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The paper is devoted to the elaboration and implementation of block-parallel asynchronous algo-

rithms for computer tomography. The numerical reconstruction algorithms and numerical simu-

lation results for a number of modeling objects and some particular systems of reconstruction are

presented.

Ðàçðàáîòàíû è âûïîëíåíû áëî÷íî-ïàðàëëåëüíûå àëãîðèòìû êîìïüþòåðíîé òîìîãðàôèè.

Ïðåäñòàâëåíû ÷èñëåííûå àëãîðèòìû âîññòàíîâëåíèÿ è ðåçóëüòàòû ÷èñëåííîãî ìîäåëè-

ðîâàíèÿ äëÿ ðÿäà òåñòîâûõ çàäà÷ è íåêîòîðûõ ÷àñòíûõ ñëó÷àåâ ñèñòåì ðåêîíñòðóêöèè

ñáîðà äàííûõ.

K e y w o r d s: computer tomography, incomplete projection data, asynchronous algorithms,

computer reconstruction, block-parallel algorithms.

Introduction. Some parallel implementations of iterative algebraic algorithms

for image reconstruction for some particular reconstruction schemes which arise

in some problems of engineering geophysics and mineral industry are consid-

ered in the paper. In such computing structure each elementary processor exe-

cutes its independent calculations by means of the same simple algorithms con-

nected with a set of corresponding equations.

It is assumed that each processor executes its calculations with its own

pace and the communication channels are allowed to deliver messages out of

order. In this case this results in the chaotic character of interactions in such

computer parallel structure (CPS) which corresponds to some chaotic iterative

algorithm. This algorithm realized on such CPS is based on the asynchronous

methods [1—3].
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In order to reduce the computation time and memory space of the computer

other algebraic algorithms were proposed which allow their parallelization and

may be realized on the fast massively parallel computing systems (MPCS) con-

sisting of elementary processors and a central processor [4—6].

We represent in this paper some kinds of the block-parallel asynchronous

algorithms for image reconstruction which are a certain generalization of paral-

lel chaotic iteration methods considered by Bru, Elsner and Neumann [7].

Numerical simulation of the solving the problems of image reconstruction from

incomplete projection data for some modeling objects, comparing the errors evalua-

tions and rate of convergence of these algorithms are presented. It is shown that for

some choice of parameters one can obtain a good quality of reconstruction with

these algorithms, and that these algorithms have much higher rate of convergence

in comparison with the corresponding synchronous algorithms.

Block-parallel iterative algorithms for image reconstruction. Certain

parallel and block-iterative algorithms are used in the paper, some of which

were considered in papers [8—10], for solving the system of linear equations

A x p� � , (1)
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where a
i
is i-th row of a matrix A, � is a relaxation parameter.

A l g o r i t h m 1 (PART).

1. x R
( )0
�

n
is an arbitrary vector.

2. The k + 1-th iteration is calculated in accordance with such a scheme:
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where P
i

k� are operators defined by (3) and (4),�k are relaxation parameters, C

is a constrained operator and B i
k

are matrices of dimension n n� with real

nonnegative elements and
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for all k N� , where E is the unit matrix of dimension n n� .

The parallel implementation of this algorithm may be organized as follows:

begin

x
(0)

=initial

for k = 0, 1, ... until convergence

do

for i-th processor, i = 1 to m

do

y i
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be a diagonal matrix with elements 0 1� �� jj
i

. If � �jj
i

i�

for each j J� , i I� , C = I, then there results the Cimmino algorithm [11].

The sufficient conditions of convergence of algorithm 1 are given by the fol-

lowing theorem.

Theorem 1. If system (2) is consistent and 0 <�k < 2, then the sequence

{ }
( )

x
k

k�
�

1
defined by algorithm 1 converges to some solution of the system (2).

For many practical applications x 
 0, the elements of a matrix A = (aij) are

nonnegative real numbers and pi > 0 for all i I� . In this case the following paral-

lel multiplicative algorithm is proposed for solving a system of linear inequali-

ties (2).

A l g o r i t h m 2 (MARTP).
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and x

(0)
> 0.

2. The k +1-th iteration is calculated in accordance with such a scheme:
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The parallel realization of this algorithm may be given in such a form:

begin

x
j

( )0
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for k = 0,1, ... until convergence

do
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do
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The similar algorithms for image reconstruction were considered in works

[11—12].

The sufficient conditions of convergence of the algorithm 2 are given by the

following theorem.

Theorem 2. Let system (2) be consistent and have if only one positive solu-

tion. If aij 
 0, a
i
� 0, pi > 0,
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, the sequence { }

( )
x

k
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1
defined by the algorithm 2

converges to some solution of the system (2).
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The proofs of theorems 1 and 2 are presented in [9].

