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The thermal conductivity of (CH4)1–c(CD4)c solid solutions with c � 0, 0.03, 0.065, 0.13, 0.22, 0.4, 0.78,

and 1.0 has been measured in the region of existence of three orientational phases: disordered (phase I), par-

tially ordered (phase II) and completely ordered (phase III). The temperature range is 1.3–30 K. It is shown

that the thermal conductivity has different temperature dependences �( )T in these phases. Its value increases

with the degree of the orientational order in the phase. In phase I the thermal conductivity is independent of c

and weakly dependent on T. The impurity effect in �( )T is much stronger in the low-temperature part of phase

II than in phase III. As the concentration c grows, the �( )T curve of phase II approaches the dependence �( )T

typical of phase I. There is a hysteresis in the vicinity of the II�III phase transition. In phase III the impurity

effect in �( )T can be considered as phonon scattering at rotational defects developing due to the difference be-

tween the moments of inertia of the CH4 and CD4 molecules. The obtained dependences of thermal conductiv-

ity on temperature and concentration can be explained qualitatively assuming that the dominant mechanism of

phonon scattering is connected with the interaction of phonons with the rotational motion of the molecules in

all of the three orientational phases of the CH4–CD4 system.

PACS: 63.20.–e Phonons in crystal lattices;
66.70.+f Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves.

Keywords: thermal conductivity, molecular crystal, orientational disorder, phonon scattering, isotopic ef-
fects, phase transition.

Introduction

Crystalline methane, deuteromethane and their solid so-

lutions are very interesting physical quantum objects: they

undergo structural solid-state orientational transformations

[1,2] and, besides, the rotational motion of their molecules

can proceed as librations and as weakly hindered or free ro-

tation. The strong isotopic effects observed in the properties

of these substances [3] are first of all connected with the ro-

tational degrees of freedom, the quantum statistics of nu-

clear spins and the weak anisotropic molecular interaction.

The phase transformations from the orientational disorder

(phase I) to the partial orientational order (phase II) and then

from phase II to the completely orientationally ordered

phase (phase III) occurs under equilibrium vapor pressure in

pure CD4 and its concentrated solutions with CH4, Kr, Xe

and at P � 200 bar in pure CH4. Deuteration considerably

affects the dynamics of the molecules in the orientationally

ordered phases of solid methane, mainly because the rota-

tional constant B / Ik B� � 2 (I is the moment of inertia) of

CD4 (B � 3.75 K) is half as high as that of CH4 ( .B � 7 5 K).

Under equilibrium vapor pressure solid CH4 experiences

one phase transition from orientationally disordered phase I

(plastic phase with cubic symmetry) to phase II with partial

orientational order, at TI II� = 20.4 K. Apart from phases I

and II with TI II� = 27.4 K, CD4 can have a state with a

complete orientational order (phase III). Its structure

(orthorombic symmetry group Cmca) is not cubic and is

very close to the structure of phase II [4]. The orientational
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phase transformation at TII III� = 22.1 K is a first-order phase

transition with a volume jump of 0.63% [5,4], which is

much larger than that during the I–II phase transition. The

considerable difference between the rotational constants,

different total nuclear spins of the CD4 and CH4 molecules

and the weak molecular field are the factors that generate

strong orientational fluctuations in the vicinity of the phase

transition temperature [6,7]. In solid CH4–CD4 solutions

phase III can exist under the equilibrium vapor pressure in a

wide range of temperatures at CH4 concentrations c above

0.15 [2].

In phase I the molecules occupy the sites of the fcc lat-

tice. They possess high orientational mobility: the ther-

mal orientational fluctuations whose frequency increases

with temperature provoke random jump-like reorienta-

tions of the molecules (rotational diffusion). The rota-

tional diffusion of CH4 molecules occurs when the tem-

perature decreases down to the point of the orientational

phase transition (TI II� = 20.4 K). The orientational fluctu-

ations can be viewed as random rotational moment

through which the neighboring atoms and molecules in-

fluence the molecule. The fluctuations are usually of the

order of k T/BB [3].

