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HUccneoyromes gepossimuocms napamempos mooenu u npumeHerue memooa baileca 0as moodenu
YACMUYHO YCKOPEHHbIX PeCYPCHbIX UCHIMAHULL NPU NOCIMOSHHBIX HAZPY3KAX U YEH3YPUPOBAHUU NO
epemenu muna 1 ona pacnpedenenusi Ilapemo emopoeo pooa. Buinoamen pacuem MakcumaibHOU
seposmuocmu u unouxamopog baiieca 0na napamempos mooenu. C ucnonvzoganuem memooda
annpoxcumayuu JIuHOIU NOLyUeHbl anocmepuopHle cpeonue 3HaveHus U apuayuu Ojis Keaopamuy-
Hou @yukyuu nomepsv (owubok). Ilokazanvt npeumywecmsa OanHol annpoxcumayuu. Boinonneno
uucnennoe mooenupoganue no memody Moume-Kapno ons 06pazyoe pasnuunvix pazmepos u napa-
Mempog Mooeny Olisl CPAGHUMENbHOU OYEHKU NPeONOACEHHbIX MEeMO008 NPOSHO3UPOBAHUsL PecypCd.

Knwuesvie cnoga: HaiexKHOCTb, HCIIBITAHHUE, OLIEHKA MAKCUMAJIbHON BEPOSATHOCTH, OLICHKA
no baiiecy, kBagparnuHasi pyHKIHUS TOTEPb.

Introduction. Accelerated testing ensures that specimens are exposed to eclevated
environmental conditions for fixed periods of time. Overstress testing consists of running a
product at higher than normal levels of some accelerating stress(es) to shorting product life
or to degrade product performance faster. Overstress constant stress testing is the most
common form of Accelerated testing of specimens. Each specimen is tested under a
constant stress level. Such testing scheme is easy and has numerous advantages Nelson [1].

As indicated by Ismail [2], accelerated life testing and partially accelerated life testing
(PALT) are frequently used in modern reliability engineering to save time and cost. The aim
of a PALT is to obtain more failure data in a restricted time without essentially using severe
conditions to all test items.

Constant-stress PALT with type-I censoring were studied by some authors such as
[3-6]. These studies had been made based on classical methods. This paper considers
Lindley technique for estimating the parameters in constant-stress PALT. According to [7],
such an approximation has numerous valuable applications especially for industrial fields.
Also, in this respect, Achcar [8] said that “the use of approximate Bayesian methods could
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be a good alternative for the usual existing classical asymptotic methods used in accelerated
life testing (ALT).”

There were some works on PALT in the context of Bayesian approach. For example,
see Goel [9], DeGroot and Goel [10], Abdel-Ghani [11], Ismail [12]. The objective of this
article is to use Lindley method to make a Bayesian analysis with a squared error loss
function under time-censoring CSPALT. The Bayes estimators (BEs) of the acceleration
factor and the distribution parameters are derived and compared with the maximum
likelihood estimators (MLEs) counterparts by Monte Carlo simulations.

The rest of this paper is arranged as follows. In Section 1, the model and test method
are described. Approximate BEs of the parameters under consideration are derived in
Section 2. In Section 3 BEs derived in Section 2 are obtained numerically using Lindley’s
approximation and compared with the MLEs. Finally, Section 4 concludes the paper.

1. The Model and Test Method. The probability density function (PDF) of the Pareto
distribution of the second kind is given by

af”
fT(l; 9,&)=W, t>0,0>0 a>0. (1)
The survival function takes the form
005
R(t)=——"r, 2
O+1)“ @)
and the corresponding failure rate function is
a
h(t)y=—.
(=15 ©

In a constant-stress PALT, nsr units randomly selected among 7 test units sampled
are allocated to severe condition and the remaining are allocated to normal condition. Each
test item is tested until the censoring time is reached or the item fails.

The following assumptions are considered.

1. The lifetimes 7;, i=1, ..., n(1—m) of items allocated to use condition, are i.i.d.

r.V.’s.

2. The lifetimes X o J= I, ..., nr of items allocated to accelerated condition, are
iid rv.’s.

3. Suppose that the lifetime of an item at accelerated condition is denoted by X, then
the lifetime of this item at use condition 7 is given by the relation 7= SX.

Since the lifetimes of the test items follow Pareto distribution of the second kind, the
probability density function of an item tested at normal condition is given by (1).

