©2007. **Масюта Е.А.**

МНОГООБРАЗИЕ САМОСОПРЯЖЕННЫХ ОПЕРАТОРОВ, ОБЛАДАЮЩИХ ИЗОЛИРОВАННЫМ СОБСТВЕННЫМ ЗНАЧЕНИЕМ

В статье рассматривается подмножество самосопряженных операторов, у которых определенные собственные значения обладают фиксированной кратностью. С помощью метода, предложенного D.Fujiwara, M.Tanikawa, Sh. Yukita, показывается, что исследуемое подмножество является банаховым подмногообразием, коразмерность которого зависит только от кратности отслеживаемых собственных значений и вычисляется по формуле, предложенной В.И.Арнольдом.

 ${\it Knove6ыe~c.no6a:}$ кратность собственного значения, многообразие самосопряженных операторов

MSC (2000): 35305

Введение.

В своей работе [1] В.И.Арнольд обратил внимание на то, что самосопряженные конечномерные операторы, у которых определенное собственное значение имеет определенную кратность, образуют подмногообразие в пространстве всех операторов, причем коразмерность этого подмногообразия зависит только от кратности собственного значения и не зависит ни от номера собственного значения, ни от размерности объемлющего пространства. Также им была выведена формула коразмерности таких подмногообразий. Гипотеза В.И.Арнольда состоит в том, что это наблюдение справедливо для естественных семейств самосопряженных операторов.

Для случая компактных операторов гипотеза рассматривалась в работах группы японских математиков D.Fujiwara, M.Tani-kawa, Sh.Yukita [2], итальянских - D.Lupo и A.M.Micheletti [3], а также в работах Я.М.Дымарского (например, в [4]).

В настоящей работе исследуется случай ограниченных самосопряженных операторов, имеющих изолированное собственное значение фиксированной кратности. С помощью метода работы [2] подтверждается гипотеза Арнольда – рассматриваемые операторы образуют многообразие, коразмерность которогозави-

сит только от кратности отслеживаемого собственного значения. Также получен подобный результат и для случая самосопряженных операторов, имеющих счетное число изолированных собственных значений.

Автор выражает благодарность Я.М.Дымарскому за постановку проблемы и подробное обсуждение.

1. Вспомогательная лемма.

Здесь пойдет речь о диффеоморфизме, введенном в работе [2]. Мы дадим основные определения, сформулируем и докажем вспомогательную лемму.

Итак, пусть H — вещественное гильбертово сепарабельное пространство со скалярным произведением $\langle \cdot, \cdot \rangle$. L_s — банахово пространство ограниченных самосопряженных операторов. Пусть A^0 — фиксированный оператор из L_s , $V_\varepsilon(A^0) = \{A: \|A-A^0\| < \varepsilon\}$, λ^0 — изолированная точка спектра оператора A^0 . Тогда [6] λ^0 — это изолированное собственное значение (и только) оператора A^0 некоторой кратности $m \leq \infty$. Обозначим через $L_s(A^0, \varepsilon, m) \subset L_s$ множество всех таких операторов A, что:

- 1. $A \subset V_{\varepsilon}(A^0)$;
- 2. $\exists \ \lambda \in (\lambda^0 \varepsilon; \lambda^0 + \varepsilon)$ изолированное в указанной окрестности собственное значение для оператора A.

Ниже будет показано, что при малом ε кратность отслеживаемого собственного значения $\lambda(A) \in (\lambda^0 - \varepsilon; \lambda^0 + \varepsilon)$ равна m. Поэтому в обозначении $L_s(A^0, \varepsilon, m)$ мы поставили m.