The structure of phase II in CD4 was predicted by James

in 1958 [8] and detected experimentally by Press in 1973

[9]. In contrast to CD4, there is no direct unambiguous in-

formation about the structure of CH4. However, the experi-

mental evidence shows that in both substances phases II

have identical crystalline structures with the space group

Fm3c. The unit cell of phase II consists of 32 molecules

and 8 sublattices. In six sublattices the molecules are

orientationally ordered in opposite directions. In the other

two sublattices the anisotropic contributions of the nearest

molecules to the molecular field are counter balanced and

the molecules located at these sites behave as weakly hin-

dered rotators. The symmetry of the site is Oh for free rota-

tors and D d2 for orientationally ordered molecules. The

molecules at the Oh sites are weakly hindered rotators. The

structure of their low-lying energy levels (the splitting is

about 12 K) is quite similar to that of a free molecule. The

molecular octupole interaction in phase II of CH4 (CD4) is

not strong enough to align all the molecules in the pre-

ferred directions. The interactions cannot suppress the

large oscillations of the D d2 molecules about their equilib-

rium orientations in the potential wells. This property sets

methane off from other molecular crystals.

The structure of phase III has the spatial symmetry

Cmca [4]. It has a tetragonal primitive lattice with c �
= 11.708 � and a b� � 8.187 � (this corresponds effec-

tively to 1.0 % of tetragonal distortion). The unit cell con-

tains 16 molecules. The arrangement of the carbon atoms

is nearly the same as in the fcc lattice. The frustration ef-

fects generated by the ordering of tetrahedral molecules

prohibits a complete orientational order in the fcc lattice.

In phase III, unlike phase II, eight of 16 molecules in the

unit cell change their orientations drastically: four mole-

cules rotate by 90° and four molecules become orienta-

tionally ordered. The remaining eight molecules (ordered

in phase II) practically hold their initial positions and ori-

entations, the deviation being only 5.2°. In phase II (4m2)

the deviation of the most symmetrical orientation is

±4.5°. The libration amplitude is about 15° at all the sites

at T � 18 K [4].

On transformation from phase I to phase III, the CD4

(or CH4 under pressure) molecules change from complete

orientational disordering (phase I) to a partially ordered

state (phase II) and finally to complete ordering (phase

III). The molecular rotation changes drastically: from

random orientational wandering (rotational diffusion)

caused by the thermal orientational fluctuations (phase I)

to anharmonic librations about the ordered orientations

(phase III). Near the phase transitions temperature the

heat capacity exhibits anomalous features and consider-

able entropy effects [10] which account for intensive

orientational motion of the molecules. In phases II and III

the thermal orientational fluctuations provoke the mole-

cules to hop between the neighboring orientations. The

frequency of these reorientations decreases as the temper-

ature lowers and the fluctuations attenuate. The main fea-

tures of phases II and III are visualized in the rotational

spectrum. It is structured at low temperatures (with one or

more frequencies of coherent tunnel rotation), broadens

with increasing temperature and attains the shape typical

for no coherent thermoactivated orientational motion

(random reorientations [3]).

The thermal conductivity � is an useful physical pro-

perty in investigations of molecular substances [11]. By

measuring � as a function of temperature, it is possible to

characterize the orientational phases. For dynamically

disordered phases and orientational glasses � has been

found to be almost independent of temperature (weak in-

crease with temperature [11–13]). In the orientationally-

ordered phases � decreases exponentially as a function of

temperature and approaches T �1 near or above the Debye

temperature [14]. A deviation from T �1 is observed when

the mean free path of the thermal phonons is at its allow-

able minimum (about the size of the unit cell) [14].

Since the rotation of CH4 molecules and the trans-

lational vibrations of the lattice are interrelated, thermal

conductivity is a very sensitive tool of investigating the

orientational phase transitions in methane [15–17]. In our

experiments the thermal conductivity was investigated in

different orientational phases of (CH4)1–c(CD4)c solid so-

lutions in a wide interval of concentrations.

In deuteromethane the increase in temperature from

absolute zero can change the rotational motion of the ini-

tially (at T � 0) ordered molecules as follows:
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– zero-amplitude librations enhance up to anharmonic

librations (phase III);

– the molecules undergo random jump-like reorienta-

tions (phase II);

– the frequency of reorientations increases up to rota-

tional diffusion (phase I).

The investigation of the intra- and interphase evolu-

tion of the thermal conductivity can provide new informa-

tion about the molecular dynamics in the cause of solid-

state transformations.

