — Laboratoire MASI/CAO-VLSI, Institut de Programmation Universit� Pierre et

Marie Curie (PARIS VI).— http://www-asim.lip6.fr/recherche/alliance/doc/.

7. Eles P., Kuchcinski K., Peng Z., Minea M. Compiling VHDL into a high-level synthesis de-

sign representation// EURO-DAC ‘92: Proc. of the conference on European design automa-

tion. — Los Alamitos, CA, USA, 1992. — P. 604—609.

8. Eles P., Minea M., Kuchcinski K., Peng Z. Synthesis of VHDLl concurrent processes//

EURO-DAC ‘94: Proc. of the conference on European design automation. — Los Alamitos,

CA, USA. — 1994. — P. 540—545.

9. Eles P., Kuchcinski K., Peng Z. Synthesis of systems specified as interacting VHDLl pro-

cesses. — Integr. VLSI J, 1996. — P. 113—138.

10. Peng Z. Synthesis of VLSI systems with the CAMAD design aid// DAC ‘86: Proc. of the

23rd ACM/IEEE conference on Design Automation. — Piscataway, NJ, USA. — 1986. —

P. 278—284.

11. Mekenkamp G. E. A New Approach to VHDL-Based Synthesis// PhD thesis University of

Twente, January 1998. — 150 p.

12. Molenkamp B. E., Hofstede J., Krol T. , Mekenkamp G. E., Middelhoek P. F. A. A syntax

based VHDL to CDFG translation model for high-level synthesis// VIUF Proc. Spring 1996,

February 1996. — P. 89—97.

13. Molenkamp E., Mekenkamp G. E., Hofstede J., Krol T. Sil: an intermediate for syntax based

VHDL synthesis// VIUF Proc., April 1995. — P. 5.1—5.9.

14. MAX+PLUS II Getting Started Manual.— 8.1 edition. Altera Corporation, 1997.— P. 114—

116.

15. Quartus II Version 5.0 Handbook.— Altera Corporation.— www.altera.com, 2005.

16. Bielecki W. Kompilator j�zyka VHDL do projektowania uk�ad�w logicznych.— Pracownia

Poligraficzna Wydzia�u Informatyki Politechniki Szczeci�skiej, 2002. — P. 1—12.

17. Liersz M. K. Algorytm generowania r�wna� boolowskich dla instrukcji przypisania

zawieraj	cej odwo�ania do tablic w j�zyku VHDL//Kompilator j�zyka VHDL do projek-

towania uk�ad�w logicznych. — Wydzia� Informatyki Politechniki Szczeci�skiej, 2002. —

P. 67—74.

18. Moscicki M. Generowanie r�wna� boolowskich dla funkcji i procedur j�zyka VHDL//

Kompilator j�zyka VHDL do projektowania uk�ad�w logicznych.—Wydzia� Informatyki

Politechniki Szczeci�skiej, 2002. — P. 123—132.

19. Bhasker J. A VHDL Synthesis Primer — Second Edition. — Star Galaxy Publishing, 1998. —

320 p.

Ïîñòóïèëà 17.12.07

M. Radziewicz

80 ISSN 0204–3572. Electronic Modeling. 2008. V. 30. ¹ 2

�

�

�

�

�

�

