А.А.Мартынюк, А.С.Хорошун

К ТЕОРИИ УСТОЙЧИВОСТИ ДВИЖЕНИЯ НА КОНЕЧНОМ ИНТЕРВАЛЕ

Институт механики им. С.П. Тимошенко НАНУ, ул. Нестерова, 3, 03057, Киев, Украина; e-mail: center@inmech.kiev.ua.

Abstract. A technique of study of compressive stability on the finite interval with in advance given settling time is proposed. This technique is based on using the Lyapunov-type function and studying its behavior over the trajectories of system in hand.

Key words: compressive stability, settling time, stability on the finite interval, Lyapunov-type function.

Введение.

Теория устойчивости движения, предложенная и развитая в работах А.М. Ляпунова [1], а в последующем и работах многих других ученых, предполагает, в частности, что интервал функционирования системы неограничен, а начальные и, следовательно, последующие возмущения - достаточно малые величины. Однако, задачи динамики машин и многие прикладные задачи исследуются лишь на конечном промежутке функционирования соответствующей механической системы. Кроме того, при исследовании устойчивости на конечном интервале важно учитывать оценки величин начальных и последующих отклонений, а не только сам факт существования числа δ по заданному ε , поскольку, в силу теоремы о непрерывной зависимости решения от начальных данных, всегда можно выбрать настолько малую величину возмущения начальных условий, чтобы удовлетворить условия устойчивости на произвольном, наперед заданном интервале функционирования системы. Также важен вопрос о пригодности величины начальных и последующих отклонений для рассматриваемой задачи. Учет этих замечаний приводит к рассмотрению некоторых новых типов устойчивости движения, как то: «техническая устойчивость», «устойчивость на конечном интервале» и др. [4 – 6, 14]. Рассмотрению указанных типов устойчивости также посвящены работы [2, 3, 10]. Исследованию конкретных задач робототехники с использованием указанных видов устойчивости посвящена работа [13].

В работах Груйича [7, 8] предложено понятие устойчивости на конечном интервале с некоторым наперед заданным моментом становления, что важно во многих задачах автоматического регулирования.

Рассмотрению сжимающей устойчивости на конечном интервале [3] с определенным временем становления посвящена данная работа.

1. Постановка задачи.

Рассмотрим систему дифференциальных уравнений возмущенного движения

$$\frac{dx}{dt} = f(x, t),\tag{1}$$

где $x(t) \in \mathbb{R}^n$, $t \in \mathbb{R}_+$, $f(\cdot,\cdot) : \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}^n$ – вектор-функция, удовлетворяющая условию Липшица, т.е. для системы (1) выполняются условия существования и единственности решения начальной задачи.

Далее приведем определение сжимающей практической устойчивости на конечном интервале с временем становления T_1 [3, 9].

Определение 1. Система (1) называется сжимающе устойчивой на конечном интервале $[t_0, t_0 + T_2]$ с временем становления $0 < T_1 < T_2$ по отношению к величинам $\lambda, B, A, \lambda < B, A < B$, если для любого решения x(t) системы (1), которое начинается в области $||x_0|| < \lambda$, выполняются условия: $||x(t; t_0, x_0)|| < B$ для всех $t \in [t_0, t_0 + T_1]$ и $||x(t; t_0, x_0)|| < A$ для всех $t \in (t_0 + T_1, t_0 + T_2]$.

Заметим, что в данном определении учитывается тот факт, что области $S_0(t_0)$, S(t), относительно которых исследуется устойчивость движения системы (1), выбираются в следующем виде:

$$S_{0_2}(t_0) = \{x_0 \in \mathbb{R}^n : ||x_0|| < \lambda\};$$

$$S_A(t) = \{x \in \mathbb{R}^n : ||x|| < A\} \ (0 < \lambda \le A < +\infty).$$

Здесь и далее применяется евклидова норма для векторов и спектральная норма для соответствующих матриц.

Ниже предложен подход, с помощью которого представляется возможным исследовать устойчивость на конечном интервале относительно заданных областей системы вида (1).

2. Основной результат.

Сформулируем некоторые утверждения, необходимые для последующего изложения.

Лемма 1. Пусть система уравнений (1) такова, что для вектор-функции f(x,t), входящей в ее состав, существует интегрируемая на отрезке $[t_0,T]$ функция g(t) такая, что $\|f(x,t)\| \le g(t)$ для всех $t \in [t_0,T]$, $x \in S_A(t)$ и выполняется условие

$$2A \int_{t_0}^{t} g(s)ds \le \inf_{x \in \partial S_A(t)} V(x(t)) - \sup_{x_0 \in \partial \overline{S_{0_\lambda}(t_0)}} V(x(t_0))$$
 (2)

при всех $t \in [t_0, T]$. Тогда движение, которое задается системой (1), устойчиво на интервале $[t_0, T]$ относительно областей $(S_{0_2}(t_0), S_A(t), t_0)$.

Доказательство. Пусть $x(t;t_0,x_0)$ решение уравнения (1) с начальным условием $x_0 \in S_{0_{\widehat{A}}}(t_0)$. Предположим, что существует момент $t_1 \in (t_0,T]$ такой, что $x(t_1;t_0,x_0) \in \partial S_A(t_1)$ и $x(t;t_0,x_0) \in int S_A(t)$ при $t \in (t_0,t_1)$. Для функции $V(x) = x^T x$ имеем

$$V(x(t_1; t_0, x_0)) = V(x(t_0; t_0, x_0)) + \int_{t_0}^{t_1} \dot{V}(x(s; t_0, x_0))|_{(1)} ds =$$

$$=V(x(t_0;t_0,x_0))+\int_{t_0}^{t_1}(f^T(x(s),s)x+x^Tf(x(s),s))ds \le$$

$$\leq V(x(t_0;t_0,x_0)) + \int_{t_0}^{t_1} 2||x|| ||f(x(s),s)|| ds < \sup_{x_0 \in \partial \overline{S_{0_\lambda}(t_0)}} V(x(t_0;t_0,x_0)) + 2A \int_{t_0}^{t_1} g(s) ds ,$$

откуда, учитывая (2), получаем неравенство $V(x(t_1;t_0,x_0)) < \inf_{\mathbf{x} \in \partial \mathbf{S}_A(\mathbf{t}_1)} V(x(t_1))$, из которого следует $x(t_1;t_0,x_0) \not\in \partial S_A(t_1)$, что противоречит принятому предположению о достижимости траекторией $x(t;t_0,x_0)$ системы (1) границы области $S_A(t)$ в момент t_1 . Следовательно, не существует $t_1 \in (t_0,T]$, при котором движение, которое описывается системой (1), покинет область $S_A(t)$, если оно начинается в области $S_0(t_0)$. Лемма 1 доказана.

Теорема 1. Пусть для функции g(t) из Леммы l выполняется условие $\int\limits_{t_0}^{T}g(s)ds=M$.

Тогда для устойчивости движения, которое задается системой (1) на отрезке $[t_0,T]$ относительно $(S_{0_2}(t_0),S_A(t),t_0)$, достаточно выполнения неравенства

$$M \le \frac{A^2 - \lambda^2}{2A}.\tag{3}$$

Доказательство. Согласно Лемме 1, для практической устойчивости движения, которое задается системой (1) относительно $(S_{0_{\lambda}}(t_0), S_A(t), t_0)$, достаточно выполнения неравенства (2) при любом $t \in [t_0, T]$. Оценим величину интеграла в левой его части

$$2A\int_{t_0}^t g(s)ds \le 2A\int_{t_0}^T g(s)ds = 2AM.$$

Правая часть неравенства (2) при заданных областях и функции $V(x) = x^T x$ имеет вид

Таким образом, если выполняется соотношение (3), то неравенство (2) для системы (1) имеет место и движение, которое задается системой (1), практически устойчиво относительно областей $(S_{0_2}(t_0),S_A(t),t_0)$. Теорема 1 доказана.

Лемма 2. Пусть существуют непрерывные функции $g_1(t), g_2(t)$ такие, что $\|f(x,t)\| \le g_1(t)$ для всех $t \in [t_0, t_0 + T_1], \quad x \in S_A(t)$ и $\|f(x,t)\| \le g_2(t)$ для значений $t \in [t_0, t_0 + T_2], \quad x \in S_B(t), \quad 0 < \lambda \le A < B, \quad 0 < T_1 < T_2$, и выполняются неравенства

$$\int_{t_0}^{t_0+T_1} g_1(s)ds \le \frac{A^2 - \lambda^2}{2A};$$
(4)

$$\int_{t_0}^{t_0+T_2} g_2(s)ds \le \frac{B^2 - \lambda^2}{2B},\tag{5}$$

где $g_1(t), g_2(t)$. Тогда все решения системы (1), которые начинаются в области $S_0(t_0)$, при $t \in [t_0, t_0 + T_1]$ будут находиться в области $S_A(t)$, а при $t \in (t_0 + T_1, t_0 + T_2]$ — в области $S_B(t)$.

Доказательство. Согласно Теореме 1, при выполнении неравенства (4) движение, которое определяется системой (1), практически устойчиво на интервале $[t_0,t_0+T_1]$ относительно $(S_0(t_0),S_A(t),t_0)$, т.е. все решения системы (1), которые начинаются в области $S_0(t_0)$, при $t\in [t_0,t_0+T_1]$ не покинут области $S_A(t)$. Аналогично, при выполнении неравенства (5) все решения системы (1), которые начинаются в области $S_0(t_0)$, при $t\in [t_0,t_0+T_2]$ не покинут области $S_B(t)$. Принимая во внимание, что A < B, получаем утверждение Леммы 2.

Система вида (1), которая удовлетворяет условиям Леммы 2, называется расширяюще устойчивой на конечном интервале $[t_0, t_0 + T_2]$ с временем становления $T_1 < T_2$ по отношению к величинам λ , A, B, где $0 < \lambda \le A < B$.

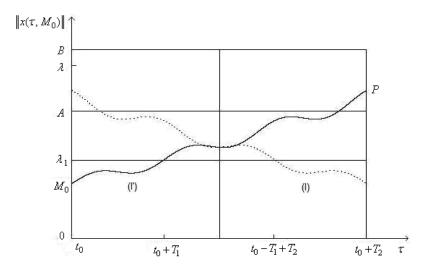
Сформулируем и докажем теорему, которая содержит достаточные условия сжимающей устойчивости на конечном интервале $[t_0,t_0+T_2]$ с временем становления T_1 по отношению к величинам $\lambda,B,A,0<\lambda\leq A\leq B.$

Теорема 2. Пусть система

$$\frac{dx}{dt} = -f(x, -\tau + 2t_0 + T_2),\tag{6}$$

полученная из системы (1) заменой $t=-\tau+2t_0+T_2$, расширяюще устойчива на конечном интервале $[t_0,t_0+T_2]$ с временем становления $t_0-T_1+T_2$, $T_1 < T_2$, по отношению κ величинам λ_1 , A, B, $0 < \lambda_1 \le A < B$. Тогда существует такая область $S_{0_\lambda}(t_0)$, $\lambda < B$, что система (1) будет сжимающе устойчивой на конечном интервале $[t_0,t_0+T_2]$ с временем становления T_1 по отношению κ величинам λ , B, A.

Доказательство. Пусть система (6) расширяюще устойчива на конечном интервале $[t_0,t_0+T_2]$ с временем становления $t_0-T_1+T_2$, $T_1 < T_2$, по отношению к величинам λ_1 , A, B, где $0 < \lambda_1 \le A < B$. Тогда для любого числа $M_0 \ge 0$, $M_0 < \lambda_1$, решение системы (6), которое начинается в точке x_0 , $\|x_0\| = M_0$, при $\tau \in [t_0,t_0-T_1+T_2]$ будет находится в области $S_A(\tau)$, а при $\tau \in (t_0-T_1+T_2,t_0+T_2]$ — в области $S_B(\tau)$. Схематически это показано на графике (рис. 1), где по горизонтали отложено время, а по вертикали — норма решения системы (4), соответствующего начальному значению x_0 .