The PDF under severe condition is expressed by

Bab”

; 0, a)= ,
fx (x50, a) 0+ fr)

x>0,0>0, a>0, 4)
where X = p7'T.

2. Bayesian Estimation. Here, Bayesian estimates are considered using
non-informative priors via the technique of Lindley and the squared error (SE) loss

function. The non-informative prior (NIP) for each parameter be represented by the limiting
form of the appropriate natural conjugate prior.
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It follows that a NIP for the acceleration factor f is given by
n(By<p. L

Also, the NIP’s for the scale parameter 6 and the shape parameter a are, respectively,

as

7,007, >0 and as(@)xal,  a>0 )

Therefore, the joint NIP of the three parameters can be expressed by
(B, 0, a)OC(ﬂea)_l, B>1,0>0, a>0. 6)

Via time-censored data, any unit can be tested at one condition only until a pre-fixed
censoring time # is attained. Therefore, the observed lifetimes 7y <..<z(, | <7 and
u

X1y =X, =17 are ordered failure times at normal use and accelerated conditions,

respectively, where n, and n, are the corresponding numbers of items failed in each
stage. Let 0, and 0,, be indicator functions such that 6, =/(7; <) and 0, =

=[(X; =m),where i= 1, ..., n. Then, the overall likelihood function can be expressed by
n(1—m) nw
LB 0. )= [] Litt;; 0. 0]]Ly(x;: B O.)=
i=1 J=1

n(1=m) a Oui a Oui nm a %) a o
_ 1—[ af 0 1—[ Pab 0 ’ %
O+t ][O+ ] o[ O+Bx )| O+

i=1

where L,; is the likelihood function for 7; at use condition, L, is the likelihood function
for x; at accelerated condition, 7 is the proportion of sample units allocated to
accelerated condition, and

Using (6) and (7), the joint posterior distribution can be given by

g(B, 0, aly)=xL(y|B, 0, a)r(B, 0, a)x

— — ni 6ui ni é‘!f
ﬁna ]92na lanu+na 1 ’V 1 -‘
o I [l ®

(9+77)(nﬁ—nu)a (9+ﬁ77)(”ﬂ—”a)a i (0+ti )a+1 |J'=1 (9+,3xj )a+1 _'

To obtain the posterior means and posterior variances of f, 6, and «, an approximation
due to Lindley [13] is used.

Now, let ® be a set of parameters {©,, ©,, ..., ®,,}, where m is the number of
parameters, then the posterior expectation of an arbitrary function u(®) can be
asymptotically estimated by
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[ u(@©)m(©)e" 19 4o
_o -
E(u(@))— fﬂ,’(@)@lnL(yK@)d@ -
€]
=lut+ /2> P+ p o +1/2) D 150 0ud |16, ©)
i,j i, ], k,s

which is the Bayes estimator of #(®) under a squared error loss function, where 7(®) is
the prior distribution of ©, u=u(®), L= L(®) is the likelihood function, p= p(®)=
=logn(®), o are the elements of the inverse of the asymptotic Fisher’s information
matrix of 3, 6, and «, and

uil) = (971/{ u(2) = aZu p(]) _ alogn(G)) (3) _ 63 In L(y|®)
Pee 90000 T e, 90,0000,

According to Green [14], the above posterior expectation is “very good and operational
approximation for the ratio of multi-dimension integrals.” Also, according to [7], it has
important applied aspect. Some mathematical details are given at the end of this paper.

3. Monte Carlo Simulation studies. In this section, we illustrate the use of Bayesian
approach via Lindley method for approximation of integrals to derive the marginal posterior
moments of interest in the case of constant-stress PALT under type-I censoring. The data
are generated from Pareto distribution with different sample sizes. For each sample size,
5,000 samples are obtained randomly. The posterior means and posterior variances of the
three parameters are obtained numerically. In addition, the ML estimators and Bayes
estimators are compared with respect to the mean squared errors (MSEs) and variability.

To assess and compare the performance of the MLEs and proposed estimators with
the Lindley method, we perform simulation comparisons with data generated via various
scenarios. Four numerical examples are provided with equal and unequal proportions of
allocation for illustration. One of the considered populations is set the combination of
(B, 0, @) at (3, 0.8, 0.5) with equal proportion of allocation sr = 0.50 with results reported
in Table 1. A second combination is set at (2, 1.2, 1.5) using also equal proportion of
allocation (7r = 0.50) with results shown in Table 2. While the third combination is taken as
(3, 0.8, 0.5) based on unequal proportion of allocation (;r = 0.30) with numerical results
reported in Table 3. Concerning the fourth scenario, the combination is (2, 1.2, 1.5) based
on proportion of allocation set at 7t = 0.70 with numerical results displayed in Table 4.

