H. Rahimi (Islamic Azad. Univ., Central Tehran Branch, Iran),
G. Soleimani Rad (Young Researchers and Elite club, Islamic Azad. Univ., Central Tehran Branch, Iran)

COMMON FIXED POINT THEOREMS AND C-DISTANCE IN ORDERED CONE METRIC SPACES
 ТЕОРЕМИ ПРО СПІЛЬНУ НЕРУХОМУ ТОЧКУ ТА C-ВІДСТАНЬ В УПОРЯДКОВАНИХ КОНІЧНИХ МЕТРИЧНИХ ПРОСТОРАХ

We present a generalization of several fixed and common fixed point theorems on the c-distance in ordered cone metric spaces. In this way, we improve and generalize various results existing in the literature.

Наведено узагальнення деяких теорем про нерухому точку та спільну нерухому точку для c-відстані в упорядкованих конічних метричних просторах. Таким чином, покращено та узагальнено різноманітні результати, що наведені в літературі.

1. Introduction. Huang and Zhang [18] have introduced the concept of a cone metric space by replacing the set of real numbers by an ordered Banach space and have showed some fixed point theorems of contractive type mappings on cone metric spaces. Afterward, several fixed and common fixed point results in cone metric spaces with related results have been introduced in $[2,4,5,8,10$, $14,16,17,20]$ and the references contained therein. Also, the existence of fixed points in partially ordered cone metric spaces has been studied in [6, 7, 24].

In 1996, Kada et al. [21] defined the concept of w-distance in complete metric spaces. Later, many authors proved some fixed point theorems in complete metric spaces (see [3, 22]). Recently, Saadati et al. [23] introduced a probabilistic version of the w-distance in a Menger probabilistic metric space. In the sequel, Cho et al. [9] and Wang and Guo [26] defined a concept of the c-distance in a cone metric space, which is a cone version of the w-distance of Kada et al. [21] and proved some fixed point theorems in ordered cone metric spaces. Then Sintunavarat et al. [25] generalized the Banach contraction theorem on c-distance of Cho et al. [9]. Also, Dordević et al. [12] proved some fixed point and common fixed point theorems under c-distance for contractive mappings in tvs-cone metric spaces.

The purpose of this work is to extend and generalize the main results of Cho et al. [9], Sintunavarat et al. [25], Huang and Zhang [18] on c-distance in ordered cone metric spaces.

2. Preliminaries.

Definition 2.1 (see [11, 18]). Let E be a real Banach space and let 0 denote the zero element in E. A subset P of E is called a cone if the following conditions hold:
$\left(\mathrm{C}_{1}\right) P$ is nonempty closed and $P \neq\{0\} ;$
$\left(\mathrm{C}_{2}\right) a, b \in \mathbf{R}, a, b \geq 0$ and $x, y \in P$ imply that $a x+b y \in P$;
$\left(\mathrm{C}_{3}\right)$ if $x \in P$ and $-x \in P$, then $x=0$.
Given a cone $P \subset E$, we define a partial ordering \preceq with respect to P by $x \preceq y \Longleftrightarrow y-x \in P$. We write $x \prec y$ if $x \preceq y$ and $x \neq y$. Also, we write $x \ll y$ if and only if $y-x \in \operatorname{int} P$, where int P is interior of P. If $\operatorname{int} P \neq \varnothing$, the cone P is called solid. The cone P is called normal if there exists a number $k>0$ such that, for all $x, y \in E$,

$$
0 \preceq x \preceq y \Longrightarrow\|x\| \leq k\|y\| .
$$

The least positive number satisfying the above is called the normal constant of P.
Definition 2.2 (see [18]). Let X be a nonempty set and E be a real Banach space equipped with the partial ordering \preceq with respect to the cone $P \subset E$. Suppose that a mapping $d: X \times X \rightarrow E$ satisfies the following conditions:
$\left(\mathrm{CM}_{1}\right) 0 \preceq d(x, y)$ for all $x, y \in X$ and $d(x, y)=0$ if and only if $x=y ;$
$\left(\mathrm{CM}_{2}\right) d(x, y)=d(y, x)$ for all $x, y \in X$;
$\left(\mathrm{CM}_{3}\right) d(x, y) \preceq d(x, z)+d(z, y)$ for all $x, y, z \in X$.
Then d is called a cone metric on X and (X, d) is called a cone metric space.
Definition 2.3 (see [18]). Let (X, d) be a cone metric space, let $\left\{x_{n}\right\}$ be a sequence in X and $x \in X$.
(1) $\left\{x_{n}\right\}$ is said to be convergent to x if, for any $c \in E$ with $0 \ll c$, there exists $n_{0} \geq 1$ such that $d\left(x_{n}, x\right) \ll c$ for all $n>n_{0}$ and we write $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$.
(2) $\left\{x_{n}\right\}$ is called a Cauchy sequence if, for any $c \in E$ with $0 \ll c$, there exists $n_{0} \geq 1$ such that $d\left(x_{n}, x_{m}\right) \ll c$ for all $m, n>n_{0}$ and we write $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$.
(3) If every Cauchy sequence in X is convergent, then X is called a complete cone metric space.

Lemma 2.1 (see [18]). Let (X, d) be a cone metric space and P be a normal cone with normal constant k. Also, let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in X and $x, y \in X$. Then the following hold:
(1) $\left\{x_{n}\right\}$ converges to x if and only if $d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$.
(2) If $\left\{x_{n}\right\}$ converges to x and $\left\{x_{n}\right\}$ converges to y, then $x=y$.
(3) If $\left\{x_{n}\right\}$ converges to x, then $\left\{x_{n}\right\}$ is a Cauchy sequence.
(4) If $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$, then $d\left(x_{n}, y_{n}\right) \rightarrow d(x, y)$ as $n \rightarrow \infty$.
(5) $\left\{x_{n}\right\}$ is a Cauchy sequence if and only if $d\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$.

Lemma 2.2 (see [6, 19]). Let E be a real Banach space with a cone P in E. Then, for all $u, v, w, c \in E$, the following hold:
(1) If $u \preceq v$ and $v \ll w$, then $u \ll w$.
(2) If $0 \preceq u \ll c$ for all $c \in$ int P, then $u=0$.
(3) If $u \preceq \lambda u$ where $u \in P$ and $0<\lambda<1$, then $u=0$.
(4) Let $x_{n} \rightarrow 0$ in $E, 0 \preceq x_{n}$ and $0 \ll c$. Then there exists a positive integer n_{0} such that $x_{n} \ll c$ for each $n>n_{0}$.
(5) If $0 \preceq u \preceq v$ and k is a nonnegative real number, then $0 \preceq k u \preceq k v$.
(6) If $0 \preceq u_{n} \preceq v_{n}$ for all $n \geq 1$ and $u_{n} \rightarrow u$, $v_{n} \rightarrow v$ as $n \rightarrow \infty$, then $0 \preceq u \preceq v$.

Definition 2.4 (see [9, 26]). Let (X, d) be a cone metric space. A mapping $q: X \times X \rightarrow E$ is called a c-distance on X if the following are satisfied:
$\left(\mathrm{CD}_{1}\right) 0 \preceq q(x, y)$ for all $x, y \in X$;
$\left(\mathrm{CD}_{2}\right) q(x, z) \preceq q(x, y)+q(y, z)$ for all $x, y, z \in X$;
$\left(\mathrm{CD}_{3}\right)$ for all $n \geq 1$ and $x \in X$, if $q\left(x, y_{n}\right) \preceq u$ for some $u=u_{x}$, then $q(x, y) \preceq u$ whenever $\left\{y_{n}\right\}$ is a sequence in X converging to a point $y \in X$;
$\left(\mathrm{CD}_{4}\right)$ for all $c \in E$ with $0 \ll c$, there exists $e \in E$ with $0 \ll e$ such that $q(z, x) \ll e$ and $q(z, y) \ll e$ imply $d(x, y) \ll c$.