Puc. 1

Заметим, что из точки M_0 (рис. 1) выходит множество кривых, которые определяются условием $||x_0|| = M_0$, так как существует множество наборов чисел x_1^0, \dots, x_n^0 таких, что $\|(x_1^0, \dots, x_n^0)\| = M_0$, и каждому из них соответствует набор функций $x_1(\tau, M_0), \dots, x_n(\tau, M_0)$, которые определяют функцию $\|x(\tau, M_0)\| =$ $=\sqrt{x_1^2(au,M_0)+\dots+x_n^2(au,M_0)}.$ Выберем среди всех этих наборов такой: $(M_0,0,\ldots,0)$. Соответственно, получим набор функций $x_1(\tau,M_0),\ldots,x_n(\tau,M_0)$, т.е. функцию $||x(\tau, M_0)||$. Эта функция непрерывна по τ , так как все функции $x_i(\tau, M_0)$, $i=1,\ldots,n$, непрерывны по τ на интервале существования решения и непрерывна по M_0 в силу теоремы о непрерывной зависимости решений дифференциального уравнения от начальных условий и правых частей. В силу непрерывности по M_0 получим, что для произвольной точки P, P < B, $P \in \left[\begin{array}{l} 0, \max_{M \in [0, \lambda_1]} \left\| x(t_0 + T_2, M) \right\| \end{array} \right],$ существует точка $M_0 \in [0, \lambda_1]$ $\|x(t_0+T_2,M_0)\|=P$. Пусть для некоторого числа $\overline{M_0}\in[0,\lambda_1)$ получено значение $\left\|x(t_0+T_2,\,\overline{M_0})\right\|.\ \text{Обозначим}\ \left\|x(t_0+T_2,\,\overline{M_0})\right\|=\lambda,\quad \lambda\leq \max_{M\in[0,\lambda_1]}\left\|x(t_0+T_2,\,M)\right\|< B.\ \text{Ясно},$ что для всех точек $P \in [0, \lambda]$ также будут существовать точки $M_0 \in [0, \lambda_1]$ такие, что $||x(t_0 + T_2, M_0)|| = P$. Заменой переменной $\tau = -t + 2t_0 + T_2$ систему (6) приведем к системе (1). При этом, очевидно, точка t_0+T_2 перейдет в точку t_0 , точка t_0 – в точку $t_0 + T_2$, точка $t_0 - T_1 + T_2$ – в точку $t_0 + T_1$, а кривая (l) – в кривую (l_1) , симметричную (l) относительно оси симметрии, которая проходит через середину отрезка $[t_0, t_0 + T_2]$. Поскольку, как было показано, для произвольной точки $P \in [0, \lambda]$ существует точка $M_0 \in [0, \lambda]$ такая, что существует решение системы (6), которое, будучи расширяюще устойчивым на интервале $[t_0, t_0 + T_2]$ с временем становления $t_0 - T_1 + T_2$ по отношению к величинам λ_1, A, B , начинаясь в точке $(M_0, 0, ..., 0)$ при $\tau = t_0 + T_2$, удовлетворяет условию $\|x(t_0 + T_2, M_0)\| = P$, то, учитывая симметрию кривой (l_1) к кривой (l) относительно оси симметрии, проходящей через середину отрезка $[t_0, t_0 + T_2]$, для произвольной точки $P \in [0, \lambda]$ существует вектор $x_0 = (x_1(t_0 + T_2, M_0), \dots, x_n(t_0 + T_2, M_0))^T$ такой, что решение системы (1), начинаясь в точке $P = ||x_0||$ при $t \in [t_0, t_0 + T_1]$, будет находиться в области $S_B(t)$, а при $t \in [t_0 + T_1, t_0 + T_2]$ – в области $S_A(t)$ и $||x(t_0 + T_2, P)|| = M_0$. Заметим, что рассуждения для всех других наборов чисел, которые задают начальные значения для решения системы (6), проводятся аналогично. Т.е. система (1) при выполнении условий Теоремы 2, сжимающе устойчива на интервале $[t_0, t_0 + T_2]$ с временем

Замечание 1. Область $S_{0_{\lambda}}(t)$ для системы (1) определяется числом λ , которое можно определить, зная величину $\|x(t_0+T_2,M_0)\|$. Здесь $x(t,M_0)$ — решение системы (6), соответствующее числу M_0 , т.е. некоторому набору чисел x_1^0,\dots,x_n^0 , которые задают начальные значения для функций $x_1(\tau,x_1^0,\dots,x_n^0),\dots,x_n(\tau,x_1^0,\dots,x_n^0)$.