Also, concerning the comparison between Bayesian estimators and the likelihood
ones, the results have the same trend when unequal proportions of allocation are used. But,
with larger proportion of allocation to the accelerated condition, it is noticed that Lindley
method is much better than the likelihood-based method.

4. Some Main Remarks and Further Studies. In this paper both ML and Bayes
estimations of the CSPALT model parameters have been presented using time-censored
samples from Pareto distribution. The Bayes estimators have been considered under the
assumptions of squared error loss functions and non-informative priors. Lindley’s technique
has been used to obtain the Bayesian estimates numerically. It has been found that the
technique works very well even for small sample sizes. Also, it has been noted that
Lindley’s technique frequently produces posterior variances smaller than the variances of
the maximum likelihood estimators. So, it gives efficient estimates. As a future work, a
Bayesian analysis via another approximation such as Laplace approximation method or
Markov chain Monte Carlo (MCMC) algorithm will be discussed.
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Table 1
Results of MLEs and Approximate BEs with Corresponding Estimated Variances and MSEs
(f=3,0=08, a =0.5, 7 =0.50, and n =10) Using Different Time-Censored Sample Sizes

n Parameter Method Estimate MSE Variance
25 B ML 3.6014 0.0692 0.0372
Bayes 34712 0.0586 0.0295

% ML 1.2431 0.0396 0.0166

Bayes 0.9374 0.0298 0.0082

a ML 0.8211 0.0286 0.0074

Bayes 0.7855 0.0214 0.0041

50 B ML 3.3862 0.0509 0.0242
Bayes 3.2281 0.0389 0.0148

6 ML 0.9747 0.0274 0.0096

Bayes 0.8911 0.0185 0.0051

a ML 0.6733 0.0211 0.0033

Bayes 0.6209 0.0150 0.0015

75 p ML 3.2911 0.0361 0.0124
Bayes 3.0766 0.0302 0.0043

(% ML 0.8823 0.0201 0.0038

Bayes 0.8477 0.0155 0.0023

a ML 0.5725 0.0048 0.0011

Bayes 0.5410 0.0019 0.0006

100 B ML 3.1208 0.0069 0.0025
Bayes 3.0241 0.0038 0.0023

6 ML 0.8351 0.0054 0.0022

Bayes 0.8126 0.0030 0.0008

a ML 0.5219 0.0015 0.0005

Bayes 0.5046 0.0013 0.0003

Table 2

Results of MLEs and Approximate BEs with Corresponding Estimated Variances and MSEs
(f=2,0=12, a =15, 71 =0.50, and n =10) Using Different Time-Censored Sample Sizes

n Parameter Method Estimate MSE Variance
25 B ML 2.5233 0.0436 0.0212
Bayes 2.4072 0.0369 0.0168

6 ML 1.4371 0.0249 0.0095

Bayes 1.3642 0.0188 0.0047

a ML 1.7648 0.0180 0.0042

Bayes 1.6427 0.0135 0.0023

50 p ML 2.3977 0.0321 0.0138
Bayes 2.3104 0.0245 0.0084

% ML 1.2894 0.0173 0.0055

Bayes 1.2380 0.0117 0.0029

a ML 1.5876 0.0133 0.0019

Bayes 1.5392 0.0095 0.0009

75 B ML 2.1247 0.0227 0.0071
Bayes 2.0486 0.0192 0.0025

6 ML 1.2432 0.0127 0.0022

Bayes 1.2211 0.0098 0.0013

a ML 1.5333 0.0032 0.0006

Bayes 1.5104 0.0012 0.0002

100 p ML 2.0394 0.0043 0.0014
Bayes 2.0113 0.0024 0.0011

6 ML 1.2117 0.0034 0.0013

Bayes 1.2021 0.0019 0.0005

a ML 1.5102 0.0009 0.0003

Bayes 1.5002 0.0008 0.0001
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Table 3
Results of MLEs and Approximate BEs with Corresponding Estimated Variances and MSEs
(f=3,0=08, a =0.5, 7 =0.30, and n =10) Using Different Time-Censored Sample Sizes

n Parameter Method Estimate MSE Variance
25 B ML 39125 0.0985 0.0502
Bayes 3.5824 0.0779 0.0398