These algorithms may be realized on parallel computing structures consist-

ing of m elementary processors and one central processor. On each (k + 1)-th

step of iteration every i-th elementary processor computes the coordinates of

vector y
k,i

in accordance with formula (5) or (8) and then the central processor

computes the (k + 1)-th iteration of the image vector x in accordance with for-

mula (6) or (7).

The main defect of parallel algorithms considered above is their practical re-

alization on parallel computational structures because it needs a lot of local pro-

cessors in such MPCS. In order to reduce the number of required local proces-

sors we consider a block-iterative additive and multiplicative algorithms.

For this purpose decompose the matrix A and the projection vector p into

M subsets in accordance with decomposition {1, 2, ..., m} = H H H M1 2
� � �... ,

where

H m m mt t t t� 	 	
� �

{ , , ..., }
1 1

1 2 , 0 = m 0 < m1 < ... < mM = m . (9)

A l g o r i t h m 3.

1. x R
( )0
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n
is an arbitrary vector.

2. The k +1-th iteration is calculated in accordance with such a scheme:
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where t (k) = k (mod M) +1, P
i

k� are operators defined by (3) and (4), �k are re-

laxation parameters, C is a constrained operator and B i
k

are matrices of dimen-

sion n n� with real nonnegative elements and
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ffor all k N� , where E is the unit matrix of the dimension n n� . The parallel im-

plementation of this algorithm can be described as follows:
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or may be given by such a form:

begin

x
(0)

= initial

for k = 0, 1, ... until convergence

do

t(k) = k(mod M) +1

do

for i-th processor, i H t�
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The conditions of convergence of algorithm 3 may be given by the follow-

ing theorem.

Theorem 3. If system (2) is consistent and ���k � 2 , then for every point

x R
( )0
�

n
the sequence{ }

( )
x

k
k�
�

1
defined by algorithm 3 converges to some so-

lution of the system (2).

The block-iterative algorithms represent examples of sequential-parallel al-

gorithms. They may be considered as an intermediate version between sequen-

tial algorithms and full parallel ones. In each step of iterative process the

block-iterative algorithm uses simultaneously information about all equations

concerning the given block.

Block-iterative algorithms may be also considered in the case of multiplica-

tive algorithms. In this case the following algorithm is obtained.

A l g o r i t h m 4 (BMART).

1. x R
( )0
�

n
and x
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2. The k + 1-th iteration is calculated in accordance with such a scheme:
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where � ij
k

are positive real numbers such that

�� �aij

i H

ij
k

t k�

� �

( )

1

for every j, k ; Ht(k) are defined in accordance with (9), and t (k) is almost cycle

control sequence. If � �ij
k

i
� for all k, j and0 1� �aij ,

i H
i

t k�

� �

( )

� 1, then as a re-

sult the block-iterative multiplicative algorithm proposed in [6] is obtained.

The conditions of convergence are the same as for the algorithm 2.

Block-parallel asynchronous algorithms for computer tomography. In

this section the generalized model ofa asynchronous iterations, considered in

[13], is applied for implementation of block-parallel algorithms on nonsynchro-

nous computer structure. We shall use the basic notions of the theory of asyn-

chronous iterations which were introduced by Chazan and Miranker in [3] and

Baudet in [1] (see, also [14]).
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Applying the generalized model of asynchronous iterations for implementa-

tion of algorithm BPART on nonsynchronous computer structure results in ob-

taining the following algorithm, where the numbers of operators are chosen in

the chaotic way:

A l g o r i t h m 5.

1. x R
( )0
�

n
is an arbitrary vector.

2. The k + 1-th iteration is calculated in accordance with such a scheme:

x C B P x
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,

where P
i

k� are operators defined by (3) and (4), �k are relaxation parameters, C
is a constrained operator, t (k) = Ik, I I k k�

�

�

{ }
0

is a sequence of chaotic sets such

that I mk  { , , ..., }1 2 and B i
k

are matrices of dimension n n� with real non-

negative elements which satisfy the conditions of (10), J ki
i

k�
�

�

{ ( )}�
1

are se-

quences of delays.

The convergence of this algorithm is given by the following theorem.

Theorem 4. Let system (1) be consistent, I I k k�
�

�

{ }
0

be a regular sequence

of chaotic sets I mk  { , ,..., }1 2 with the number of regularity T, J ki
i
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�
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{ ( )}�
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be sequences with limited delays and � �j
i

i
k k( ) ( )� , and let the number of de-

lays be equal to T. Then for every point x R
( )0
�

n
the sequence{ }

( )
x

k
k�
�

1
defined

by algorithm 5 converges to some point x
*
�H, which is a fixed point of or-

thogonal projection operators Pi (i = 1, 2, ..., m).