Определим локальный диффеоморфизм в окрестности $V_{\varepsilon}(A^0)$. Пусть $H_1 \subset H$ — собственное подпространство A^0 , порожденное собственными векторами, которые отвечают собственному значению λ_0 ; $\{u_1^0, u_2^0, \ldots\}$ — ортонормированный базис в H_1 . Пусть H_{\perp} — ортогональное дополнение к H_1 в H. Обозначим через ν_1 и ν_{\perp} ортогональные проекторы на H_1 и H_{\perp} соответственно. Понятно, что оператор B представим в виде $B = B_{11} + B_{1\perp} + B_{\perp 1} + B_{\perp \perp}$ или блочном виде

$$B = \begin{pmatrix} B_{11} & B_{1\perp} \\ B_{\perp 1} & B_{\perp \perp} \end{pmatrix}.$$

Определим антисимметрический оператор $Ant(B) = -B_{1\perp} + B_{\perp 1}$ и самосопряженный блочно-диагональный оператор $Diag(B) = B_{11} + B_{\perp \perp}$.

Рассмотрим отображение

$$\Psi: L_s \to L_s \ \Psi(B) = \exp(Ant(B))(A^0 + Diag(B))(\exp(-Ant(B)),$$
где операторная экспонента $\exp(C) = E + C + \frac{1}{2!}C^2 + \dots$

Лемма 1. Существует такое $\varepsilon > 0$, что отображение Ψ диффеоморфно отображает некоторую окрестность $V(0) \subset L_s$ нуля пространства L_s на ε -окрестность $V_{\varepsilon}(A^0) \subset L_s$ точки A^0 .

Доказательство. Сначала покажем, что отображение Ψ действует из L_s в L_s . Рассмотрим экспоненту $\exp(Ant(B)) = U$ от антисимметрического оператора. Известно [7], что это изометрический изоморфизм. Следовательно, операторы $A^0 + Diag(B)$ и $\Psi(B)$ ортогонально эквивалентны. Так как $A^0 + Diag(B) \in L_s$, то и $\Psi(B) \in L_s$. Убедимся в том, что $\Psi(0) = A^0$:

$$\Psi(0) = \exp(Ant(0))(A^0 + Diag(0)) \exp(-Ant(0)) = E(A^0 + 0)E = A^0.$$

Отображение Ψ , в силу определения, бесконечно дифференцируемо. Найдем производную $D\Psi(0)$ в точке $0 \in L_s$ и докажем что она является линейным изоморфизмом. Тогда утверждение леммы непосредственно будет следовать из теоремы о существовании обратного отображения. Чтобы найти производную оператора Ψ , разложим операторную экспоненту в ряд, а затем выделим линейную часть:

$$\Psi(0 + \Delta B) - \Psi(0) =$$

$$= \exp(Ant(\Delta B))(A^0 + Diag(\Delta B)) \exp(-Ant(\Delta B)) - A^0 =$$

$$= (E + Ant(\Delta B) + \frac{1}{2!}(Ant(\Delta B))^2 + \dots)(A^0 + Diag(\Delta B)) \times$$

$$\times (E - Ant(\Delta B) + \frac{1}{2!}(Ant(\Delta B))^2 - \dots) - A^0 =$$

$$= Diag(\Delta B) + Ant(\Delta B) \cdot A^0 - A^0 \cdot Ant(\Delta B) + o(\Delta B),$$

где
$$\lim_{\Delta B \to 0} \frac{\|o(\Delta B)\|}{\|\Delta B\|} = 0.$$

Следовательно

$$D\Psi(0)\Delta B =$$

$$= Diag(\Delta B) + (Ant(\Delta B) \cdot A^{0} - A^{0} \cdot Ant(\Delta B)) =$$

$$= \begin{pmatrix} \Delta B_{11} & 0 \\ 0 & \Delta B_{\perp \perp} \end{pmatrix} + \begin{pmatrix} 0 & -\Delta B_{1\perp} \cdot A_{\perp \perp}^{0} \\ \Delta B_{\perp 1} \cdot A_{11}^{0} & 0 \end{pmatrix} - \begin{pmatrix} 0 & -A_{11}^{0} \cdot \Delta B_{1\perp} \\ A_{\perp \perp}^{0} \cdot \Delta B_{\perp 1} & 0 \end{pmatrix}. \tag{1}$$