Remark 2.1 (see [9]). Each w-distance q in a metric space (X, d) is a c-distance with $E=\mathbf{R}^{+}$ and $P=[0, \infty)$. But the converse does not hold. Thus the c-distance is a generalization of the w-distance.

Example 2.1 (see [9, 26]). (1) Let $E=C_{\mathbf{R}}^{1}[0,1]$ with the norm $\|x\|=\|x\|_{\infty}+\left\|x^{\prime}\right\|_{\infty}$ and consider the cone $P=\{x \in E: x(t) \geq 0$ on $[0,1]\}$. Also, let $X=[0, \infty)$ and define a mapping $d: X \times X \rightarrow E$ by $d(x, y)=|x-y| \psi$ for all $x, y \in X$, where $\psi:[0,1] \rightarrow \mathbf{R}$ such that $\psi(t)=2^{t}$.

Then (X, d) is a cone metric space. Define a mapping $q: X \times X \rightarrow E$ by $q(x, y)=(x+y) \psi$ for all $x, y \in X$. Then q is c-distance.
(2) Let (X, d) be a cone metric space and P be a normal cone. Put $q(x, y)=d(w, y)$ for all $x, y \in X$, where $w \in X$ is a fixed point. Then q is a c-distance.
(3) Let (X, d) be a cone metric space and P be a normal cone. Define $q(x, y)=d(x, y)$ for all $x, y \in X$. Then q is a c-distance.
(4) Let $E=\mathbf{R}, P=\{x \in E: x \geq 0\}$ and $X=[0, \infty)$. Define a mapping $d: X \times X \rightarrow E$ by $d(x, y)=|x-y|$ for all $x, y \in X$. Then (X, d) is a cone metric space. Define a mapping $q: X \times X \rightarrow E$ by $q(x, y)=y$ for all $x, y \in X$. Then q is a c-distance.

Remark 2.2 (see [9, 26]). From (2) and (4) in Example 2.1, we have two important results:
(1) For any c-distance $q, q(x, y)=0$ is not necessarily equivalent to $x=y$ for all $x, y \in X$.
(2) For any c-distance $q, q(x, y)=q(y, x)$ does not necessarily hold for all $x, y \in X$.

Lemma 2.3 (see $[9,25,26])$. Let (X, d) be a cone metric space and q be a c-distance on X. Also, let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in X and $x, y, z \in X$. Suppose that $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are two sequences in P converging to 0 . Then the following hold:
(1) If $q\left(x_{n}, y\right) \preceq u_{n}$ and $q\left(x_{n}, z\right) \preceq v_{n}$ for $n \geq 1$, then $y=z$.
(2) If $q\left(x_{n}, y_{n}\right) \preceq u_{n}$ and $q\left(x_{n}, z\right) \preceq v_{n}$ for each $n \geq 1$, then $\left\{y_{n}\right\}$ converges to z.
(3) If $q\left(x_{n}, x_{m}\right) \preceq u_{n}$ for all $m>n$, then $\left\{x_{n}\right\}$ is a Cauchy sequence in X.
(4) If $q\left(y, x_{n}\right) \preceq u_{n}$ for each $n \geq 1$, then $\left\{x_{n}\right\}$ is a Cauchy sequence in X.

Definition 2.5 (see $[6,9]$). Let (X, \sqsubseteq) be a partially ordered set. Two mappings $f, g: X \rightarrow X$ are said to be weakly increasing if $f x \sqsubseteq g f x$ and $g x \sqsubseteq f g x$ hold for all $x \in X$.
3. Main results. Our first result is the following theorem of Hardy - Rogers type (see [15]) for any c-distance in a cone metric space without normality condition of cone.

Theorem 3.1. Let (X, \sqsubseteq) be a partially ordered set and (X, d) be a complete cone metric space. Suppose that there exist mappings $\alpha_{i}: X \rightarrow[0,1)$ such that the following condition hold:

$$
\alpha_{i}(f x) \leq \alpha_{i}(x)
$$

for all $x \in X$ and $i=1,2, \ldots, 5$. Also, let q be a c-distance on X and $f: X \rightarrow X$ be a continuous and nondecreasing mapping with respect to \sqsubseteq satisfying the following conditions:

$$
\begin{equation*}
q(f x, f y) \preceq \alpha_{1}(x) q(x, y)+\alpha_{2}(x) q(x, f x)+\alpha_{3}(x) q(y, f y)+\alpha_{4}(x) q(x, f y)+\alpha_{5}(x) q(y, f x), \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
q(f y, f x) \preceq \alpha_{1}(x) q(y, x)+\alpha_{2}(x) q(f x, x)+\alpha_{3}(x) q(f y, y)+\alpha_{4}(x) q(f y, x)+\alpha_{5}(x) q(f x, y) \tag{3.2}
\end{equation*}
$$

for all comparable $x, y \in X$ such that

$$
\begin{equation*}
\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}\right)(x)<1 . \tag{3.3}
\end{equation*}
$$

If there exists $x_{0} \in X$ such that $x_{0} \sqsubseteq f x_{0}$, then f has a fixed point. Moreover, if $f z=z$, then $q(z, z)=0$.

Proof. If $f x_{0}=x_{0}$, then x_{0} is a fixed point of f and the proof is finished. Now, suppose that $f x_{0} \neq x_{0}$. Since f is nondecreasing with respect to \sqsubseteq and $x_{0} \sqsubseteq f x_{0}$, we obtain by induction that

$$
x_{0} \sqsubseteq f x_{0} \sqsubseteq f^{2} x_{0} \sqsubseteq \ldots \sqsubseteq f^{n} x_{0} \sqsubseteq f^{n+1} x_{0} \sqsubseteq \ldots,
$$

where $x_{n}=f x_{n-1}=f^{n} x_{0}$. Now, setting $x=x_{n}$ and $y=x_{n-1}$ in (3.1), we have

$$
\begin{gather*}
q\left(x_{n+1}, x_{n}\right)=q\left(f x_{n}, f x_{n-1}\right) \preceq \\
\preceq \alpha_{1}\left(x_{n}\right) q\left(x_{n}, x_{n-1}\right)+\alpha_{2}\left(x_{n}\right) q\left(x_{n}, f x_{n}\right)+\alpha_{3}\left(x_{n}\right) q\left(x_{n-1}, f x_{n-1}\right)+ \\
+\alpha_{4}\left(x_{n}\right) q\left(x_{n}, f x_{n-1}\right)+\alpha_{5}\left(x_{n}\right) q\left(x_{n-1}, f x_{n}\right)= \\
=\alpha_{1}\left(f x_{n-1}\right) q\left(x_{n}, x_{n-1}\right)+\alpha_{2}\left(f x_{n-1}\right) q\left(x_{n}, x_{n+1}\right)+\alpha_{3}\left(f x_{n-1}\right) q\left(x_{n-1}, x_{n}\right)+ \\
+\alpha_{4}\left(f x_{n-1}\right) q\left(x_{n}, x_{n}\right)+\alpha_{5}\left(f x_{n-1}\right) q\left(x_{n-1}, x_{n+1}\right) \preceq \\
\preceq \alpha_{1}\left(x_{n-2}\right) q\left(x_{n}, x_{n-1}\right)+\alpha_{2}\left(x_{n-2}\right) q\left(x_{n}, x_{n+1}\right)+\alpha_{3}\left(x_{n-2}\right) q\left(x_{n-1}, x_{n}\right)+ \\
+\alpha_{4}\left(x_{n-2}\right)\left[q\left(x_{n}, x_{n+1}\right)+q\left(x_{n+1}, x_{n}\right)\right]+\alpha_{5}\left(x_{n-2}\right)\left[q\left(x_{n-1}, x_{n}\right)+q\left(x_{n}, x_{n+1}\right)\right] \preceq \ldots \\
\ldots \preceq \alpha_{1}\left(x_{0}\right) q\left(x_{n}, x_{n-1}\right)+\left(\alpha_{2}+\alpha_{4}+\alpha_{5}\right)\left(x_{0}\right) q\left(x_{n}, x_{n+1}+\right. \\
+\left(\alpha_{3}+\alpha_{5}\right)\left(x_{0}\right) q\left(x_{n-1}, x_{n}\right)+\alpha_{4}\left(x_{0}\right) q\left(x_{n+1}, x_{n}\right) . \tag{3.4}
\end{gather*}
$$