6 ML 1.4729 0.0675 0.0224

Bayes 1.2366 0.0533 0.0111

a ML 1.0781 0.0492 0.0102

Bayes 1.0262 0.0346 0.0055

50 B ML 34521 0.0665 0.0327
Bayes 3.3217 0.0492 0.0203

6 ML 1.2107 0.0477 0.0131

Bayes 1.1638 0.0314 0.0069

a ML 0.9658 0.0311 0.0045

Bayes 0.9104 0.0294 0.0026

75 p ML 3.2982 0.0431 0.0167
Bayes 3.2290 0.0378 0.0058

6 ML 1.0726 0.0287 0.0051

Bayes 1.0179 0.0212 0.0031

a ML 0.8721 0.0113 0.0015

Bayes 0.7913 0.0102 0.0008

100 B ML 3.1876 0.0094 0.0034
Bayes 3.1155 0.0057 0.0031

6 ML 0.9857 0.0088 0.0030

Bayes 0.9274 0.0067 0.0011

a ML 0.7119 0.0052 0.0007

Bayes 0.6781 0.0034 0.0004

Table 4

Results of MLEs and Approximate BEs with Corresponding Estimated Variances and MSEs
(f=2,0=12, a =15, 1 =0.70, and n =10) Using Different Time-Censored Sample Sizes

n Parameter Method Estimate MSE Variance
25 B ML 24113 0.0379 0.0187
Bayes 2.3271 0.0321 0.0148

6 ML 1.3570 0.0217 0.0084

Bayes 1.3111 0.0164 0.0041

a ML 1.7142 0.0157 0.0037

Bayes 1.6281 0.0117 0.0021

50 p ML 2.2915 0.0279 0.0121
Bayes 2.2681 0.0213 0.0074

% ML 1.2270 0.0151 0.0048

Bayes 1.1860 0.0102 0.0026

a ML 1.5852 0.0116 0.0017

Bayes 1.5472 0.0083 0.0008

75 B ML 2.0844 0.0197 0.0062
Bayes 2.0352 0.0167 0.0022

6 ML 1.2130 0.0112 0.0019

Bayes 1.1941 0.0085 0.0012

a ML 1.5318 0.0028 0.0005

Bayes 1.5009 0.0014 0.0002

100 p ML 2.0102 0.0037 0.0012
Bayes 2.0087 0.0021 0.0010

6 ML 1.2024 0.0032 0.0011

Bayes 1.2007 0.0017 0.0004

a ML 1.5001 0.0007 0.0002

Bayes 1.5000 0.0005 0.0001
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APPENDIX (Derivation of Posterior Means and Posterior Variances):

Here, there are three parameters in the model. That is, m= 3. Let the subscripts 1, 2,
and 3 refer to [, 0, and a, respectively. It is not easy to obtain the posterior moments
analytically. Therefore, using Lindley expansion, the posterior mean (i.e., Bayesian
estimator under squared-error loss function) and the posterior variance of 3 are given,
respectively, in the form

* o o o 1 ~
B =E(ﬂJ/)={ﬂ_(“+12+; +2(011E1+012E2+013E3)}$®, (A1)

)

and

var(B|y)= E(B*|y)- (B ) =

2
_ Oy  O1p 013 1 o
=01~ 7"'7"‘7 —5(011E1+012E2+013E3) }©. (A2)

Applying the same technique, the posterior mean and posterior variance of the scale
parameter 6 take the following form:

* 021,02 023
0 =E0|y)=|0—|—+—=+—
©ly) { (ﬁ 0 T4

1 A

and

2
e _|[921, 92 03] 1 A
var(0| y)= 0, 5 + 0 + P 2(021E1+022E2+023E3) 0. (A4)

Similarly, for the shape parameter «, the posterior mean and the posterior variance are
given by

x 031 03 034 1 A
a =E(aly)= {a— ﬂ+9+a)+2(031E1+032E2+033E3)}|’®’ (AS)
and
o o o 1 ?
31,03 033 A
Var(a|y)=o33—|:( F; +70 +7a —2(031E1+032E2+033E3)} 19,  (A6)
where

_ 3) _ 3) _ 3)
Ey=Youlf),  Ey= Doyl Ey= oL,
i,j i, i,j

for i, j=1, 2,3, o are the elements of the inverse of the asymptotic Fisher-information
matrix of the ML estimators of [, 6, and « in the case of type-I censored data and

i, j=1, 2, 3,1s the third derivatives of the Lgfk) natural logarithm of the likelihood function

in type-I censoring.