The full proof of this theorem one can find in [9]. In this paper the con-

strained operator C is given in the form C = C1 C2, where
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if and

otherwise.

Computer simulation and experimental results. In this section we pres-

ent some numerical results of applying the special cases of block-parallel algo-

rithm BPART-3 and chaotic block-parallel algorithm CHBP-3 considered in the

previous sections for the reconstruction of high contrast objects from incom-

plete projection data in the case when they are not available at each angle of view

and they are a few-number limited. The influence of various parameters of these

algorithms such as a pixel initialization, relaxation parameters, the number of it-

erations and noise in the projection data on reconstruction quality and conver-

gence of these algorithm are also studied there.
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In dependence on obtaining the system of projections there are many image

reconstruction schemes. In some practical problems, in engineering for exam-

ple, it is impossible to get projections from all directions because of the existing

of some important reasons (such as situation, size or impossibility of an access to

a research object). This situation arises, for example, in the coal bed working.

In this paper the goodness of the applied algorithm of reconstruction was

tested for different kinds of geometric figures and reconstruction schemes.

The discrete functions with high contrast were chosen to illustrate the im-

plementation of these algorithms working with incomplete data. The results pre-

sented in this paper are given for the following function:

f x y

x y D E

x y D E

x y D( , )

, ( , ) ;

, ( , ) ;

, ( , )�

�   

�   

�  

1

2

3

1

2

2

2

3

R

R

E

x y D E

 

�   

�

�

!

!

!




!

!

!

R

R

2

4

2
4

0

;

, ( , ) ;

, otherwise,

where E is a square E x y x y� � � �{( , ): , }1 1 , and Di are subsets of E of the fol-

lowing form:

D1 = [– 0.7,�0.4] � [– 0.5,0.2], D2= [– 0.2,0.2] � [– 0.1,0.1],

D3 = [– 0.2,0.2] � [0.3,0.5], D4 = [0.4,0.7] � [0.4,0.7].

The plot of this function is given in Fig. 1. The results for image reconstruc-

tions are represented for only two different schemes, which are described in [14]
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and were called system (1 � 1) and (1 � 1, 1 � 1). Both of these systems are

shown in Fig. 2.

In the first scheme of obtaining the projection data, which we shall call the

system (1 � 1), we have an access to the research object from only two opposite

sides. This situation often arises in engineering geophysics. In this case the

sources of rays are located only on one side and the detectors are located on the

opposite side of the research part of a coal bed. This scheme of information ob-

taining is shown in Fig. 2.

The convergence characteristics of image reconstruction are given in a view

of plots for the following measures of errors:

the absolute error: " ( , ) ( , )
~

( , )x y f x y f x y� � ;

the maximal absolute error: # � �max
~

i
if f ;

the maximal relative error:

"
1

100�

�max
~

max

%
i

i i

i
i

f f

f
;

the mean absolute error:

"
2

1
� ��

n
f fi i

i

~
,

where fi is the value of the given modeling function in the center of the i-th pixel

and
~
f i is the value of the reconstructed function in the i-th pixel. As the result of

computer simulation it was assumed, that n is the number of pixels, i.e. the

number of variables; m is the number of rays, i.e. the number of equations; M is

the number of blocks; iter is the number of full iterations.
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In all experiments it was also assumed that M is equal to the number of de-

tectors; the sequence of chaotic sets Ik has the form {$ k }, where $ k is an integer

random variable in the interval [1, m] with uniform distribution; the reconstruc-

tion domain E x y x y� � � �{( , ): , }1 1 was divided into n = 20 � 20 pixels; the

number of projections m in the system (1 � 1) is equal to 788, and in the system

(1�%&'%�1) the number m = 644.

The results of image reconstructions for f x y( , ) with block-parallel algo-

rithm BPART-3, and chaotic block-parallel algorithm CHBP-3 in the system

(1�1, 1�1) for the same parameters are given in Fig. 3.

The plots, which are presented in Fig. 4, illustrate the dependence of the

maximum relative error and the mean absolute error on the number of iterations

of image reconstruction of f x y( , ) with algorithms BPART-3 and CHBP-3 in

the system (1�1, 1�1). Table 1 shows the dependence of the maximum absolute

error # on the number of iterations for algorithms BPART-3 and CHBP-3 in the

system (1�1, 1�1).

The results of reconstruction of the function f x y( , ) with algorithm BPART-3

and CHBP-3 in the system (1�1, 1�1) is shown in Fig. 5.