Similarly, setting $x=x_{n}$ and $y=x_{n-1}$ in (3.2), we get

$$
\begin{gather*}
q\left(x_{n}, x_{n+1}\right) \preceq \alpha_{1}\left(x_{0}\right) q\left(x_{n-1}, x_{n}\right)+\left(\alpha_{2}+\alpha_{4}+\alpha_{5}\right) q\left(x_{n+1}, x_{n}\right)+ \\
+\alpha_{4}\left(x_{0}\right) q\left(x_{n}, x_{n+1}\right)+\left(\alpha_{3}+\alpha_{5}\right)\left(x_{0}\right) q\left(x_{n}, x_{n-1}\right) . \tag{3.5}
\end{gather*}
$$

Thus, adding up (3.4) and (3.5), we obtain

$$
\begin{aligned}
q\left(x_{n+1}, x_{n}\right)+ & q\left(x_{n}, x_{n+1}\right) \preceq\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right)\left(x_{0}\right)\left[q\left(x_{n}, x_{n-1}\right)+q\left(x_{n-1}, x_{n}\right)\right]+ \\
& +\left(\alpha_{2}+2 \alpha_{4}+\alpha_{5}\right)\left(x_{0}\right)\left[q\left(x_{n+1}, x_{n}\right)+q\left(x_{n}, x_{n+1}\right)\right] .
\end{aligned}
$$

Set $v_{n}=q\left(x_{n+1}, x_{n}\right)+q\left(x_{n}, x_{n+1}\right)$ and then we have

$$
v_{n} \preceq\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right)\left(x_{0}\right) v_{n-1}+\left(\alpha_{2}+2 \alpha_{4}+\alpha_{5}\right)\left(x_{0}\right) v_{n} .
$$

Thus we get $v_{n} \preceq \lambda v_{n-1}$, where $\lambda=\frac{\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right)\left(x_{0}\right)}{1-\left(\alpha_{2}+2 \alpha_{4}+\alpha_{5}\right)\left(x_{0}\right)}<1$ by (3.4). By repeating the procedure, we obtain $v_{n} \preceq \lambda^{n} v_{0}$ for all $n \geq 1$. Thus it follows that

$$
\begin{equation*}
q\left(x_{n}, x_{n+1}\right) \preceq v_{n} \preceq \lambda^{n}\left[q\left(x_{1}, x_{0}\right)+q\left(x_{0}, x_{1}\right)\right] . \tag{3.6}
\end{equation*}
$$

Let $m>n$, then it follows from (3.6) and $\lambda<1$ that

$$
\begin{gathered}
q\left(x_{n}, x_{m}\right) \preceq q\left(x_{n}, x_{n+1}\right)+q\left(x_{n+1}, x_{n+2}\right)+\cdots+q\left(x_{m-1}, x_{m}\right) \preceq \\
\preceq\left(\lambda^{n}+\lambda^{n+1}+\cdots+\lambda^{m-1}\right)\left[q\left(x_{1}, x_{0}\right)+q\left(x_{0}, x_{1}\right)\right] \preceq \\
\preceq \frac{\lambda^{n}}{1-\lambda}\left[q\left(x_{1}, x_{0}\right)+q\left(x_{0}, x_{1}\right)\right] .
\end{gathered}
$$

Lemma 2.3 implies that $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Since X is complete, there exists a point $x^{\prime} \in X$ such that $x_{n} \rightarrow x^{\prime}$ as $n \rightarrow \infty$. The continuity of f implies that $x_{n+1}=f x_{n} \rightarrow f x^{\prime}$ as $n \rightarrow \infty$ and, since the limit of a sequence is unique, we get that $f x^{\prime}=x^{\prime}$. Thus x^{\prime} is a fixed point of f.

Now, suppose that $f z=z$. Then, by using (3.1), we have

$$
\begin{gathered}
q(z, z)=q(f z, f z) \preceq \\
\preceq \alpha_{1}(z) q(z, z)+\alpha_{2}(z) q(z, f z)+\alpha_{3}(z) q(z, f z)+\alpha_{4}(z) q(z, f z)+\alpha_{5}(z) q(z, f z) \preceq \\
\preceq\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}\right)(z) q(z, z) .
\end{gathered}
$$

Since $\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}\right)(z)<\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}\right)(z)<1$, we get that $q(z, z)=0$ by Lemma 2.2.

Theorem 3.1 is proved.
Corollary 3.1 ([25], Theorem 3.1). Let (X, \sqsubseteq) be a partially ordered set and (X, d) be a complete cone metric space. Suppose that there exist mappings $\alpha_{i}: X \rightarrow[0,1)$ such that the following condition hold:

$$
\alpha_{i}(f x) \leq \alpha_{i}(x)
$$

for all $x \in X$ and $i=1,2,3$. Also, let q be a c-distance on X and $f: X \rightarrow X$ be a continuous and nondecreasing mapping with respect to \sqsubseteq satisfying the following condition:

$$
q(f x, f y) \preceq \alpha_{1}(x) q(x, y)+\alpha_{2}(x) q(x, f x)+\alpha_{3}(x) q(y, f y)
$$

for all $x, y \in X$ with $y \sqsubseteq x$ such that

$$
\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)(x)<1
$$

If there exists $x_{0} \in X$ such that $x_{0} \sqsubseteq f x_{0}$, then f has a fixed point. Moreover, if $f z=z$, then $q(z, z)=0$.

Theorem 3.2. Let (X, \sqsubseteq) be a partially ordered set, (X, d) be a complete cone metric space and q be a c-distance on X. Suppose that there exists a continuous and nondecreasing mapping $f: X \rightarrow X$ with respect to \sqsubseteq such that the following conditions hold:

$$
\begin{aligned}
& q(f x, f y) \preceq \alpha_{1} q(x, y)+\alpha_{2} q(x, f x)+\alpha_{3} q(y, f y)+\alpha_{4} q(x, f y)+\alpha_{5} q(y, f x), \\
& q(f y, f x) \preceq \alpha_{1} q(y, x)+\alpha_{2} q(f x, x)+\alpha_{3} q(f y, y)+\alpha_{4} q(f y, x)+\alpha_{5} q(f x, y)
\end{aligned}
$$

for all comparable $x, y \in X$, where α_{i} are nonnegative coefficients for $i=1,2, \ldots, 5$ with

$$
\alpha_{1}+\alpha_{2}+\alpha_{3}+2\left(\alpha_{4}+\alpha_{5}\right)<1 .
$$

If there exists $x_{0} \in X$ such that $x_{0} \sqsubseteq f x_{0}$, then f has a fixed point. Moreover, if $f z=z$, then $q(z, z)=0$.

Proof. We can prove this result by applying Theorem 3.1 with $\alpha_{i}(x)=\alpha_{i}$ for $i=1,2, \ldots, 5$.
Corollary 3.2 ([9], Theorem 3.1). Let (X, \sqsubseteq) be a partially ordered set, (X, d) be a complete cone metric space and q be a c-distance on X. Suppose that there exists a continuous and nondecreasing mapping $f: X \rightarrow X$ with respect to \sqsubseteq such that the following condition hold:

$$
q(f x, f y) \preceq \alpha_{1} q(x, y)+\alpha_{2} q(x, f x)+\alpha_{3} q(y, f y)
$$

for all $x, y \in X$ with $y \sqsubseteq x$, where α_{i} are nonnegative coefficients for $i=1,2,3$ with

$$
\alpha_{1}+\alpha_{2}+\alpha_{3}<1 .
$$

If there exists $x_{0} \in X$ such that $x_{0} \sqsubseteq f x_{0}$, then f has a fixed point. Moreover, if $f z=z$, then $q(z, z)=0$.