Покажем, что $D\Psi(0)$ является биекцией. Поскольку произвольные операторы $\Delta B, C \in L_s$ единственным образом представимы в виде:

$$\Delta B = Diag(\Delta B) + \Delta B_{1\perp} + \Delta B_{\perp 1},$$

$$C = Diag(C) + C_{1\perp} + C_{\perp 1},$$

то решение относительно ΔB уравнения $D\Psi(0)\Delta B=C$ равносильно системе:

$$Diag(\Delta B) = Diag(C);$$
 (2)

$$C_{1\perp} = A_{11}^{0} \cdot \Delta B_{1\perp} - \Delta B_{1\perp} \cdot A_{\perp\perp}^{0},$$

$$C_{\perp 1} = \Delta B_{\perp 1} \cdot A_{11}^{0} - A_{\perp\perp}^{0} \cdot \Delta B_{\perp 1}.$$
(3)

Первое уравнение полученной системы тривиально разрешимо относительно $Diag(\Delta B)$. Уравнения (3) очевидно сопряжены, поэтому достаточно исследовать первое. Учитывая, что

$$A^{0} = Diag(A^{0}) = \lambda^{0} E_{11} + A_{\perp \perp}^{0},$$

получаем

$$A_{11}^{0} \cdot \Delta B_{1\perp} - \Delta B_{1\perp} \cdot A_{\perp\perp}^{0} =$$

$$= \lambda^{0} \Delta B_{1\perp} - \Delta B_{1\perp} \cdot A_{\perp\perp}^{0} = \Delta B_{1\perp} (\lambda^{0} E_{\perp\perp} - A_{\perp\perp}^{0}).$$

Поэтому уравнение (3) равносильно уравнению

$$C_{1\perp} = \Delta B_{1\perp} (\lambda^0 E_{\perp\perp} - A^0_{\perp\perp}).$$

Поскольку λ^0 не является точкой спектра оператора $A^0_{\perp\perp}$, то оператор $(\lambda^0 E_{\perp\perp} - A^0_{\perp\perp})$ является изоморфизмом. Следовательно, существует обратный оператор $(\lambda^0 E_{\perp\perp} - A^0_{\perp\perp})^{-1}$, поэтому

$$\Delta B_{1\perp} = C_{1\perp} \cdot (\lambda^0 E_{\perp\perp} - A_{\perp\perp}^0)^{-1}, \ \Delta B_{\perp 1} = (\lambda^0 E_{\perp\perp} - A_{\perp\perp}^0)^{-1} \cdot C_{\perp 1}.$$

Итак, $D\Psi(0)\Delta B$ – биекция. И, следовательно, лемма доказана. \square

2. Основная теорема.

Мы будем следить за одним изолированным собственным значением фиксированной кратности. Определим линейные функционалы

$$l_{ij}: L_s \to \mathbf{R}, \quad l_{ij}(B) := \langle Bu_i, u_j \rangle - \delta_{ij} \langle Bu_1, u_1 \rangle,$$
 (4)

где $1 \leq i \leq j \leq m$, если m конечно, и $1 \leq i \leq j < \infty$, если m бесконечно, $i \cdot j > 1$, δ_{ij} – символ Кронекера.

Сформулируем основной результат.

Теорема 1. Справедливы следующие утверждения:

- 1. Существует такое малое $\varepsilon > 0$, что $L_s(A^0, \varepsilon, m) \subset L_s$ является C^{∞} -подмногообразием.
- 2. Кратность собственного значения λ оператора $A \in L_s(A^0, \varepsilon, m)$ равна m.
- 3. Если $m<\infty$, то коразмерность $L_s(A^0,\varepsilon,m)$ вычисляется по формуле Арнольда:

$$co \dim L_s(A^0, \varepsilon, m) = \frac{(m-1)(m+2)}{2}.$$

4. Если $m = \infty$, то со dim $L_s(A^0, \varepsilon, \infty) = \infty$.

5. Подмногообразие $L_s(A^0,\varepsilon,m)$ определяется следующим образом:

$$L_s(A^0, \varepsilon, m) =$$

$$= \{ C \in V_{\varepsilon}(A^0) : \langle \Psi^{-1}(C)u_i, u_j \rangle - \delta_{ij} \langle \Psi^{-1}(C)u_1, u_1 \rangle = 0 \},$$

где $1 \leq i \leq j \leq m$, если m конечно, и $1 \leq i \leq j < \infty$, если m бесконечно, $i \cdot j > 1$.