Experimental results

The experiments were carried out using the home-de-

signed setup described earlier [18]. The thermal conductiv-

ity was measured in the temperature range from 1.3 to 30 K

by the steady-state heat-flow method. The temperature and

its gradient along the sample were measured with two ger-

manium thermometers separated by 12 mm from each other.

The relative error of the thermal conductivity measurements

did not exceed 6%. The random error was no more than 2%.

The temperature gradient between the two thermometers

was about 0.03T. The procedure of growing and cooling the

(CH4)1–c(CD4)c crystals is described elsewhere [17]. Here

we report new experimental data on the thermal conducti-

vity of (CH4)1–c(CD4)c at c � 0 4. , 0.78 and 1.0 and analyze

the dependences of thermal conductivity on temperature and

CD4 concentration. Thermal conductivity data for the

CH4–CD4 system have been published in brief reports

[17,19,20]. The thermal conductivities of (CH4)1–c(CD4)c

are shown in Fig. 1 (weak solutions with c � 0, 0.03, 0.065,

and 0.13 CD4) and Fig. 2 (concentrated solutions with c �
= 0.22, 0.4, 0.78, and 1.0 CD4). The dependences of thermal

conductivity on CD4 concentration in phases I, II and III are

shown in Fig. 3.

The thermal conductivity of the CH4–CD4 system is de-

termined predominantly by the orientational order of the

phase. It increases as the dynamical disorder (phase I)

changes into partial (phase II) and then into complete

orientational order (phase III). In the general case this behav-

ior accounts for the attenuating anharmonic rotation at a

growing degree of orientational ordering. This regularity is

clearly illustrated by the impurity-caused isotopic effect in

�( )T and the jump in the concentration dependence of the

thermal conductivity (Fig. 3) during the II–III phase transi-

tion. The impurity effect in �( )T is much stronger in the

low-temperature part of phase II than in phase III. As the con-

centration c increases, the curve �( )T in the low-temperature

part of phase II approaches the �( )T of phase I. The impurity

effect in the thermal conductivity of phase III can be inter-

preted as scattering of phonons at the rotational defects that

develop due to the difference between the rotational constants

of the CH4 and CD4 molecules. The behavior of �( )T in the

high-temperature part of phase II (c � 0.22) is similar to that
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Fig. 1. Thermal conductivity of (CH4)1–c(CD4)c for c � 0, 0.03,

0.065, and 0.13. The dotted line is the temperature of orientational

I–II phase transition for c � 0.

0
5 10 15 20 25 30 35

1

2

3

T, K

W
/(

m
��

	

Fig. 2. Thermal conductivity of (CH4)1–c(CD4)c for c � 0.22

(�,�), 0.40 (�,�), 0.78 (�,�) and 1.00 (�,�) on increa-

sing (open symbols) and decreasing (solid symbols) tempera-

tures in the vicinity of the orientational phase transition II–III.
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Fig. 3. Concentration dependence of the thermal conductivity of

(CH4)1–c(CD4)c for three different temperatures: T � 5 (�,�),

10 (�,�) and 23 (�) K. Open and solid symbols are data for

phases III and II, respectively, and the symbols� are for phase I.



of phase I: the thermal conductivity is independent of the CD4

concentration and decreases very slowly with decreasing

temperature (d /dT� � 0) down to the transition to the low-

temperature phase II or to phase III where d /dT� only

changes sign. In phase II of pure CH4 and phase III of pure

CD4 �( )T decreases exponentially with increasing tempera-

ture in the interval from 7 K to the temperature of the orien-

tational transition.

The thermal conductivity has a hysteresis in the vicin-

ity of the II–III phase transition [20]. Its width increases

with the CH4 concentration. The smoothed thermal con-

ductivities (c � 0.4) in the hysteresis region are shown in

Fig. 4. The marked points characterize the temperature

behavior of phase transformation. T2 is the onset of pha-

se III at lowering temperature, T3 specifies the moment

when phase II disappears. At rising temperature phase II

appears at T4 and phase III disappears at T1. A quasi-sta-

tionary two-phase state is observed in the interval T T3 1� ,

where the thermal conductivity measured at the same tem-

perature is independent of time (at least during 24 hours

of observation). On changing from cooling to heating or

vice versa, the curve �( )T reverses in the T T3 1� interval

and shows a weak dependence on temperature. The in-

verse �( )T (dashed line in Fig. 4) is reversible if the tem-

perature is varied within the hysteresis region, i.e., the

curve is reproducible no matter whether the temperature

is increasing or decreasing. At increasing concentration c

the hysteresis of �( )T shifts towards low temperatures and

its T and � ranges extend.