Our second result is the following theorem of Hardy-Rogers type (see [15]) for any c-distance in a cone metric space with a normal cone.

Theorem 3.3. Let (X, \sqsubseteq) be a partially ordered set, P be a normal cone and (X, d) be a complete cone metric space. Suppose that there exist mappings $\alpha_{i}: X \rightarrow[0,1)$ such that the following condition hold:

$$
\alpha_{i}(f x) \leq \alpha_{i}(x)
$$

for all $x \in X$ and $i=1,2, \ldots, 5$. Also, let q be a c-distance on X and $f: X \rightarrow X$ be a nondecreasing mapping with respect to \sqsubseteq satisfying the following conditions:

$$
\begin{aligned}
& q(f x, f y) \preceq \alpha_{1}(x) q(x, y)+\alpha_{2}(x) q(x, f x)+\alpha_{3}(x) q(y, f y)+\alpha_{4}(x) q(x, f y)+\alpha_{5}(x) q(y, f x), \\
& q(f y, f x) \preceq \alpha_{1}(x) q(y, x)+\alpha_{2}(x) q(f x, x)+\alpha_{3}(x) q(f y, y)+\alpha_{4}(x) q(f y, x)+\alpha_{5}(x) q(f x, y)
\end{aligned}
$$

for all comparable $x, y \in X$ such that

$$
\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}\right)(x)<1 .
$$

If there exists $x_{0} \in X$ such that $x_{0} \sqsubseteq f x_{0}$ and $\inf \{\|q(x, y)\|+\|q(x, f x)\|: x \in X\}>0$ for all $y \in X$ with $y \neq f y$, then f has a fixed point. Moreover, if $f z=z$, then $q(z, z)=0$.

Proof. If $f x_{0}=x_{0}$, then x_{0} is a fixed point of f and the proof is finished. Now, suppose that $f x_{0} \neq x_{0}$. As in the proof of Theorem 3.1, we have

$$
x_{0} \sqsubseteq f x_{0} \sqsubseteq f^{2} x_{0} \sqsubseteq \ldots \sqsubseteq f^{n} x_{0} \sqsubseteq f^{n+1} x_{0} \sqsubseteq \ldots,
$$

where $x_{n}=f x_{n-1}=f^{n} x_{0}$. Moreover, $\left\{x_{n}\right\}$ converges to a point $x^{\prime} \in X$ and

$$
q\left(x_{n}, x_{m}\right) \preceq \frac{\lambda^{n}}{1-\lambda}\left[q\left(x_{1}, x_{0}\right)+q\left(x_{0}, x_{1}\right)\right]
$$

for all positive numbers with $m>n \geq 1$, where $\lambda=\frac{\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right)\left(x_{0}\right)}{1-\left(\alpha_{2}+2 \alpha_{4}+\alpha_{5}\right)\left(x_{0}\right)}<1$. By $\left(\mathrm{CD}_{3}\right)$, it follows that

$$
q\left(x_{n}, x^{\prime}\right) \preceq \frac{\lambda^{n}}{1-\lambda}\left[q\left(x_{1}, x_{0}\right)+q\left(x_{0}, x_{1}\right)\right]
$$

for all $n \geq 1$. Since P is a normal cone with normal constant k, we get

$$
\left\|q\left(x_{n}, x_{m}\right)\right\| \leq k\left(\frac{\lambda^{n}}{1-\lambda}\right)\left\|q\left(x_{1}, x_{0}\right)+q\left(x_{0}, x_{1}\right)\right\|
$$

for all $m>n \geq 1$. In particular, we obtain

$$
\begin{equation*}
\left\|q\left(x_{n}, x_{n+1}\right)\right\| \leq k\left(\frac{\lambda^{n}}{1-\lambda}\right)\left\|q\left(x_{1}, x_{0}\right)+q\left(x_{0}, x_{1}\right)\right\| \tag{3.7}
\end{equation*}
$$

for all $n \geq 1$. Also, we get

$$
\begin{equation*}
\left\|q\left(x_{n}, x^{\prime}\right)\right\| \leq k\left(\frac{\lambda^{n}}{1-\lambda}\right)\left\|q\left(x_{1}, x_{0}\right)+q\left(x_{0}, x_{1}\right)\right\| \tag{3.8}
\end{equation*}
$$

for all $n \geq 1$. Suppose that $x^{\prime} \neq f x^{\prime}$. Then, by the hypothesis, (3.7) and (3.8), we have

$$
\begin{gathered}
0<\inf \left\{\left\|q\left(x, x^{\prime}\right)\right\|+\|q(x, f x)\|: x \in X\right\} \leq \\
\leq \inf \left\{\left\|q\left(x_{n}, x^{\prime}\right)\right\|+\left\|q\left(x_{n}, f x_{n}\right)\right\|: n \geq 1\right\}= \\
=\inf \left\{\left\|q\left(x_{n}, x^{\prime}\right)\right\|+\left\|q\left(x_{n}, x_{n+1}\right)\right\|: n \geq 1\right\} \leq \\
\leq \inf \left\{k\left(\frac{\lambda^{n}}{1-\lambda}\right)\left\|q\left(x_{1}, x_{0}\right)+q\left(x_{0}, x_{1}\right)\right\|+k\left(\frac{\lambda^{n}}{1-\lambda}\right)\left\|q\left(x_{1}, x_{0}\right)+q\left(x_{0}, x_{1}\right)\right\|: n \geq 1\right\}=0
\end{gathered}
$$

which is a contradiction. Hence $x^{\prime}=f x^{\prime}$.
Moreover, suppose that $f z=z$. Then, we have $q(z, z)=0$ by the final part of the proof of Theorem 3.1.

Theorem 3.3 is proved.
Corollary 3.3 ([25], Theorem 3.2). Let (X, \sqsubseteq) be a partially ordered set, P be a normal cone and (X, d) be a complete cone metric space. Suppose that there exist mappings $\alpha_{i}: X \rightarrow[0,1)$ such that the following condition hold:

$$
\alpha_{i}(f x) \leq \alpha_{i}(x)
$$

for all $x \in X$ and $i=1,2,3$. Also, let q be a c-distance on X and $f: X \rightarrow X$ be a nondecreasing mapping with respect to \sqsubseteq satisfying the following condition:

$$
q(f x, f y) \preceq \alpha_{1}(x) q(x, y)+\alpha_{2}(x) q(x, f x)+\alpha_{3}(x) q(y, f y)
$$

for all $x, y \in X$ with $y \sqsubseteq x$ such that

$$
\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)(x)<1
$$

If there exists $x_{0} \in X$ such that $x_{0} \sqsubseteq f x_{0}$ and $\inf \{\|q(x, y)\|+\|q(x, f x)\|: x \in X\}>0$ for all $y \in X$ with $y \neq f y$, then f has a fixed point. Moreover, if $f z=z$, then $q(z, z)=0$.

