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Abstract. The He’s Amplitude-Frequency Formulation is applied to study the periodic
solutions of a strongly nonlinear system. This system corresponds to the motion of a mass
attached to a stretched wire. The usefulness and effectiveness of the proposed technique is
illustrated. The results are compared with exact solutions and those obtained by the har-
monic balance show a good accuracy. Approximate frequencies are valid for the complete
range of vibration amplitudes. Excellent agreement of the approximate frequencies with the
exact one are demonstrated and discussed.
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1. Introduction.

The study of nonlinear problems is of crucial importance not only in all areas of physics
but also in engineering, since most phenomena in our world are essentially nonlinear and are
described by nonlinear equations recently many new approaches to nonlinear problems have
been proposed, for example, the variational iteration method [16], the homotopy perturba-
tion method [17 — 19], energy balance method [12 — 15] and the parameter-expanding
method [11].

To solve nonlinear problems, He proposed an amplitude—frequency formulation for
nonlinear oscillators, which was deduced using an ancient Chinese mathematics method and
it is now widely used by many authors [3 — 10]. In this paper He’s frequency-amplitude
formulation is used to solve nonlinear vibration system of conservative single degree of
freedom.

Consider the motion of a particle of mass m attached to the centre of a stretched elastic
wire [1, 2] and coefficient of stiffness of elastic wire equal to k. The length of the elastic
wire when no force is applied to it is2a . We assume that the movement of the particle is
one-dimensional and this is constrained to move only in the horizontal x direction.

As we can see in Fig. 1, the ends of the wire are fixed a distance 2d a part. Length
d can be longer or equal toa . If d =a, the wire is not stretched forx =0, and there is no
tension in each part of it. However, if d > a, the wire is stretched for x =0, and the tension
in each part of the wire is k(d -a) The equation of motion is given by the following nonlin-

ear differential equation [2]:
d*x 2kax

me—— 42— ——— =0 . (1
dr? d? +x° )
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Fig. 1
Mass attached to a stretched wire.

With the initial condition of
x(0)=4, ﬁ(0):O.
dt
Two dimensionless variables y and 7 can be constructed as follows:
y==, 7=,]—t. 2)
Substituting these dimensionless variables into Eq. (1) gives

2
Ay A o o<ast. 3)

dr? w/l+y2

With the initial condition of
d
¥O0)=4, L ©0)=0.
dr
In Eq. (3) we have defined the following parameters:

X, a
A== 3=2, 4
J 7 4)

as 0<a<d itfollowsthat 0<A<1.
Eq. (3) is an example of a conservative nonlinear oscillatory system in which the restor-
ing force has an irrational form [1, 2] and this system and has the first integral.

2
%(%j +V(y)=E=20, ®)

where E is the “‘total energy’’ of the nonlinear oscillator and the potential function has the

irrational form [1]
1
V(y):Eyz—/"L«/1+y2+l. (6)

All the motions corresponding to Eq. (3) are periodic [1]; the system will oscillate
within symmetric bounds[—4, 4], and the angular frequency and corresponding periodic

solution of the nonlinear oscillator are dependent on the amplitude 4 .
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The main objective of this paper is to solve Eq. (3) by applying the first-order Ampli-
tude-Frequency Formulation, and to compare the approximate frequency obtained with the
exact one and with another approximate frequency obtained applying the harmonic balance
method.

2. Solution method.
Considers the following general nonlinear oscillators in the form:

u"(6)+ f(u(@),u'(t),u"(1))=0. @)
Oscillation systems contain two important physical parameters, i.e. the frequency @ and
the amplitude of oscillation, 4 . So let us consider such initial conditions
u(0)=4, u'(0)=0.
According to He’s amplitude-frequency formulation [8 — 10], we choose two trial func-

tions u; = Acost andu, = Acos wt.

Substituting #; and u, into Eq. (7), we obtain, respectively, the following residuals:

Ry =ul(0)+ f (1w ()0 (), (1)) (®)
and
Ry =15 (6)+ f (uy (1), 15 (1),u5 (1)) - ©)
In order to use He’s amplitude-frequency formulation [6 — 9], we set
4 4 p
R,=—| 4Rcos(t)dt,T,=2r, 10
h EJO | cos(r) di , T (10)
R, =2 %R fdr, T, =2~ 11
22—F2I0 , cos(wr) dt 2—;~ (11)

Applying He’s frequency-amplitude formulation [8 — 10] we have

w? :M’ (12)
Ry — Ry,
where
o=l 0=0. (13)