6. Касательное пространство $T_{A^0}L_s(A^0, \varepsilon, m)$ в точке A^0 определяется условиями:

$$T_{A^0}L_s(A^0, \varepsilon, m) = \{B \in L_s : l_{ij}(B) = 0\}$$
 (5)

где $1 \leq i \leq j \leq m$, если m конечно, и $1 \leq i \leq j < \infty$, если m бесконечно, $i \cdot j > 1$.

Доказательство. Итак, есть оператор $A^0 = \lambda^0 E_{11} + A_{\perp \perp}^0$. Если m конечномерно, то блок $(\lambda^0 E_{11})$ – конечен, а если $m = \infty$ – бесконечен. Возьмем произвольный оператор вида

$$B = \begin{pmatrix} \delta E_{11} & B_{1\perp} \\ B_{\perp 1} & B_{\perp \perp} \end{pmatrix} \in L_s$$

и применим к нему отображение Ф. Полученный оператор

$$A := \Psi(B) =$$

$$= \exp\begin{pmatrix} 0 & -B_{1\perp} \\ B_{\perp 1} & 0 \end{pmatrix} \times$$

$$\times \begin{pmatrix} (\lambda^0 + \delta)E_{11} & 0 \\ 0 & A_{\perp \perp}^0 + B_{\perp \perp} \end{pmatrix} \exp\begin{pmatrix} 0 & B_{1\perp} \\ -B_{\perp 1} & 0 \end{pmatrix}.$$

Оператор A и оператор

$$\begin{pmatrix} (\lambda^0 + \delta)E_{11} & 0 \\ 0 & A^0_{\perp\perp} + B_{\perp\perp} \end{pmatrix} \in L_s(A^0, \varepsilon, m)$$

ортогонально эквивалентны. Поэтому и $A \in L_s(A^0, \varepsilon, m)$.

Покажем, что с помощью Ψ мы получим все операторы $A \in L_s(A^0,\varepsilon,m)$. Возьмем малый оператор B, у которого $B_{11} \neq \delta E_{11}$. Тогда спектр оператора $(\lambda^0 E_{11} + B_{11} + A_{\perp\perp}^0 + B_{\perp\perp})$ в ε -окрестности

точки λ^0 отличен от изолированной точки. Поэтому спектр унитарно-изоморфного ему оператора $A=\Psi(B)$ обладает тем же свойством. Последнее противоречит определению множества $L_s(A^0,\varepsilon,m)$.

Итак, операторы $A \in L_s(A^0, \varepsilon, m)$ являются образом при диффеоморфизме Ψ операторов, вида $\begin{pmatrix} \delta E_{11} & B_{1\perp} \\ B_{\perp 1} & B_{\perp \perp} \end{pmatrix}$, которые образуют окрестность нуля в замкнутом подпространстве $T_{A^0} \subset L_s$, определяемом условием: блок $B_{11} = \delta E_{11}$ состоит из скалярных операторов и только из них.

Прямым дополнением к подпространству T_{A^0} является замкнутое подпространство T'_{A^0} операторов, удовлетворяющих условию $B=\nu_1B\nu_1=G_{11}$, где G_{11} – произвольный оператор, удовлетворяющий условию: $\langle G_{11}u^0_1,u^0_1\rangle=0$. Очевидно, что $T'_{A^0}\cap T_{A^0}=0\in L_s$ и для любого $B\in L_s$ верно $B=B_1+B_2$, где

$$B_1 = \langle Bu_1^0, u_1^0 \rangle \cdot E_{11} + B_{1\perp} + B_{\perp 1} + B_{\perp \perp} \in T_{A^0},$$

$$B_2 = (B_{11} - \langle Bu_1^0, u_1^0 \rangle \cdot E_{11}) + 0_{1\perp} + 0_{\perp 1} + 0_{\perp \perp} \in T'_{A^0}.$$

Следовательно, подпространство $T_{A^0} \subset L_s$ разлагает пространство L_s . Поэтому [8], образ $\Psi(T_{A^0} \cap V(0)) = L_s(A^0, \varepsilon, m)$ является банаховым подмногообразием.