Theorem 3.4. Let (X, \sqsubseteq) be a partially ordered set, P be a normal cone, (X, d) be a complete cone metric space and q be a c-distance on X. Suppose that there exists a nondecreasing mapping $f: X \rightarrow X$ with respect to \sqsubseteq such that the following conditions hold:

$$
\begin{aligned}
& q(f x, f y) \preceq \alpha_{1} q(x, y)+\alpha_{2} q(x, f x)+\alpha_{3} q(y, f y)+\alpha_{4} q(x, f y)+\alpha_{5} q(y, f x), \\
& q(f y, f x) \preceq \alpha_{1} q(y, x)+\alpha_{2} q(f x, x)+\alpha_{3} q(f y, y)+\alpha_{4} q(f y, x)+\alpha_{5} q(f x, y)
\end{aligned}
$$

for all comparable $x, y \in X$, where α_{i} are nonnegative coefficients for $i=1,2, \ldots, 5$ with

$$
\alpha_{1}+\alpha_{2}+\alpha_{3}+2\left(\alpha_{4}+\alpha_{5}\right)<1 .
$$

If there exists $x_{0} \in X$ such that $x_{0} \sqsubseteq f x_{0}$ and $\inf \{\|q(x, y)\|+\|q(x, f x)\|: x \in X\}>0$ for all $y \in X$ with $y \neq f y$, then f has a fixed point. Moreover, if $f z=z$, then $q(z, z)=0$.

Proof. We can prove this result by applying Theorem 3.3 with $\alpha_{i}(x)=\alpha_{i}$ for $i=1,2, \ldots, 5$.
Corollary 3.4 ([9], Theorem 3.2). Let (X, \sqsubseteq) be a partially ordered set, P be a normal cone, (X, d) be a complete cone metric space and q be a c-distance on X. Suppose that there exists a nondecreasing mapping $f: X \rightarrow X$ with respect to \sqsubseteq such that the following condition hold:

$$
q(f x, f y) \preceq \alpha_{1} q(x, y)+\alpha_{2} q(x, f x)+\alpha_{3} q(y, f y)
$$

for all $x, y \in X$ with $y \sqsubseteq x$, where α_{i} are nonnegative coefficients for $i=1,2,3$ with

$$
\alpha_{1}+\alpha_{2}+\alpha_{3}<1
$$

If there exists $x_{0} \in X$ such that $x_{0} \sqsubseteq f x_{0}$ and $\inf \{\|q(x, y)\|+\|q(x, f x)\|: x \in X\}>0$ for all $y \in X$ with $y \neq f y$, then f has a fixed point. Moreover, if $f z=z$, then $q(z, z)=0$.

Our third result include two mappings and the existence of their common fixed point for any c-distance in a cone metric space without the normality condition of the cone.

Theorem 3.5. Let (X, \sqsubseteq) be a partially ordered set and (X, d) be a complete cone metric space. Suppose that there exist mappings $\alpha_{i}: X \rightarrow[0,1)$ such that the following conditions hold:

$$
\alpha_{i}(f x) \leq \alpha_{i}(x), \alpha_{i}(g x) \leq \alpha_{i}(x)
$$

for all $x \in X$ and $i=1,2, \ldots, 5$. Also, let q be a c-distance on X and $f, g: X \rightarrow X$ be two continuous and weakly increasing mappings with respect to \sqsubseteq satisfying the following conditions:

$$
\begin{align*}
& q(f x, g y) \preceq \alpha_{1}(x) q(x, y)+\alpha_{2}(x) q(x, f x)+\alpha_{3}(x) q(y, g y)+\alpha_{4}(x) q(x, g y)+\alpha_{5}(x) q(y, f x), \tag{3.9}\\
& q(g y, f x) \preceq \alpha_{1}(x) q(y, x)+\alpha_{2}(x) q(f x, x)+\alpha_{3}(x) q(g y, y)+\alpha_{4}(x) q(g y, x)+\alpha_{5}(x) q(f x, y) \tag{3.10}
\end{align*}
$$

for all comparable $x, y \in X$ such that

$$
\begin{equation*}
\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}\right)(x)<1 \tag{3.11}
\end{equation*}
$$

Then f and g have a common fixed point. Moreover, if $f z=g z=z$, then $q(z, z)=0$.

Proof. Let x_{0} be an arbitrary point in X. We construct the sequence $\left\{x_{n}\right\}$ in X as follows:

$$
x_{2 n+1}=f x_{2 n} \quad, \quad x_{2 n+2}=g x_{2 n+1}
$$

for all $n \geq 0$. Since f and g are weakly increasing mappings, there exist $x_{1}, x_{2}, x_{3} \in X$ such that

$$
x_{1}=f x_{0} \sqsubseteq g f x_{0}=g x_{1}=x_{2} \quad, \quad x_{2}=g x_{1} \sqsubseteq f g x_{1}=f x_{2}=x_{3} .
$$

Continuing in this manner, it follows that there exist $x_{2 n+1} \in X$ and $x_{2 n+2} \in X$ such that

$$
\begin{gathered}
x_{2 n+1}=f x_{2 n} \sqsubseteq g f x_{2 n}=g x_{2 n+1}=x_{2 n+2}, \\
x_{2 n+2}=g x_{2 n+1} \sqsubseteq f g x_{2 n+1}=f x_{2 n+2}=x_{2 n+3}
\end{gathered}
$$

for all $n \geq 0$. Thus $x_{1} \sqsubseteq x_{2} \sqsubseteq \cdots \sqsubseteq x_{n} \sqsubseteq x_{n+1} \sqsubseteq \ldots$ for all $n \geq 1$, that is, $\left\{x_{n}\right\}$ is a nondecreasing sequence. Since $x_{2 n} \sqsubseteq x_{2 n+1}$ for all $n \geq 1$, by using (3.9) for $x=x_{2 n}$ and $y=x_{2 n+1}$, we have

$$
\begin{gathered}
q\left(x_{2 n+1}, x_{2 n+2}\right)=q\left(f x_{2 n}, g x_{2 n+1}\right) \preceq \\
\preceq \alpha_{1}\left(x_{2 n}\right) q\left(x_{2 n}, x_{2 n+1}\right)+\alpha_{2}\left(x_{2 n}\right) q\left(x_{2 n}, f x_{2 n}\right)+\alpha_{3}\left(x_{2 n}\right) q\left(x_{2 n+1}, g x_{2 n+1}\right)+ \\
+\alpha_{4}\left(x_{2 n}\right) q\left(x_{2 n}, g x_{2 n+1}\right)+\alpha_{5}\left(x_{2 n}\right) q\left(x_{2 n+1}, f x_{2 n}\right)= \\
=\left(\alpha_{1}+\alpha_{2}\right)\left(g x_{2 n-1}\right) q\left(x_{2 n}, x_{2 n+1}\right)+\alpha_{3}\left(g x_{2 n-1}\right) q\left(x_{2 n+1}, x_{2 n+2}\right)+ \\
+\alpha_{4}\left(g x_{2 n-1}\right) q\left(x_{2 n}, x_{2 n+2}\right)+\alpha_{5}\left(g x_{2 n-1}\right) q\left(x_{2 n+1}, x_{2 n+1}\right) \preceq \\
\preceq\left(\alpha_{1}+\alpha_{2}\right)\left(x_{2 n-1}\right) q\left(x_{2 n}, x_{2 n+1}\right)+\alpha_{3}\left(x_{2 n-1}\right) q\left(x_{2 n+1}, x_{2 n+2}\right)+ \\
+\alpha_{4}\left(x_{2 n-1}\right)\left[q\left(x_{2 n}, x_{2 n+1}\right)+q\left(x_{2 n+1}, x_{2 n+2}\right)\right]+ \\
+\alpha_{5}\left(x_{2 n-1}\right)\left[q\left(x_{2 n+1}, x_{2 n+2}\right)+q\left(x_{2 n+2}, x_{2 n+1}\right)\right]= \\
=\left(\alpha_{1}+\alpha_{2}+\alpha_{4}\right)\left(f x_{2 n-2}\right) q\left(x_{2 n}, x_{2 n+1}\right)+\alpha_{5}\left(f x_{2 n-2}\right) q\left(x_{2 n+2}, x_{2 n+1}\right)+ \\
+\left(\alpha_{3}+\alpha_{4}+\alpha_{5}\right)\left(f x_{2 n-2}\right) q\left(x_{2 n+1}, x_{2 n+2}\right) \preceq \cdots \\
\cdots \preceq\left(\alpha_{1}+\alpha_{2}+\alpha_{4}\right)\left(x_{0}\right) q\left(x_{2 n}, x_{2 n+1}\right)+ \\
+\left(\alpha_{3}+\alpha_{4}+\alpha_{5}\right)\left(x_{0}\right) q\left(x_{2 n+1}, x_{2 n+2}\right)+\alpha_{5}\left(x_{0}\right) q\left(x_{2 n+2}, x_{2 n+1}\right) .
\end{gathered}
$$