The new phase diagram of (CH4)1–c(CD4)c with the

specified parameters of the hysteresis ( , , , )T T T T1 2 3 4 is

shown in Fig. 5. It is in good agreement with published

data [1,2,10] and provides additional information about

the region of existence of the heterogeneous state. It is of

fundamental importance that the heterogeneous state is

quasistationary and stable on the reversal of temperature.

This state can be considered as a mixed two-phase state of

coexistence of phases II and III. In this region �( )T is ac-

tually an effective thermal conductivity �eff ( )T deter-

mined by the relation between the thermal conductivities

of the two phases. The curve �eff ( )T can be influenced to

some extent by the complex spatial structure of the mixed

state which can vary depending on the concentrations of

the phases.

The diagram of the orientational phases is shown in

Fig. 5. The II–III phase boundary was drawn on the basis

of the �( )T behavior. The shaded region shows possible

local formations of phase III in phase II. Such zones with

orientationally ordered molecules form along the line ex-

trapolated from the dependences of the II–III transition

temperatures on CD4 concentrations. The curve �( )T has

a kink at the transition point, which is particularly distinct

at c � 0.13 and decreases as the concentration c lowers. In

the region with phase III inclusions, the thermal conduc-

tivity �( )T is influenced by the temperature prehistory of

the sample. The nuclear spin conversion of CH4 mole-

cules causing relaxation of �( )T [21,22] has little effect

on �( )T .

In terms of quality, the change of the thermal conduc-

tivity versus sample composition follows general expec-

tations: the thermal conductivity of the solutions is lower

than that of pure crystals. An increase of the isotopic

admixture causes lowering of the thermal conductivity,

which is most prominent at the maximum in the tempera-

ture dependence. However, the dependence of the thermal

conductivity on temperature measured for samples con-

taining 0.065 and 0.13 CD4 diverges from that observed

for other isotopic solid solutions, see, e.g., [23,24]. For

these two concentrations of CD4 the maximum disappears
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Fig. 4. Hysteresis of the thermal conductivity of (CH4)1–c(CD4)c

for c � 0.4 in the vicinity of orientational phase transition II–III.

Points T2, T3 (decreasing temperature) and points T4, T1 (increasing

temperature) correspond to the beginning and the finish of the

phase transition. Arrows show the direction of temperature change.
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Fig. 5. Part of the phase diagram of CH4–CD4 solid solution. We

show here the temperature of the phase transition II–III in depend-

ence on concentration of CD4 in the mixed crystal (CH4)1–c(CD4)c

obtained from a fixed thermal conductivity (solid lines), from

x-ray scattering (�) [1], from NMR (�,�) [2] and from heat ca-

pacity (�) [10] measurements. The shaded area contains local

orientational ordered regions of phase III.



and the dependence resembles that known rather for

«glassy» solids than the crystalline ones: initially, at the

lowest investigated temperatures, �( )T increases approxi-

mately as T 2, then the thermal conductivity saturates and,

starting from 5–6 K up to the temperature of the phase

transition, does not change within the accuracy of the ex-

periment. The value of thermal conductivity within the

plateau area amounts to 0.3 W/(m·K), which is consistent

with values found for some glasses.

Discussion

The obtained dependences of thermal conductivity on

temperature and concentration in solid solutions can be

explained quantitatively assuming that phonon scattering

is governed predominantly by the interaction between the

phonons and the rotational motion of molecules in three

orientational phases of the CH4–CD4 system. The �( )T

behavior in pure CH4 and CD4 is determined by the

orientational dynamics at lowering temperature. The rota-

tional motion of molecules in phase I can be interpreted as

follows [25]. Each molecule by itself is a hindered rota-

tor whose rotation in a short interval of time is randomly

modulated by the neighboring molecules through a weak

anisotropic molecular interaction. The rotation of the mo-

lecule at the site can be considered as a stochastic process

disturbed randomly by the neighboring molecules which

rotate randomly and independently of one another. The

modulated hindered rotation is a source of additional

phonon scattering.