Заметим, что выполнение условий, определяющих подпространство T_{A^0} , есть выполнение условий (5). Если m конечно, то количество условий подсчитать не трудно – их будет $\frac{(m-1)(m+2)}{2}$ штук. Следовательно, $co \dim L_s(A^0,\varepsilon,m) = \frac{(m-1)(m+2)}{2}$. Если же m бесконечно, то и количество условий бесконечно, следовательно $co \dim L_s(A^0,\varepsilon,\infty) = \infty$.

Покажем, что условия (5) определяют именно касательное пространство к подмногообразию $L_s(A^0,\varepsilon,m)$, то есть $T_{A^0}L_s(A^0,\varepsilon,m)=T_{A^0}$. Так как $L_s(A^0,\varepsilon,m)=Im\Psi(T_{A^0}\cap V(0))$, то $T_{A^0}L_s(A^0,\varepsilon,m)=ImD\Psi(0)(T_{A^0})$. Пусть $\Delta B\in T_{A^0}$. Мы знаем, что $D\Psi(0)\Delta B=Diag(\Delta B)+(Ant(\Delta B)\cdot A^0-A^0\cdot Ant(\Delta B))$. Из (1) следует, что $D\Psi(0)$ не меняет диагональные компоненты. Следовательно $D\Psi(0)(T_{A^0})\subset T_{A^0}$. С другой стороны, $D\Psi(0)$ – линейный изоморфизм, поэтому $D\Psi(0)(T_{A^0})=T_{A^0}$. Итак, $T_{A^0}L_s(A^0,\varepsilon,m)=T_{A^0}$.

Теорема полностью доказана.

3. Случай нескольких собственных значений.

Будем отслеживать конечное число собственных значений конечной или бесконечной кратности.

Пусть A^0 – фиксированный оператор из L_s , у которого имеются изолированные точки спектра $\lambda_1^0,...,\lambda_k^0,...,\lambda_n^0$ (k=1,...,n), которые являются [6] собственными значениями кратности $m_1 \leq \infty, ..., m_k \leq \infty, ..., m_n \leq \infty$ соответственно. Заметим, что k=1,...,n это не номер собственного значения, а внутренняя нумерация выбранных нами изолированных точек спектра оператора A^0 . Понятно, что у оператора A^0 могут быть и другие изолированные собственные значения. Обозначим через $\zeta_n = (m_1, ..., m_k, ..., m_n)$ набор из кратностей выбранных собственных значений оператора A^0 .

Обозначим через $L_s(A^0, \varepsilon, \zeta_n)$ множество таких операторов A, что:

- 1. $A \subset V_{\varepsilon}(A^0) \subset L_s$;
- 2. $\exists \lambda_k \in (\lambda_k^0 \varepsilon; \lambda_k^0 + \varepsilon)$ изолированные в указанных окрестностях собственные значения оператора A.

Определим, как и в пункте I, локальный диффеоморфизм в окрестности $V_{\varepsilon}(A^0)$, согласованный с отслеживаемыми собственными подпространствами. Пусть $H_k \subset H-m_k$ -мерное векторное подпространство порожденное ортонормированными собственными векторами $u_{k,1},\ldots,u_{k,m_k}$, которые отвечают m_k -кратному собственному значению λ_k^0 , где $k=1,\ldots,n$. Пусть H_{\perp} — ортогональное дополнение к $H_1\oplus\ldots\oplus H_n$ в H. Понятно, что оператор A^0 имеет следующий блочный вид:

$$A^{0} = \begin{pmatrix} \lambda_{1}^{0} E_{11} & 0 & 0 & 0\\ & \ddots & & \\ 0 & 0 & \lambda_{n}^{0} E_{nn} & 0\\ 0 & 0 & 0 & A_{\perp \perp}^{0} \end{pmatrix}.$$

Представим произвольный оператор B в блочном виде, согласо-

ванным с разложением на блоки оператора A^0 :

$$B = \begin{pmatrix} B_{11} & \cdots & B_{1n} & B_{1\perp} \\ \vdots & \ddots & \vdots & \vdots \\ B_{n1} & \cdots & B_{nn} & B_{n\perp} \\ B_{\perp 1} & \cdots & B_{\perp n} & B_{\perp \perp} \end{pmatrix}.$$