становления T_1 по отношению к величинам λ , B, A. Теорема доказана.

Значение M_0 выбирается из отрезка $[0, \lambda_1)$, где $[0, \lambda_1)$ такой отрезок, что система (6) расширяюще устойчива на интервале $[t_0, t_0 + T_2]$ с временем становления $t_0 - T_1 + T_2$ относительно величин λ_1 , A, B.

Замечание 2. Согласно доказательству Теоремы 2, все решения системы (1), начинаясь в области $S_{0_{\lambda}}(t)$, где λ определено согласно Замечанию 1, при $t=t_0+T_2$ попадают в область $S_{\lambda_1}(t)$.

Приведем план исследования сжимающей устойчивости системы вида (1) с некоторым временем становления T_1 на отрезке $[t_0, t_0 + T_2]$.

- 1. Заменой $t = -\tau + 2t_0 + T_2$ систему (1) преобразуем в систему вида (4).
- 2. С помощью Леммы 2 устанавливается факт разжимающейся устойчивости системы (4) на интервале $[t_0,\,t_0+T_2]$ с временем становления $t_0-T_1+T_2$ относительно величин $\lambda_1,\,A,\,B$.
- 3. Для некоторых начальных значений x_1^0, \ldots, x_n^0 , удовлетворяющих условию $\|(x_1^0, \ldots, x_n^0)\| = M_0 < \lambda_1$, находим величину $\|x(t_0 + T_2, M_0)\| = \lambda$, где x(t, M) решение системы (6).
- 4. На основании Теоремы 1 делаем вывод о том, что система (1) сжимающе устойчива на интервале $[t_0, t_0 + T_2]$ с временем становления T_1 относительно величин λ , B, A.

3. Числовой пример.

Проиллюстрируем вышеизложенное на конкретном примере. Рассмотрим систему дифференциальных уравнений возмущенного движения

$$\frac{dx_1}{dt} = \frac{x_1}{200};$$

$$\frac{dx_2}{dt} = \frac{x_2}{200} - 0.03\cos^2(10 - t),\tag{7}$$

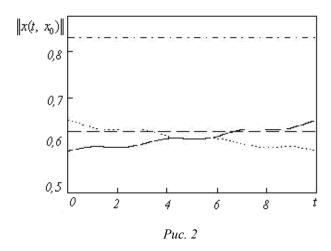
где $x_1, x_2 \in R$, $t \in [0, 10]$. С помощью замены переменной $t = -\tau + 2t_0 + T_2$, т.е. $t = -\tau + 10$, систему (7) приведем к виду

$$\frac{dx_1}{d\tau} = -\frac{x_1}{200};$$

$$\frac{dx_2}{d\tau} = -\frac{x_2}{200} + 0.03\cos^2(\tau). \tag{8}$$

Выберем области $S_{0\lambda_1}(t_0) = \{x_0 \in R^2 : \|x_0\| < 0.59\}, \quad S_A(t) = \{x \in R^2 : \|x\| < 0.63\},$ $S_B(t) = \{x \in R^2 : \|x\| < 0.83\}$ и время становления $T_1 = 8$. Для функции $f(x,\tau) = \left(-\frac{x_1}{200}, -\frac{x_2}{200} + 0.03\cos^2(\tau)\right)^T$ справедливы оценки: $\|f(x,\tau)\| < \frac{0.63}{200} + 0.03\cos^2(\tau) = g_1(\tau,x)$ для всех $\tau \in [0,2], \quad x \in S_A(\tau); \quad \|f(x,\tau)\| < \frac{0.83}{200} + 0.03\cos^2(\tau) = g_2(\tau,x)$ для всех $\tau \in [0,10], \quad x \in S_B(\tau)$. Соотношения (4) и (5) из Леммы выполняются, значит сис-

тема (8) расширяюще устойчива на интервале [0,10] с временем становления t=2 относительно величин $\lambda_1=0,59$, A=0,63, B=0,83. Выбрав $x_0=(0,5;0,31)$, $\|x_0\|=0,5883$, определим $\|x(10,x_0)\|=0,6534=\lambda$. Согласно Теореме 2, следует вывод, что система (7) сжимающе устойчива на интервале [0,10] с временем становления $T_1=8$ относительно величин $\lambda=0,6534$, A=0,63, B=0,83.