Similarly, by using (3.10) for $x=x_{2 n}$ and $y=x_{2 n+1}$, we get

$$
\begin{gathered}
q\left(x_{2 n+2}, x_{2 n+1}\right) \preceq\left(\alpha_{1}+\alpha_{2}+\alpha_{4}\right)\left(x_{0}\right) q\left(x_{2 n+1}, x_{2 n}\right)+\alpha_{5}\left(x_{0}\right) q\left(x_{2 n+1}, x_{2 n+2}\right)+ \\
+\left(\alpha_{3}+\alpha_{4}+\alpha_{5}\right)\left(x_{0}\right) q\left(x_{2 n+2}, x_{2 n+1}\right) .
\end{gathered}
$$

Thus, adding up two previous relations, we obtain

$$
\begin{aligned}
q\left(x_{2 n+2}, x_{2 n+1}\right) & +q\left(x_{2 n+1}, x_{2 n+2}\right) \preceq\left(\alpha_{1}+\alpha_{2}+\alpha_{4}\right)\left(x_{0}\right)\left[q\left(x_{2 n+1}, x_{2 n}\right)+q\left(x_{2 n}, x_{2 n+1}\right)\right]+ \\
& +\left(\alpha_{3}+\alpha_{4}+2 \alpha_{5}\right)\left(x_{0}\right)\left[q\left(x_{2 n+2}, x_{2 n+1}\right)+q\left(x_{2 n+1}, x_{2 n+2}\right)\right] .
\end{aligned}
$$

Setting $v_{n}=q\left(x_{2 n+1}, x_{2 n}\right)+q\left(x_{2 n}, x_{2 n+1}\right)$ and $u_{n}=q\left(x_{2 n+2}, x_{2 n+1}\right)+q\left(x_{2 n+1}, x_{2 n+2}\right)$, it follows that

$$
u_{n} \preceq\left(\alpha_{1}+\alpha_{2}+\alpha_{4}\right)\left(x_{0}\right) v_{n}+\left(\alpha_{3}+\alpha_{4}+2 \alpha_{5}\right)\left(x_{0}\right) u_{n}
$$

Thus we have

$$
\begin{equation*}
u_{n} \preceq \lambda v_{n}, \tag{3.12}
\end{equation*}
$$

where $\lambda=\frac{\left(\alpha_{1}+\alpha_{2}+\alpha_{4}\right)\left(x_{0}\right)}{1-\left(\alpha_{3}+\alpha_{4}+2 \alpha_{5}\right)\left(x_{0}\right)} \in[0,1)$ by (3.11). By a similar procedure, starting with $x=x_{2 n+2}$ and $y=x_{2 n+1}$, we have

$$
\begin{equation*}
v_{n+1} \preceq \lambda u_{n} . \tag{3.13}
\end{equation*}
$$

From (3.12) and (3.13), we get that

$$
v_{n+1} \preceq \lambda^{2} v_{n} \quad, \quad u_{n} \preceq \lambda^{2} u_{n-1}
$$

for all $n \geq 1$. Therefore, $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are two sequences converging to 0 . Also, we obtain $q\left(x_{2 n}, x_{2 n+1}\right) \preceq v_{n}$ and $q\left(x_{2 n+1}, x_{2 n+2}\right) \preceq u_{n}$ and so $q\left(x_{n}, x_{n+1}\right) \preceq v_{n}+u_{n}$.

On the other hand, it is easy to show that, if $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are two sequences in E converging to 0 , then $\left\{u_{n}+v_{n}\right\}$ is a sequence converging to 0 (see [9,12]). Lemma 2.3 implies that $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Since X is complete, there exists a point $x^{\prime} \in X$ such that $x_{n} \rightarrow x^{\prime}$ as $n \rightarrow \infty$. The continuity of f and g implies that $x_{2 n+1}=f x_{2 n} \rightarrow f x^{\prime}$ and $x_{2 n+2}=g x_{2 n+1} \rightarrow g x^{\prime}$ as $n \rightarrow \infty$. Since the limit of a sequence is unique, we get $f x^{\prime}=x^{\prime}$ and $g x^{\prime}=x^{\prime}$. Thus x^{\prime} is a common fixed point of f and g.

Suppose that $z \in X$ is another point satisfying $f z=g z=z$. Then (3.9) implies that

$$
\begin{gathered}
q(z, z)=q(f z, g z) \preceq \\
\preceq \alpha_{1}(z) q(z, z)+\alpha_{2}(z) q(z, f z)+\alpha_{3}(z) q(z, g z)+\alpha_{4}(z) q(z, g z)+\alpha_{5}(z) q(z, f z) \preceq \\
\preceq\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}\right)(z) q(z, z) .
\end{gathered}
$$

Since $\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}\right)(z)<\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}\right)(z)$ and $\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}\right)(z)<$ 1 for all $z \in X$, by (3.9), we get $q(z, z)=0$ by Lemma 2.2.

Theorem 3.5 is proved.
Corollary 3.5 ([25], Theorem 3.3). Let (X, \sqsubseteq) be a partially ordered set and (X, d) be a complete cone metric space. Suppose that there exist mappings $\alpha_{i}: X \rightarrow[0,1)$ such that the following conditions hold:

$$
\alpha_{i}(f x) \leq \alpha_{i}(x), \alpha_{i}(g x) \leq \alpha_{i}(x)
$$

for all $x \in X$ and $i=1,2,3$. Also, let q be a c-distance on X and $f, g: X \rightarrow X$ be two continuous and weakly increasing mappings with respect to \sqsubseteq satisfying the following conditions:

$$
\begin{aligned}
& q(f x, g y) \preceq \alpha_{1}(x) q(x, y)+\alpha_{2}(x) q(x, f x)+\alpha_{3}(x) q(y, g y), \\
& q(g x, f y) \preceq \alpha_{1}(x) q(x, y)+\alpha_{2}(x) q(x, g x)+\alpha_{3}(x) q(y, f y)
\end{aligned}
$$

for all $x, y \in X$ with $y \sqsubseteq x$ such that

$$
\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)(x)<1 .
$$

Then f and g have a common fixed point. Moreover, if $f z=g z=z$, then $q(z, z)=0$.
Theorem 3.6. Let (X, \sqsubseteq) be a partially ordered set, (X, d) be a complete cone metric space and q be a c-distance on X. Suppose that there exist two continuous and weakly increasing mappings $f, g: X \rightarrow X$ with respect to \sqsubseteq such that the following conditions hold:

$$
\begin{aligned}
& q(f x, g y) \preceq \alpha_{1} q(x, y)+\alpha_{2} q(x, f x)+\alpha_{3} q(y, g y)+\alpha_{4} q(x, g y)+\alpha_{5} q(y, f x), \\
& q(g y, f x) \preceq \alpha_{1} q(y, x)+\alpha_{2} q(f x, x)+\alpha_{3} q(g y, y)+\alpha_{4} q(g y, x)+\alpha_{5} q(f x, y)
\end{aligned}
$$

for all comparable $x, y \in X$, where α_{i} are nonnegative coefficients for $i=1,2, \ldots, 5$ with