3. Results and discussion for small amplitudes (0 < A<<1).
Considering Eq. (3), for small values of 4 we can write

;z(l—lyzj, 0< A<<1. (14)
V(+37) 2
We can write Eq. (3) in the form of
d*y 1 2)
+y—Ay|1-=»* |=0, 0<A<1, 15
2 y( 7Y (15)

with initial conditions of
u(0)=4, u'(0)=0.
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According to He’s amplitude-frequency formulation [4 — 6]; we obtain, respectively, the
following residuals:

R =-AA cos(t)[l —%AZ cosz(t)j (16)
and

R,=-4 cos(wr)w* + Acos(wr)— 1A cos(an')(l —%Az cos’ (a)r)) . (17)
In the equations, the frequency of oscillation is @ and the amplitude of oscillation is 4 .
In order to use He’s amplitude-frequency formulation [6 — 8], we set
| Ad(-87+34°7)
16 V4

L
Rll:%_.‘()“ R cos(r) dr = , I, =2x (18)
1

and

A8’ +3AA4%n + 87 —8Ax
( PR
w

R 4 QR d !
=—| 4 Rycos(wr) dr =—
2 TZ'[O 2 cos(r) 16 7

Applying He’s frequency-amplitude formulation [6 — 8], we, therefore, obtain the first
order approximate solution for small amplitudes

o= /1—,14%,1/12 . (20)

For the first approaching Eq. (20) at 4 — 0 and for A <1we have lirgl w(A)=+(1-1) .
A—>

4. Results and discussion for large amplitudes (A>>0) .
Eq. (3) can be rewritten in a form that does not contain the square-root expression [2]

2 2 2.2
Y iy| -2 <0, @1
dr 1+y9)

with initial condition of
d
YO0)=4, “2(0)=0.
dr
According to He’s amplitude-frequency formulation [4 — 6]; we obtain, respectively, the
following residuals:
242 2
-A°4
R = A d cos2 (7) 22)
1+ A4° cos™(7)
and
A2 4% cos* (w1)
1+ 4% cos* (1) '
In the equations, the frequency of oscillation is @ and the amplitude of oscillation is 4 .
In order to use He’s amplitude-frequency formulation [6 — 8], we set

R,=(-4 cos(wr)w* + Acos(wr))* — (23)

)

242 [A 1+ 4> —arctanh[

T
R11=%IO4RICOS(7)dz'=— ,T=27  (24)
1

AN+ A4
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and

4 .- 2 1 /
Ry, = F'[ FR, cos(wr) dr = —= ————— (241 + A2 0" -
2

3 A1+ 42

322 arctanh[ J+4A3 1+ 42 & =281+ 42 31+ £222), T, = 2% . (25)
w

A
Vi+ 4

Applying He’s frequency-amplitude formulation [6 — 8], we, therefore, obtain the first
order approximate solution

b 24N+ 4% - \/6/16/12+6A4/12—6A3\/1+A2/12arctanh( A ]
2

i+ 42

w="2 (26)
24 A1+ 42

It is possible to solve Eq. (3) by applying the harmonic balance method. Following the
first-order harmonic balance method, a reasonable and simple initial approximation satisfy-
ing the conditions in Eq. (3) would be [2]

y=Acoswr . 27
Substitution of Eq. (27) into Eq. (3) gives
AAcos(wr7)

NIES Acos? (w7)

The power-series expansion of Y is [2]

)y =y+ i (_ l)n Mybﬁ—l (29)

1+ y? o 2”71n!(n—1)!

Substituting Eq. (29) into Eq. (28) and taking into account Eq. (27) gives

2 < n (27’! — 1)'
—cos(w7)®” + cos(wr)— Acos(@wr) — /IE =D m

—A cos(a)r)a)2 + Acos(w1)— =0. (28)

A* cos® N (wr)=0. (30)

The formula that allows us to obtain the odd power of the cosine is

1 {[2;1 + 1] [2;1 + 1} {271 + 1] }
= cos(wr)+ cos(3wr)+...+ cos(2n+1)(w7) ¢ .(31
0

n n-1

)
Substituting Eq. (31) into Eq. (30) gives

{—a)2 +1- /12 cleAz”}cos(a)r) + (high order harmonics)=0, 32)
n=0

where the coefficients ¢,,,; are given by
q=1

and

141



Q2n-1)12n+1)!

=(-1"
Cops1 = (=1) 24n71(n!)2(n_1)!(n+1)!’