Определим самосопряженный блочно-диагональный оператор

$$Diag(B) = \begin{pmatrix} B_{11} & 0 & \cdots & 0 & 0 \\ 0 & B_{22} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & B_{nn} & 0 \\ 0 & 0 & \cdots & 0 & B_{\perp \perp} \end{pmatrix}$$

и антисимметрический оператор

$$Ant(B) = \begin{pmatrix} 0 & -B_{12} & -B_{13} & \cdots & -B_{1n} & -B_{1\perp} \\ B_{21} & 0 & -B_{23} & \cdots & -B_{2n} & -B_{2\perp} \\ B_{31} & B_{32} & 0 & \cdots & -B_{3n} & -B_{3\perp} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ B_{n1} & B_{n2} & B_{n3} & \cdots & 0 & -B_{n\perp} \\ B_{\perp 1} & B_{\perp 2} & B_{\perp 3} & \cdots & B_{\perp n} & 0 \end{pmatrix}.$$

Рассмотрим отображение

$$\Psi: L_s \to L_s$$

$$\Psi(B) = \exp(Ant(B))(A^0 + Diag(B))(\exp(-Ant(B)).$$

Лемма 2. Существует такое $\varepsilon > 0$, что отображение Ψ диффеоморфно отображает некоторую окрестность $V(0) \subset L_s$ нуля пространства L_s на ε -окрестность $V_{\varepsilon}(A^0) \subset L_s$ точки A^0 .

Доказательство леммы 2 осуществляется аналогично доказательству леммы 1.

 $D\Psi(0)\Delta B = C$ равносильно системе, аналогичной (2) и (3) :

$$Diag(\Delta B) = Diag(C),$$

$$C_{12} = -\Delta B_{12} A_{22}^0 + A_{11}^0 B_{12}, \quad C_{21} = \Delta B_{21} A_{11}^0 - A_{22}^0 \Delta B_{21},$$

$$C_{13} = -\Delta B_{13} A_{33}^0 + A_{11}^0 \Delta B_{13}, \quad C_{31} = \Delta B_{31} A_{11}^0 - A_{33}^0 \Delta B_{31},$$

$$C_{23} = -\Delta B_{23} A_{33}^0 + A_{22}^0 \Delta B_{23}, \quad C_{32} = \Delta B_{32} A_{22}^0 - A_{33}^0 \Delta B_{32}.$$

Дальнейшие рассуждения в точности повторяют доказательство леммы 1.

Аналогично (4), определим линейные функционалы

$$l_{ij}^k: L_s \to \mathbf{R}, \quad l_{ij}^k(B) := \langle Bu_{k,i}, u_{k,j} \rangle - \delta_{ij} \langle Bu_{k,1}, u_{k,1} \rangle,$$
 (6)

где $1 \le i \le j \le m_k$, если $m_k < \infty$, и $1 \le i \le j < \infty$, если $m = \infty$, $i \cdot j > 1, \ k = 1, \dots, n, \ \delta_{ij}$ – символ Кронекера.

Имеет место

Теорема 2. Справедливы следующие утверждения:

1. Сущестует $\varepsilon > 0$, что $L_s(A^0, \varepsilon, \zeta_n) \subset L_s - C^\infty$ -подмногообразие коразмерности

$$co \dim L_s(A^0, \varepsilon, \zeta_n) = \sum_{i=1}^n \frac{(m_i - 1)(m_i + 2)}{2}.$$

- 2. Кратность собственного значения λ_k оператора $A \in L_s(A^0, \varepsilon, \zeta_n)$ равна m_k , где $k = 1, \ldots, n$.
- 3. Подмногообразие $L_s(A^0, \varepsilon, \zeta_n)$ определяется следующим образом:

$$L_s(A^0, \varepsilon, \zeta_n) = \{ C \in V_{\varepsilon}(A^0) : \langle \Psi^{-1}(C) u_{k,i}, u_{k,j} \rangle - \delta_{ij} \langle \Psi^{-1}(C) u_{k,1}, u_{k,1} \rangle = 0 \},$$

где
$$1 \le i \le j \le m_k$$
, если $m_k < \infty$, и $1 \le i \le j < \infty$, если $m = \infty, i \cdot j > 1, k = 1, \dots, n$.