At the point of the transition to the partially ordered

phase there is a kink in the thermal conductivity curve. In

the ordered phase the thermal conductivity passes through

the maximum and then decreases with the lowering temper-

ature. The initial increase of the thermal conductivity of the

ordered phase of methane is due to the decrease of the num-

ber of phonons with the energy sufficient to interact with the

scattering centers at lower temperatures. Its further decrease

is due to the reducing density of thermal phonons which are

scattered by the crystal boundaries and other defects.

The curve �( )T measured on pure substances (CH4 in

phase II and CD4 in phase III) can be described [17] by

the expression based on the approximation of additivity

of thermal resistance

�
� �

� �
( )

( ) ( )

( ) ( )
T

T T

T T
�



1 2

1 2

, (1)

where �1 1
2( )T Ñ T� and �2 2( ) exp( )T Ñ E/T� . Deutera-

tion of CH4 has a very little effect on the fitting parame-

ters, which are C1 � 0.08 W/(m·K3) and 0.1 W/(m·K3) and

C 2 � 0.08 W/(m·K) and 0.14 W/(m·K) for CD4 and CH4,

respectively. The exponential growth of the thermal con-

ductivity with lowering temperature in the low-tempera-

ture phase (phase II for CH4 and phase III for CD4) corre-

sponds to thermally activated scattering of phonons by

the rotational states against the background of pho-

non–phonon scattering (Umklapp process). The activa-

tion energies are E � 35 K for CD4 and 12 K for CH4. The

transition from the nonactivated mechanism in phase I to

the activated regime in phases II and III accounts for the

change in the rotational motion. The librational motions

of the ordered molecules are thermally activated and their

amplitudes decrease with lowering temperature. It is nat-

ural that the activation energy is lower for CH4 molecules

than for the CD4 ones (because of the different rotational

constants of these molecules).

Traditionally, the temperature dependence of thermal

conductivity is described quite accurately by the De-

bye–Pierls model of an isotropic solid. The model disre-

gards the difference between the phonon modes of differ-

ent polarizations

K T
k

s
T x

x
dxB

x

x

/T

( ) ( )
( )

�
��

4

2 3

4

2

0
2

e

1 e�



�

3

�

, (2)

where k B is the Boltzmann constant, � is Planck's con-

stant, � is the Debye temperature, s is the mean sound ve-

locity, x /k TB� �� , and 
( )x is the effective relaxation

time of the phonons participating in scattering. The nor-

mal phonon–phonon processes can be omitted from con-

sideration because of their low intensity in CH4 and CD4

[26–28]. The inverse relaxation time (relaxation rate)


 ��1( ) is a sum of the rates of all resistive processes of

phonon scattering. The temperature dependence of the

thermal conductivity of a molecular crystal is determined

by the mechanisms of phonon scattering typical for crys-

tals with no rotational degrees of freedom (Umklapp pro-

cesses 
U
�1, boundary scattering 
 B

�1, scattering at disloca-

tions 
dis
�1 , and point defects 
 R

�1) and by the additional

mechanism allowing a coupling of the phonon gas and the

rotational degrees of freedom (librations and/or rotation

of molecules) of the molecular crystal.

The mechanism of the rotation-translation coupling is

quite clear in the general case [29]. There is no theoretical

model permitting a quantitative description of the thermal

conductivity in different orientational phases of the crys-

tal. It is known that the thermal conductivity of the orien-

tationally disordered phase is little dependent on tempe-

rature. The experimental data on the low-temperature

thermal conductivity of simple molecular crystals: H2

[30], N2 [31], CO [32], CH4 [17,26], CD4 [17], CO2 [33],

N2O [33,34], and others [35,36] describes only the gen-

eral behavior of the thermal conductivity of the orienta-

tionally ordered crystal. The temperature dependence of

the thermal conductivity of molecular crystal is identical

to that of an atomic crystal with defects and can be de-

scribed formally by the mechanisms typical of crystals
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having no rotational degrees of freedom. The total relax-

ation rate 
 ��1( ) can be written down as


 � 
 � 
 � 
 �� � � �� 
 
1 1 1 1( , ) ( , ) ( ) ( )T TU Rdis . (3)

In Eq. (3) the relaxation rate of the thermal activated

U-processes is


 � �U T A T b/T� � �1 2( , ) exp( ) , (4)

where A and b are the intensity and the activation energy

of the U-process, respectively. In the case of scattering at

dislocations, the relaxation time is assigned as


 � �dis
� �1 ( ) D , (5)

where D is parameter dependent on the density of disloca-

tions.