(33)

For the first-order harmonic to be equal to zero, it is necessary to set the coefficient of
cos(wr) equal to zero in Eq. (32), then

w= /1 —AY cppnd™ . (34)
n=0

For the second-order harmonic we obtain [2]
1
iy 3 2 3 4 13 6
o=\1-A(f(4) 2 ,f(A)=1+=A4"——A4"+—A4" +.... 35
VI=A(S(4) 2 ,f(4) 2 o 12 (33)

Table 1. Comparison of He’s frequency-amplitude formulation (Eq. (20)) with harmonic
balance frequency (Eq. (35)) for small values of 4 . (4 =0.5)

Table 1
A He’s frequency-amplitude formulation harmonic balance frequency
0.01 0.7071 0.7071
0.05 0.7074 0.7075
0.1 0.7084 0.7085
0.2 0.7124 0.7126
0.3 0.7189 0.7190
0.5 0.7395 0.7369

Table 2. Comparison of He’s frequency-amplitude formulation (Eq. (20)) with harmonic
balance frequency (Eq. (35)) for small values of 4 . (4 =1.0)

Table2
A He’s frequency-amplitude formulation harmonic balance frequency
0.01 0.0061 0.0063
0.05 0.0306 0.0316
0.1 0.0612 0.0630
0.2 0.1225 0.1249
0.3 0.1837 0.1844
0.5 0.3062 0.2935
The exact frequency can then be derived as follows [2]:
-1
1
Vs Adu
a)exact = (36)

200 20-12) - 2201+ £ 1+ 42
Now we are going to obtain an asymptotic representation for large amplitudes. We con-

sider the expression for the exact frequency ,,,., Eq. (36) and we do the change 4=1/5.

For large amplitudes 4 — oo we have B— 0. Taking this into account, and doing the
power-series expansion of the result for small values of B , we obtain [2]

-1

(37

1
o :E.[ du
2 ime —2macis B B )

and
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1[ ! AB 31287
Ji

-1
T
Oprnet ©— - + +o.|du | . (38)
' 2{ —u? (+wi—a® 20+ N1—i? J

The power-series expansion for the exact frequency for small values of B (large values

of 4)is:
—1 2
%(%+/13+/1232+...j O Ut ) N

[2)

exact ~

0636622 0.231342%

=1
A A2

(39)

Table 3
Comparison of He’s frequency-amplitude formulation frequency (Eq. (26)) with exact
frequency (Eq. (39)) for large amplitude (A = 0.5).

A He’s frequency-amplitude Exact frequency Error (%)
formulation
5 0.9398 0.9340 0.6176
6 0.9495 0.9453 0.4362
7 0.9565 0.9533 0.3305
8 0.9898 0.9593 0.2631
9 0.9618 0.9639 0.2171
10 0.9694 0.9676 0.1842
Table 4

Comparison of He’s frequency-amplitude formulation frequency (Eq. (26)) with exact
frequency (Eq. (39)) for large amplitude (4 =1).

A He’s frequency-amplitude Exact frequency Error (%)
formulation
5 0.8755 0.8634 1.3937
6 0.8961 0.8875 0.9706
7 0.9109 0.9043 0.0715
8 0.9221 0.9168 0.7283
9 0.9308 0.9264 0.5755
10 0.9377 0.9340 0.3984

The method of He’s frequency-amplitude formulation is capable of producing analytical
approximation to the solution to the nonlinear system, valid even for the case where the am-
plitude are not small but we see that harmonic balance solution is valid only for small ampli-
tude.

5. Conclusions.

He’s frequency-amplitude formulation has been used to solve nonlinear vibration sys-
tem typified by a mass attached to a stretched wire. With the procedure, the analytical ap-
proximate frequency and the corresponding periodic solution, valid for small as well as
large amplitudes of oscillation, can be obtained. The method, which is proved to be a power-
ful mathematical tool to the search for angular frequencies of nonlinear vibration systems,
can be easily extended to any nonlinear equation, and the present letter can be used as para-
digms for many other applications in searching for periodic solutions, limit cycles or other
approximate solutions for real-life physics problems. We think that the method have great
potential which still needs further development.
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PE3IOME. AwmmiitynHo-yacToTHMH mifxix Xe 3acTOCOBAaHO [0 BHBUYCHHS MEPIOJHYHHUX

PO3B’SI3KiB CHJIBHO HENiHIMHUX cucteM. [IpoirocTpoBaHO KOPHUCHICTH 1 €()eKTHBHICTH 3alpONOHOBAHOT
METOAMKH. Pe3ynbTaTi MOPIBHIHO 3 TOYHHUMH PO3B‘I3KaMH i PO3B‘sA3KAMH, OTPUMAHUMK HAa OCHOBI eHepre-

TH

yHOTO Ganancy. ITopiBHAHHS moka3ano 1o6py TouHicTs. HabmmkeHo o04ncIeHi YacTOTH BUABUIIHCS Bip-

HUMH y BChOMY [iana3oHi aMIUTTy KOJduBaHb. [IpoeMOHCTPOBaHO i OOrOBOPEHO Y3TOKEHICTh MiX Ha-
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