На рис. 2 пунктиром представлено поведение абсолютной величины траектории системы (7) с начальным значением $\|x_0\| = 0,6534$ на отрезке [0,10]. Видно, что система сжимающе устойчива относительно указанных величин. Также, для наглядности, сплошной линией показано поведение решения системы (8), которая расширяюще устойчива.

4. Заключение.

В данной работе предложена методика исследования сжимающей устойчивости на конечном интервале с определенным, наперед заданным временем становления. Методика основана на применении вспомогательной функции типа Ляпунова и исследовании ее поведения вдоль траектории рассматриваемой системы [2, 15, 16]. Используя переход в системе от обычного времени t к некоторому обобщенному времени τ , с помощью соответствующей замены переменной получаем возможность исследовать систему на сжимающую устойчивость с наперед заданным временем становления. Рассмотрен иллюстративный пример, который поясняет предложенную методику. Отметим, что представляет интерес рассмотрение данной задачи с учетом параметрических неточностей [11, 12].

РЕЗЮМЕ. Запропоновано методику дослідження стискаючої стійкості на скінченному інтервалі з певним наперед заданим часом становлення. Методику основано на використанні функції типу Ляпунова і дослідженні її поведінки уздовж траєкторій системи, що розглядається.

^{1.} Ляпунов А.М. Общая задача об устойчивости движения. Собрание сочинений. Т. 2. – М.: Изд-во АН СССР, 1956. – 481 с.

^{2.} Мартынюк А.А. Практическая устойчивость движения. – К.: Наук. думка, 1983. – 247 с.

^{3.} Мартынюк А.А. Техническая устойчивость в динамике. - К.: Техніка, 1973. - 188 с.

^{4.} *Моисеев Н.Д.* О некоторых методах теории технической устойчивости // Труды ВВИА им. Жуковского. -1945, вып. 135. - С. 1-27.

- 5. Четаев $H.\Gamma$. О некоторых вопросах, относящихся к задаче об устойчивости неустановившихся движений. Прикл. матем. и механика 1960. **24**, вып. 1. С. 6 19.
- 6. Bernfeld S.R., Lakshmikantham V. Practical stability and Lyapunov functions // Tohocu Math. J. 1980. 32, N 4. P. 607 613.
- 7. Grujic Lj. T. On Practical Stability // Proc. of 5th Asilomar Conf. on Circuits and Systems, 1971. P. 174 178.
- 8. *Grujic*, *Lj*. *T*. Practical Stability with Settling Time on Composite Systems // Automatika (Yu) 1975. **9**. P. 1 11.
- 9. *Grujic, Lj. T.* Non-Lyapunov stability analysis of large scale systems on time-varying sets // Int. J. Control. 1975. **21**, N 3. P. 401 415.
- 10. Gunderson R.W. On stability over a finite interval // IEEE Trans. Automat. Contr. 1967. 12, N 5. P. 634 635.
- 11. Khoroshun A.S. On Using the Multi-Component Lyapunov Functions in Analysis of Absolute Parametric Stability of Out-of-True Singularly Disturbed Systems // Int. Appl. Mech. 2014. 50, N 2. P. 115 133.
- 12. Martynyuk A.A., Khoroshun A.S. Parametric Stability of Singularly Perturbed Nonlinear Uncertain Systems // Int. Appl. Mech. 2011. 46, N 10. P. 1177 1189.
- 13. Martynyuk A.A., Khoroshun A.S., Chernienko A.N. Practical Stability of a Moving Robot to Given Domains // Int. Appl. Mech. 2014. 50, N 1. P 79 86.
- 14. *Michel A.N.*, *Heinen J.A.* Quantitative and practical stability of systems // Automat. Contr. Theory and Appl. -1972. -1, N 3. -P. 9-15.
- 15. Weiss L., Infante E.F. On the Stability Of Systems Defined Over a Finite Time Interval // Proc. Nath. Acad. Sci. 1965. 54. P. 44 48.
- 16. Weiss L., Infante E.F. Finite time stability under perturbing forses on product spaces // IEEE Trans. Automat. Contr. 1967. AC-12, N 1. P. 54 59.

Поступила 23.05.2011

Утверждена в печать 03.12.2013