In an isotropic continuum the relaxation rate of the

phonons scattered on an isotropic point defects is [24]


 � �R C� �1 4( ) , (6)

where C is the Rayleigh scattering parameter, C �
�V / s0

34� � 	� , and V0 is the volume per molecule. The co-

efficient � determines the intensity of scattering.

The experimental data on �( )T in phases II and III exi-

sting at helium temperature are well described by the cal-

culated curves that allow for the thermally activated, Ray-

leigh and dislocation mechanisms (see Fig. 6). The fitting

parameters for these mechanisms are given in the Table.

Note that below the temperature of the orientation II–III

phase transition in pure CD4 (and the I–II transition in pure

CH4) the thermal conductivity changes as �( ) exp( )T b/T� .

This behavior can be explained assuming that the phonon

scattering at librations is a thermally activated process simi-

lar to phonon–phonon scattering (U-process) which is of

essential importance in high-temperature of phase I. It is ob-

vious that the activation energy b is more than two times

Table. Parameters used to describe the thermal conductivity of

(CH4)1–c(CD4)c for the thermoactivated processes ( ( , )
 �U T� �1

� �A T b/T�2 exp( )), scattering at dislocations (
 � �def
–1 ( ) � D ) and

Rayleigh scattering ( ( ) )
 � �R C� �1 4

c A�10
16

, s/K b, K D�10
4

C �1012, s
3

Phase III

100 35 40 5 7.5

78 35 40 10 35

40 35 40 10 110

22 35 40 12 100

Phase II

13 9 9 33 30

6 9 9 23 10

3 9 9 6.7 10

0 15 16 4.2 5

higher in pure CD4. There are two main reasons for this

difference. First, the barrier hindering reorientations of the

molecules is stronger in phase III than in phase II. Second,

the moment of inertia of the CD4 molecule is twice as large

as that of the CH4 molecule. In the low-temperature region

the character of the dependence �( )T is determined by

phonon scattering at dislocations. Its intensity is almost in-

dependent of complete deuteration. The scattering in-

creases in the solution because the density of dislocations

becomes higher at the expense of dislocations generated in

the process of growing and subsequent cooling the sam-

ples. The curve �( )T measured at the background of dislo-

cation-induced scattering has no signs of resonance scat-

tering at the rotational tunnel states of the molecules. The

contribution of the Rayleigh scattering to the thermal con-

ductivity becomes evident in phase III of the concentrated

(CH4)1–c(CD4)c solutions. The intensity of the Rayleigh

scattering is shown in Fig. 7 as a function of CD4 concen-

tration. The parameter C is nearly an order of magnitude

higher than for scattering at isotopic point defects. The dif-

ference is due to local changes in the mass of molecules.

The parameter � describing local mass variations in a mo-

lecular crystalline two-component system consisting of

two kinds of molecules (CH4 and CD4) with different

masses M1 and M 2 is

�
�

� � �

��
�

��
c c

M

M
( )1

2

, (7)
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Fig. 6. Thermal conductivity of (CH4)1–c(CD4)c for c � 0 (�),

0.03 (�), 0.06 (�), 0.22 (�), 0.40 (�), 0.78 (�), and 1.00

(�). Solid lines are calculated curves using fitted parameters

from the Table.



where M ñM c M� 
 �1 21( ) is the average mass, and

�M M M� �1 2 is the mass difference.

The above fact suggests an additional mechanism of

strong scattering in the orientationally ordered phase of

the two-component solution. This is the interaction be-

tween the phonons and the librations of molecules. The

authors propose a phenomenological description of this

mechanism by analogy with the mechanism based on

local mass variations.