$$
\alpha_{1}+\alpha_{2}+\alpha_{3}+2\left(\alpha_{4}+\alpha_{5}\right)<1 .
$$

Then f and g have a common fixed point. Moreover, if $f z=g z=z$, then $q(z, z)=0$.
Proof. We can prove this result by applying Theorem 3.5 with $\alpha_{i}(x)=\alpha_{i}$ for $i=1,2, \ldots, 5$.
Corollary 3.6 ([9], Theorem 3.3). Let (X, \sqsubseteq) be a partially ordered set, (X, d) be a complete cone metric space and q be a c-distance on X. Suppose that there exist two continuous and weakly increasing mappings $f, g: X \rightarrow X$ with respect to \sqsubseteq such that the following conditions hold:

$$
\begin{aligned}
& q(f x, g y) \preceq \alpha_{1} q(x, y)+\alpha_{2} q(x, f x)+\alpha_{3} q(y, g y), \\
& q(g x, f y) \preceq \alpha_{1} q(x, y)+\alpha_{2} q(x, g x)+\alpha_{3} q(y, f y)
\end{aligned}
$$

for all comparable $x, y \in X$, where α_{i} are nonnegative coefficients for $i=1,2,3$ with

$$
\alpha_{1}+\alpha_{2}+\alpha_{3}<1
$$

Then f and g have a common fixed point. Moreover, if $f z=g z=z$, then $q(z, z)=0$.
Our next result include two mappings and the existence of their common fixed point for any c-distance in a cone metric space with the normal cone.

Theorem 3.7. Let (X, \sqsubseteq) be a partially ordered set, P be a normal cone and (X, d) be a complete cone metric space. Suppose that there exist mappings $\alpha_{i}: X \rightarrow[0,1)$ such that the following conditions hold:

$$
\alpha_{i}(f x) \leq \alpha_{i}(x), \alpha_{i}(g x) \leq \alpha_{i}(x)
$$

for all $x \in X$ and $i=1,2, \ldots, 5$. Also, let q be a c-distance on X and $f, g: X \rightarrow X$ be two weakly increasing mappings with respect to \sqsubseteq satisfying the following conditions:

$$
\begin{aligned}
& q(f x, g y) \preceq \alpha_{1}(x) q(x, y)+\alpha_{2}(x) q(x, f x)+\alpha_{3}(x) q(y, g y)+\alpha_{4}(x) q(x, g y)+\alpha_{5}(x) q(y, f x), \\
& q(g y, f x) \preceq \alpha_{1}(x) q(y, x)+\alpha_{2}(x) q(f x, x)+\alpha_{3}(x) q(g y, y)+\alpha_{4}(x) q(g y, x)+\alpha_{5}(x) q(f x, y)
\end{aligned}
$$

for all comparable $x, y \in X$ such that

$$
\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}\right)(x)<1
$$

If $\inf \{\|q(x, y)\|+\|q(x, f x)\|: x \in X\}>0$ and $\inf \{\|q(x, y)\|+\|q(x, g x)\|: x \in X\}>0$ for all $y \in X$ with $y \neq f y$ and $y \neq g y$, respectively, then f and g have a common fixed point. Moreover, if $f z=g z=z$, then $q(z, z)=0$.

Proof. The proof is similar to Theorem 3.3. One can prove this theorem by using the proof of Theorems 3.3 and 3.6.

Corollary 3.7 ([25], Theorem 3.4). Let (X, \sqsubseteq) be a partially ordered set, P be a normal cone and (X, d) be a complete cone metric space. Suppose that there exist mappings $\alpha_{i}: X \rightarrow[0,1)$ such that the following conditions hold:

$$
\alpha_{i}(f x) \leq \alpha_{i}(x), \alpha_{i}(g x) \leq \alpha_{i}(x)
$$

for all $x \in X$ and $i=1,2,3$. Also, let q be a c-distance on X and $f, g: X \rightarrow X$ be two weakly increasing mappings with respect to \sqsubseteq satisfying the following conditions:

$$
\begin{aligned}
& q(f x, g y) \preceq \alpha_{1}(x) q(x, y)+\alpha_{2}(x) q(x, f x)+\alpha_{3}(x) q(y, g y), \\
& q(g x, f y) \preceq \alpha_{1}(x) q(x, y)+\alpha_{2}(x) q(x, g x)+\alpha_{3}(x) q(y, f y)
\end{aligned}
$$

for all comparable $x, y \in X$ such that

$$
\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)(x)<1
$$

If $\inf \{\|q(x, y)\|+\|q(x, f x)\|: x \in X\}>0$ and $\inf \{\|q(x, y)\|+\|q(x, g x)\|: x \in X\}>0$ for all $y \in X$ with $y \neq f y$ and $y \neq g y$, respectively, then f and g have a common fixed point. Moreover, if $f z=g z=z$, then $q(z, z)=0$.

Theorem 3.8. Let (X, \sqsubseteq) be a partially ordered set, P be a normal cone, (X, d) be a complete cone metric space and q be a c-distance on X. Suppose that there exist two weakly increasing mappings $f, g: X \rightarrow X$ with respect to \sqsubseteq such that the following conditions hold:

$$
\begin{aligned}
& q(f x, g y) \preceq \alpha_{1} q(x, y)+\alpha_{2} q(x, f x)+\alpha_{3} q(y, g y)+\alpha_{4} q(x, g y)+\alpha_{5} q(y, f x), \\
& q(g y, f x) \preceq \alpha_{1} q(y, x)+\alpha_{2} q(x, g x)+\alpha_{3} q(y, f y)+\alpha_{4} q(g y, x)+\alpha_{5} q(f x, y)
\end{aligned}
$$

for all comparable $x, y \in X$, where α_{i} are nonnegative coefficients for $i=1,2, \ldots, 5$ with

$$
\alpha_{1}+\alpha_{2}+\alpha_{3}+2\left(\alpha_{4}+\alpha_{5}\right)<1 .
$$

If $\inf \{\|q(x, y)\|+\|q(x, f x)\|: x \in X\}>0$ and $\inf \{\|q(x, y)\|+\|q(x, g x)\|: x \in X\}>0$ for all $y \in X$ with $y \neq f y$ and with $y \neq g y$, respectively, then f and g have a common fixed point. Moreover, if $f z=g z=z$, then $q(z, z)=0$.

Proof. We can prove this result by applying Theorem 3.7 with $\alpha_{i}(x)=\alpha_{i}$ for $i=1,2, \ldots, 5$.
Corollary 3.8 ([9], Theorem 3.4). Let (X, \sqsubseteq) be a partially ordered set, P be a normal cone, (X, d) be a complete cone metric space and q be a c-distance on X. Suppose that there exist two weakly increasing mappings $f, g: X \rightarrow X$ with respect to \sqsubseteq such that the following conditions hold:

$$
\begin{aligned}
& q(f x, g y) \preceq \alpha_{1} q(x, y)+\alpha_{2} q(x, f x)+\alpha_{3} q(y, g y), \\
& q(g x, f y) \preceq \alpha_{1} q(x, y)+\alpha_{2} q(x, g x)+\alpha_{3} q(y, f y)
\end{aligned}
$$

for all comparable $x, y \in X$, where α_{i} are nonnegative coefficients for $i=1,2,3$ with

$$
\alpha_{1}+\alpha_{2}+\alpha_{3}<1 .
$$

If $\inf \{\|q(x, y)\|+\|q(x, f x)\|: x \in X\}>0$ and $\inf \{\|q(x, y)\|+\|q(x, g x)\|: x \in X\}>0$ for all $y \in X$ with $y \neq f y$ and $y \neq g y$, respectively, then f and g have a common fixed point. Moreover, if $f z=g z=z$, then $q(z, z)=0$.