To compute the posterior means and the posterior variances of 8, 6, and « derived
before, both second and third derivatives of the natural logarithm of the likelihood function
in (7) must be got.
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The second derivatives can be given by the following equations

92l (n—n, n?
=——Ct+———— " —+(a+]) ) (A7)
9 ﬁ2 O+pn)’ Z Y (0+ﬁ j)z
2L (nm— a)ony
= +D 2,90,
B0~ (0+pn)’ 2 ’<e+ﬂ,> (A9
2 _ ni
ad lnL:_(}m na)n_zéa‘ i (A9)
Poa 0+ By =t Y0+ px;
62lnL na (nm—ny)a (nmw— u)a = d,; s 04
2 Tt = +(a+D)| D, p = p - |.(a10)
d 6+ Bn)’ 0+n)° o (O+1;)" S5 (0+px;)
’InL_n_(nt—n,) (nm—n,) 2’7: S, +"§”: Sy
da 6 6+pPn 0+n = O+t j:10+,3xj ’ (A1)
9% InL +
b Y (Al2)
Ja a
For the third derivatives, they are given as follows
3 _ 9 InL_2n, 2nw—n,)an’ j
Llll 3 =73a_ . 3 )Eéaj (A13)
op g 0+ pn) 0+ px;
3) *InL 2na 2nm—n, ) 2nT—n, )
Ly = 3 - 3~ 3 "
0 0 (0+pn) (0+1)
ni S ni aaj
—2(a+1) M4 : , (A14)
g(ewif ;<9+ﬁxj>3
3
3 >InL 2(n,+n,)
L) = =, (A15)
oa a

1) = a3 lnL__ 2(nmw—n, )0577

= a+)» 6, ——— =78 =103 ’
112 aﬁZae (9+ﬁ77)3 —2a )E i (9+ﬂ j) 121 211 (A16)

L(3) _63 lnL__Z(mr—na)an &

= = 6, — 1 — =73 =¥ ’
21 8928/3 (0+ﬁ,7)3 )2 y (9+ﬁ ) 212 122 (A17)
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3 2 ni 2
3 _ 9 InL_(nwr—n, )M A O IO
(=" 20y =Ly =L (AI8)
9B oa (6+pn) o (0+Px;)

(3)_331nL_(nﬂ—"a)’7 z Xj
123 = 98309 - 2 aj 2
@ (0+pn) o (0+Px;)

_ 3 _ 03 _ 03 _ 03 _ 403
=Ly, = Ly3 = L3y = Ly, = Ly, (A19)

(3) °InL n (mm—n,) (nT—n,)
m= o =T ot 2t 2
0 0a 0 (6+pPn) O+n)

nw 5 ni

. o,
ui q 3) (3)
+ + =Ly =Ly, A20
§(0+t,-)2 ;(mﬂxj)z (A20)

3
@ _90"InL_ 3 _ @3
Ly, = = L33 = L33, A21
331 aaap 313 = 1133 (A21)
@ _L_ .o _ 0 (A22)
332 80!2(:)9 323 233"
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Pe3ome

JlocmimKyoThCsl HMOBIPHICTS TTapaMeTpiB MOJENi 1 BHKOpHUCTaHHA Merony baiieca mms
MO/IeJIi YaCTKOBO MPHCKOPEHHUX PECYpPCHUX BUIPOOYBaHb MPH ITOCTIHHUX HAaBaHTaKCHHSX 1
ueH3ypyBanHi B yaci Tuny | gt posnoainy Ilapero npyroro poay. Bukonano po3paxyHok
MaKCHMaJIbHOI HMOBIpHOCTI # iHAuKaTopiB bafieca mis mapameTpiB mofeni. 3a JOIIOMOTO0
Merony anpokcumanii JIiHII OTpUMaHO arocTepiopHi cepelHl 3HAYeHHs 1 Bapiauii Juis
KBaapaTu4HOi (QyHKIIT BTpaT (momuinok). [Tokasano mepeBaru AaHoi anmpokcumaiii. Buko-
HAHO YHCEJbHE MOJCTIOBaHH: 3a MeTogoM MonTte-Kapiio st 3pas3kiB pi3HOro po3Mipy i
rapameTpiB MOJIeJli JUisi MOPIBHSJIBHOI OI[IHKM 3alpONOHOBAaHUX METOIB HMPOTHO3YBaHHS
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