4. Касательное пространство $T_{A^0}L_s(A^0,\varepsilon,\zeta_n)$ в точке A^0 определяется условиями:

$$T_{A^0}L_s(A^0, \varepsilon, \zeta_n) = \{ B \in L_s : l_{ij}^k(B) = 0 \},$$

где $1 \le i \le j \le m_k$, если $m_k < \infty$, и $1 \le i \le j < \infty$, если $m = \infty, i \cdot j > 1, k = 1, \dots, n$.

Доказательство этой теоремы осуществляется аналогично доказательству теоремы 1. \Box

Рассмотрим теперь самый общий случай счетного числа собственных значений произвольной кратности.

Пусть A^0 — фиксированный оператор из L_s , у которого имеются изолированные точки спектра λ_k^0 ($k=1,2,\ldots$), которые являются собственными значениями кратности $m_k \leq \infty$ соответственно. Обозначим через $\zeta_\infty = (m_1,\ldots,m_k,\ldots)$ счетный набор кратностей собственных значений. Пусть $L_s(A^0,\varepsilon,\zeta_\infty)$ — множество таких операторов A, что:

- 1. $A \subset V_{\varepsilon}(A^0) \subset L_s$;
- 2. $\exists \lambda_k \in (\lambda_k^0 \varepsilon; \lambda_k^0 + \varepsilon)$ изолированные в указанных окрестностях собственные значения оператора A.

Аналогично рассуждениям, приведенным выше, введем блочное разбиение операторов $B \in L_s$ (в этом случае количество блоков бесконечно), определим самосопряженный блочно-диагональный Diag(B) и антисимметрический Ant(B) операторы, локальный диффеоморфизм Ψ в окрестности $V_{\varepsilon}(A^0)$, линейные функционалы (6), где $1 \le i \le j \le m_k$, если $m_k < \infty$, и $1 \le i \le j < \infty$, если $m = \infty, i \cdot j > 1, k = 1, 2, \dots$

Справедлива

Лемма 3. Существует такое $\varepsilon > 0$, что отображение Ψ диффеоморфно отображает некоторую окрестность $V(0) \subset L_s$ нуля пространства L_s на ε -окрестность $V_{\varepsilon}(A^0) \subset L_s$ точки A^0 .

Имеет место

Теорема 3. Справедливы следующие утверждения:

- 1. Сущестует $\varepsilon > 0$, что $L_s(A^0, \varepsilon, \zeta_\infty) \subset L_s C^\infty$ -подмногообразие коразмерности ∞ .
- 2. Кратность собственного значения λ_k оператора $A \in L_s(A^0, \varepsilon, \zeta_\infty)$ равна m_k , где $k=1,2,\ldots$
- 3. Подмногообразие $L_s(A^0, \varepsilon, \zeta_\infty)$ определяется следующим образом:

$$L_s(A^0, \varepsilon, \zeta_\infty) = \{ C \in V_\varepsilon(A^0) : \langle \Psi^{-1}(C) u_{k,i}, u_{k,j} \rangle - \delta_{ij} \langle \Psi^{-1}(C) u_{k,1}, u_{k,1} \rangle = 0 \},$$

где
$$1 \le i \le j \le m_k$$
, если $m_k < \infty$, и $1 \le i \le j < \infty$, если $m = \infty, i \cdot j > 1, k = 1, 2, \dots$

4. Касательное пространство $T_{A^0}L_s(A^0, \varepsilon, \zeta_{\infty})$ в точке A^0 определяется условиями:

$$T_{A^0}L_s(A^0, \varepsilon, \zeta_\infty) = \{ B \in L_s : l_{ii}^k(B) = 0 \},$$
 (7)

где
$$1 \le i \le j \le m_k$$
, если $m_k < \infty$, и $1 \le i \le j < \infty$, если $m = \infty, i \cdot j > 1, k = 1, 2, \dots$