N. Gubareni, M. Pleszczynski

50 ISSN 0204–3572. Electronic Modeling. 2009. V. 31. ¹ 5

15

15

5

5
10

10

0

1

2

3

4

20

20

15

15
5

5
10

10

0

1

2

3

4

20

20

15

15

5

5

10

10

0

0.002

0.004

0.006

0.008

20

20

15

15
5

5
10

10

0

0.001

0.002

0.003

0.004

20

20

a

b

Fig. 3. The image reconstruction and the absolute error for f (x, y) obtained with algorithm

BPART-3 (a) and algorithm CHBP-3 (b) for n = 20 � 20, m = 644, M = 36, iter = 75 in the sys-

tem (1 � 1, 1 � 1)



The plots presented in Fig. 6 illustrate the dependence of the maximum rela-

tive error and the mean absolute error on the number of iterations of image re-

construction of f x y( , ) with algorithms BPART-3 and CHBP-3 in the sys-

tem (1 � 1).

Table 2 shows the dependence of the maximum absolute error # on the

number of iterations for algorithms BPART-3 and CHBP-3 in the system (1 � 1).

All experimental results in the case of reconstruction of objects from limited

projection data show that the errors of reconstruction with algorithms BPART-3

and CHBP-3 are constantly reduced with increasing the number of iterations.
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Fig. 4. Dependence of the mean absolute error "2 and the maximum relative error "1 on the num-

ber of iterations for image reconstruction of f x y( , ) with algorithm BPART-3 and CHBP-3 in

the system (1 � 1, 1 � 1)

Iter BPART-3 CHBP-3

10 0.4640 0.2112

20 0.1973 0.0478

40 0.0293 0.0054

50 0.0113 0.0018

100 0.0001 0.000001

Table 1

Iter BPART-3 CHBP-3

100 0.1902 0.2668

200 0.0883 0.1345

500 0.0146 0.0168

1000 0.0007 0.0006

2000 2.109 �10
–6

7.872 � 10
–7

Table 2



The obtained results also show that chaotic algorithm CHBP-3 gives better re-

sults as compared with block-parallel algorithm BPART-3.

Table 3 shows the number of iterations required for obtaining the image re-

construction with a given maximum relative error "
2

for the considered algo-

rithms BPART-3, CHBP-3 and for the considered systems.
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Fig. 5. The image reconstruction and the absolute error for f x y( , )obtained with BPART-3 (a)

and algorithm CHBP-3 (b) for n = 20 � 20, m = 788, M = 28 in the system (1 � 1): a — iter = 600;

b – iter = 200

(1�1, 1�1) (1�1)

"
2
, %

BPART-3 CHBP-3 BPART-3 CHBP-3

13 24 74 95 <10

23 30 178 148 <5

47 46 953 271 <1

60 53 271 340 <0,5

Table 3



All algorithms were implemented on IBM/PC (processor AMD Duron XP,

1600 MHz) by means of C++ and MATHEMATICA 5.1. One iteration by

means of Mathematica 5.1 was implemented approximately 1s for algorithm

BPART-3 and CHBP-3, and in C++ one iteration for both algorithms is imple-

mented in a real time.

Conclusion. New chaotic iterative algorithms for image reconstruction are

presented in the paper. These algorithms can be realized on a parallel computing

structure consisting of elementary processors and some central processor, all of

which are connected with shared memory. The quality and convergence of these

algorithms were studied by computing simulation on sequential computer. The

experimental results show that convergent characteristics of block-parallel cha-

otic algorithm CHBP-3 are better as compared with block-parallel algorithm

BPART-3. Taking into account that the time of implementation of block-parallel

computer algorithm on parallel computer is approximately M times less (where

M is the number of processors) in comparison with a sequential computer, it fol-

lows from results of computer simulation that the time characteristics of block-

parallel algorithms are better as compared with sequential ART-3. It also fol-

lows from our experiments that the configuration (1�1, 1�1) is considerably

better as compared with the scheme (1�1). And for each considered scheme of

reconstruction there exist the parameters which allow to obtain a rather good

quality of reconstruction after some number of iterations, but this number is

considerably larger than that for reconstruction with complete projection data.

The number of iterations for achieving the stable reconstruction is approxi-

mately two times more for the second scheme in comparison with the first one.

And this number is approximately 10 times more for the scheme (1�1, 1�1) in

comparison with the case of complete data.
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Fig. 6. Dependence of the mean absolute error "2 and the maximum relative error "1 on the num-

ber of iterations for image reconstruction of f x y( , ) with algorithm BPART-3 and CHBP-3 in

the system (1 � 1)
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