Example 3.1. Let $E=\mathbf{R}$ and $P=\{x \in E: x \geq 0\}$. Let $X=[0,1]$ and define a mapping $d: X \times X \rightarrow E$ by $d(x, y)=|x-y|$ for all $x, y \in X$. Then (X, d) is a cone metric space. Define a function $q: X \times X \rightarrow E$ by $q(x, y)=d(x, y)$ for all $x, y \in X$. Then q is a c-distance (by Example 2.1). Let an order relation \sqsubseteq be defined by $x \sqsubseteq y \Longleftrightarrow x \leq y$. Also, let a mapping $f: X \rightarrow X$ be defined by $f(x)=\frac{x^{2}}{4}$ for all $x \in X$. Define the mappings $\alpha_{1}(x)=\frac{x+1}{4}, \alpha_{4}(x)=\frac{x}{8}$ and $\alpha_{2}=\alpha_{3}=\alpha_{5}=0$ for all $x \in X$. Observe that:
(1) $\alpha_{1}(f x)=\frac{1}{4}\left(\frac{x^{2}}{4}+1\right) \leq \frac{1}{4}\left(x^{2}+1\right) \leq \frac{x+1}{4}=\alpha(x)$ for all $x \in X$.
(2) $\alpha_{4}(f x)=\frac{x^{2}}{32} \leq \frac{x^{2}}{8} \leq \frac{x}{8}=\alpha_{4}(x)$ for all $x \in X$.
(3) $\alpha_{i}(f x)=0 \leq 0=\alpha_{i}(x)$ for all $x \in X$ and $i=2,3,5$.
(4) $\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}\right)(x)=\frac{x+1}{4}+\frac{2 x}{8}=\frac{2 x+1}{4}<1$ for all $x \in X$.
(5) For all comparable $x, y \in X$, we get

$$
\begin{gathered}
q(f x, f y)=\left|\frac{x^{2}}{4}-\frac{y^{2}}{4}\right| \leq \frac{|x+y||x-y|}{4}=\left(\frac{x+y}{4}\right)|x-y| \leq\left(\frac{x+1}{4}\right)|x-y| \leq \\
\leq \alpha_{1}(x) q(x, y)+\alpha_{2}(x) q(x, f x)+\alpha_{3}(x) q(y, f y)+ \\
+\alpha_{4}(x) q(x, f y)+\alpha_{5}(x) q(y, f x)
\end{gathered}
$$

(6) Similarly, we have

$$
\begin{gathered}
q(f y, f x) \leq \alpha_{1}(x) q(y, x)+\alpha_{2}(x) q(f x, x)+\alpha_{3}(x) q(f y, y)+ \\
+\alpha_{4}(x) q(f y, x)+\alpha_{5}(x) q(f x, y)
\end{gathered}
$$

for all comparable $x, y \in X$.
Moreover, f is a nondecreasing and continuous mapping with respect to \sqsubseteq. Hence all the conditions of Theorem 3.1 are satisfied. Thus f has a fixed point $x=0$ and $q(0,0)=0$.

Remark 3.1. There exist many examples on fixed point results under c-distance in cone metric spaces (see, for example, $[9,12,25,26]$). Also, most of the examples in $[1,6,24]$ can be easily translated into the c-distance on ordered cone metric spaces with $q(x, y)=d(x, y)$.

1. Agarwal R. P., Meehan M., O'Regan D. Fixed point theory and applications. - Cambridge Univ. Press, 2004.
2. Abbas M., Cho Y. J., Nazir T. Common fixed point theorems for four mappings in TVS-valued cone metric spaces // J. Math. Inequal. - 2011. - 5. - P. 287-299.
3. Abbas M., Ilić D., Khan M. A. Coupled coincidence point and coupled common fixed point theorems in partially ordered metric spaces with w-distance // Fixed Point Theory and Appl. - 2010. - Article ID 134897. - 11 p.
4. Abbas M., Jungck G. Common fixed point results for noncommuting mappings without continuity in cone metric spaces // J. Math. Anal. Appl. - 2008. - 341. - P. 416-420.
5. Abbas M., Rhoades B. E., Nazir T. Common fixed points for four maps in cone metric spaces // Appl. Math. Comput. 2010. - 216. - P. 80-86.
6. Altun I., Damnjanović B., Djorić D. Fixed point and common fixed point theorems on ordered cone metric spaces // Appl. Math. Lett. - 2010. - 23. - P. 310-316.
7. Altun I., Durmaz G. Some fixed point theorems on ordered cone metric spaces // Rend. Circ. mat. Palermo. - 2009. 58. - P. 319-325.
8. Cho Y. J., Rhoades B. E., Saadati R., Samet B., Shantawi W. Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type // Fixed Point Theory and Appl. - 2012. - 2012, № 8.
9. Cho Y. J., Saadati R., Wang S. H. Common fixed point theorems on generalized distance in ordered cone metric spaces // Comput. Math. and Appl. - 2011. - 61. - P. 1254-1260.
10. Cvetković A. S., Stanić M. P., Dimitrijević S., Simić S. Common fixed point theorems for four mappings on cone metric type space // Fixed Point Theory and Appl. - 2011. - 15. - Article ID 589725.
11. Deimling K. Nonlinear functional analysis. - Springer-Verlag, 1985.
12. Dordević M., Dorić D., Kadelburg Z., Radenović S., Spasić D. Fixed point results under c-distance in $t v s$-cone metric spaces // Fixed Point Theory and Appl. - 2001, doi:10.1186/1687-1812-2011-29.
13. Graily E., Vaezpour S. M., Saadati R., Cho Y. J. Generalization of fixed point theorems in ordered metric spaces concerning generalized distance // Fixed Point Theory and Appl. - 2011. - 2011, № 30 .
14. Guo D., Cho Y. J., Zhu J. Partial ordering methods in nonlinear problems. - New York: Nova Sci. Publ., Inc., 2004.
15. Hardy G. E., Rogers T. D. A generalization of a fixed point theorem of Reich // Can. Math. Bull. - 1973. - 1, № 6. P. 201-206.
16. Garcia-Falset J., Llorens Fuster E., Suzuki T. Fixed point theory for a class of generalized nonexpansive mapping // J. Math. Anal. and Appl. - 2011. - 375. - P. 185-195.
17. Huang N. J., Fang Y. P., Cho Y. J. Fixed point and coupled fixed point theorems for multi-valued increasing operators in ordered metric spaces // Fixed Point Theory and Appl. / Eds Y. J. Chao, J. K. Kim and S. M. Kang. - 2002. - 3. P. 91-98.
18. Huang L. G., Zhang X. Cone metric spaces and fixed point theorems of contractive mappings // J. Math. Anal. and Appl. - 2007. - 332. - P. 1467-1475.
19. Ilić D., Rakočević V. Quasi-contraction on a cone metric space // Appl. Math. Lett. - 2009. - 22. - P. 728-731.
20. Janković S., Kadelburg Z., Radenović S. On cone metric spaces, a survey // Nonlinear Anal. - 2011. - 74. P. 2591-2601.
21. Kada O., Suzuki T., Takahashi W. Nonconvex minimization theorems and fixed point theorems in complete metric spaces // Math. Jap. - 1996. - 44. - P. 381-391.
22. Mohanta S. K. Generalized W-distance and a fixed point theorem // Int. J. Contemp. Math. Sci. - 2011. - 6, № 18. P. 853-860.
23. Saadati R., O'Regan D., Vaezpour S. M., Kim J. K. Generalized distance and common fixed point theorems in Menger probabilistic metric spaces // Bull. Iran. Math. Soc. - 2009. - 35. - P. 97-117.
24. Shatanawi W. Partially ordered cone metric spaces and coupled fixed point results // Comput. Math. and Appl. 2010. - 60. - P. 2508-2515.
25. Sintunavarat W., Cho Y. J., Kumam P. Common fixed point theorems for c-distance in ordered cone metric spaces // Comput. Math. and Appl. - 2011. - 62. - P. 1969-1978.
26. Wang S., Guo B. Distance in cone metric spaces and common fixed point theorems // Appl. Math. Lett. - 2011. - 24. P. 1735-1739.

Received 11.05.12,
after revision - 19.04.13