Доказательство. Проводя рассуждения, аналогичные доказательству теоремы 1, можно показать, что операторы $A \in L_s(A^0, \varepsilon, \zeta_\infty)$ являются образом при диффеоморфизме Ψ операторов, близких к нулю, вида

$$B = \begin{pmatrix} \delta_1 E_{11} & B_{12} & B_{13} & \cdots & B_{1\perp} \\ B_{21} & \delta_2 E_{22} & B_{23} & \cdots & B_{2\perp} \\ B_{31} & B_{32} & \delta_3 E_{33} & \cdots & B_{3\perp} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ B_{\perp 1} & B_{\perp 2} & B_{\perp 3} & \cdots & B_{\perp \perp} \end{pmatrix},$$

имеющих бесконечное количество блоков. Эти операторы B образуют окрестность нуля в замкнутом подпространстве $T_{A^0} \subset L_s$, определяемом условием: блоки $B_{kk} = \delta_k E_{kk}$, $(k=1,2,\ldots)$ состоят из скалярных операторов и только из них.

Прямым дополнением к подпространству T_{A^0} является замкнутое подпространство T'_{A^0} операторов, имеющих вид

$$B = \nu_1 B \nu_1 + \nu_2 B \nu_2 + \dots = \begin{pmatrix} G_{11} & 0 & \cdots & 0 \\ 0 & G_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix},$$

где G_{kk} — произвольный оператор, удовлетворяющий условиям: $\langle G_{kk}u_{k,1}^0,u_{k,1}^0\rangle=0,\,k=1,2,\ldots$. Очевидно, что $T'_{A^0}\cap T_{A^0}=0\in L_s$. Следовательно, подпространство $T_{A^0}\subset L_s$ разлагает пространство L_s . Поэтому, образ $\Psi(T_{A^0}\cap V(0))=L_s(A^0,\varepsilon,\zeta_\infty)$ является банаховым подмногообразием.

Выполнение условий, определяющих подпространство T_{A^0} , есть выполнение условий (7) и, очевидно, их будет бесконечное количество. Следовательно, $co \dim L_s(A^0, \varepsilon, \zeta_\infty) = \infty$.

Далее, проводя рассуждения, аналогичные соответствующим рассуждениям в доказательстве теоремы 1, можно показать, что касательное пространство к подмногообразию $L_s(A^0, \varepsilon, \zeta_\infty)$ в точке A^0 есть в точности T_{A^0} .

Теорема доказана.

- 1. *Арнольд В.И.* Моды и квазимоды // Функциональный анализ и его приложения. 1972. 6, №2. с.94-101.
- 2. Fujiwara D., Tanikawa M., Yukita Sh. The spectrum of Laplacian and boundary perturbation. I // Proc. Jap. Acad. Ser. A. 1978. 54, № 4.- p. 87-91.
- 3. Lupo D, Micheletti A.M. On multiple egenvalues of selfadjoint compact operators. // J. Math. Anal. and Appl. -1993. 172. p.106-116.
- 4. *Dymarskii Ya.M.* On manifolds of self-adjoint elliptic operators with multiple eigenvalues // Methods Funct.Anal.Topol. 2001. vol. 7 , \mathbb{N}^2 2. p.68-74.
- Дымарский Я.М. Многообразия самосопряженных операторов с кратными собственными значениями // Матем.физика, анализ, геометрия 2001.
 8, №2. с. 148-157.
- 6. *Хелемский А.Я.* Лекции по функциональному анализу. М.:МЦНМО, 2004. 552 с.
- 7. Дубровин Б.А., Новиков С.П., Фоменко А.Т. Современная геометрия: методы и приложения. М.:Наука, 1986. 760 с.
- 8. *Ленг С.*Введение в теорию дифференцируемых многообразий. М.:Мир, 1967. 204 с.

Кафедра математического анализа и алгебры Луганский национальный педагогический университет им. Тараса Шевченко, ул. Оборонная, 2, 91011 г. Луганск, Украина седес@yandex.ru

Получено 20.03.07