Diluting CH4 with CD4 does not produce a significant

change in the picture of tunneling and librational (rota-

tional) states of phase II of solid regular methane. As it

has been shown in high-resolution neutron spectroscopy

experiments [37], the shift of the lines is less than 10% in

the concentration range 0–0.15 of CD4 molecules in the

CH4–CD4 solid solution. The lines are broadened by a

factor of ~2–3 in this concentration range. These varia-

tions of the energy of the states and the line shapes are not

sufficient to explain the dramatic change in the depen-

dence of the thermal conductivity on temperature.

The CD4 molecule features a stronger effective octu-

pole moment than that of the molecule of CH4. There-

fore, partial replacement of CH4 molecules with their

heavier isotopic counterpart in the structure of phase II of

protonated methane changes (increases) the electrostatic

field at the position of the neighbors of the replaced mole-

cules. In particular, it affects the sites of almost freely ro-

tating molecules by lowering the symmetry of the field

experienced by the rotating molecule, which in turn re-

sults in stronger hindering of the molecule. It means a

stronger interaction of the rotating molecule with the

surroundings. Therefore, the glassy-like behavior of the

thermal conductivity coefficient of the CH4–CD4 crystal

can be explained by the enhancement of interaction of the

rotations with crystal phonons.

On the other hand, the Rayleigh scattering parameter C

of the molecular crystalline two-component system of

two-sorts of molecules (with moments I1 and I 2) is well

described by Eq. (7) if the mass of the molecule is re-

placed by its moment of inertia

�
�

� � �

��
�

��
c c

I

I
( )1

2

, (8)

where I cI c I� 
 �1 21( ) is the average moment of inertia,

and is the difference between the moments of inertia of

two molecules.

Equation (8) describes quantitatively with a good ac-

curacy the behavior of the parameter C in phase III at

varying concentration c (see Fig. 7). Note that a straight

forward calculation of thermal conductivity resulting

from the phonon-rotational coupling is a complicated and

unsolved yet theoretical problem of a three-dimensional

lattice. This is a challenge even for a structurally simple

orientationally ordered molecular crystal such as

(CH4)1–c(CD4)c. The influence of local changes in the

moments of inertia upon the thermal conductivity points

to the importance of kinetic processes for rotational dy-

namics of orientationally ordered molecules interacting

with thermal phonons.

Conclusions

The thermal conductivity of the solid (CH4)1–c(CD4)c

with c � 0, 0.03, 0.065, 0.13, 0.22, 0.4, 0.78 and 1.0 has

been measured in the region of existence of three orien-

tational phases: disordered (phase I), partially ordered

(phase II) and completely ordered (phase III). The tem-

perature interval of measurement was 1.3–30 K. The tem-

perature dependence of the thermal conductivity �( )T be-

haves differently in these phases. As the degree of the

orientational order increases, the thermal conductivity

grows too. In phase I the thermal conductivity is inde-

pendent of c and little dependent on T . The impurity effect

in �( )T is much stronger in the low-temperature region of

phase II than of phase III. At increasing c the curve �( )T

of phase II approaches the dependence typical for phase I.

There is a hysteresis in the vicinity of the II�III phase

transition. In phase III the impurity effect in �( )T can be

interpreted as phonon scattering on the rotational defects

appearing due to the difference between the moments of

inertia of the CH4 and CD4 molecules. The hysteresis of

the thermal conductivity observed in our experiments in-

dicates that the orientational phase transition from the

partially ordered phase to a complete order is a continu-

ous process with an intermediate mixed two-phase stage.

The temperature interval of the mixed state increases lin-

early with the CH4 concentration in the CD4 solution.

Such continuous transition is possible if the interphase

surface energy is low and there are strong temperature

Orientational isotopic effects in the thermal conductivity of CH4/CD4 solid solutions
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Fig. 7. The Rayleigh scattering parameter C dependence on CD4

concentration c get from: the fitting procedure (�), the calcu-

lations using the mass difference of molecules (doted line) and

the difference between the moments of inertia of two molecules

(solid line).



and pressure fluctuations in the presence of defects. The

transition is accompanied by the formation of a complex

inhomogeneous bulk structure.

The obtained dependences of thermal conductivity on

temperature and concentration can be explained qualita-

tively assuming that the dominant mechanism of phonon

scattering is connected with the interaction between the

phonons and the rotational motion of the molecules in all

of the three orientational phases of the CH4–CD4 system.

In the general case this behavior accounts for the lower-

ing degree of the anharmonic rotational motion at increas-

ing orientational order.
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