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ON M-PROJECTIVELY FLAT LP-SASAKIAN MANIFOLDS
PO M-ITPOEKTHUBHO IIVIOCKI LP-MHOI'OBUJIN CACAKSHA

The object of the present paper is to study the nature of LP-Sasakian manifolds admitting the M -projective curvature
tensor. It is examined whether this manifold satisfies the condition W (X,Y").R = 0. Moreover, it is proved that, in the
M -projectively flat LP-Sasakian manifolds, the conditions R(X,Y).R = 0 and R(X,Y).S = 0 are satisfied. In the last
part of our paper, M -projectively flat space-time is introduced and some properties of this space are obtained.

BuBuaerscst mpupona MEoroBuaiB CacaxsiHa, IO JIOIMYyCKaloTh M -IpoeKTHBHUH TeH30p KpuBU3HU. IlepeBipeno, uu 3a10-
BoJbHsIE 1l MHOroBHA yMoBY W (X, Y). R = 0. Binbu Toro, moBexeHo, mo ymosr R(X,Y). R =01a R(X,Y).S = 0 Bu-
KOHYIOThCS 111 M -nipoexTuBHO miockux LP-muoroeunis CacaxsiHa. B ocranniit wactiHi po6oTH BBeieHO M -IPOEKTHBHO
IUTOCKHI MPOCTip-4ac Ta BCTAHOBJICHO JIESKi BIACTHBOCTI LBOTO MPOCTOPY.

1. Introduction. A Riemannian manifold (M, g) is called a Sasakian manifold if there exists a
Killing vector field £ of unit length on M so that tensor field ® of type (1,1), defined by ®(X) =
= —Vx¢, satisfies the condition (Vx®)(Y) = ¢(X,Y )¢ — g(£,Y)X for any pair of vector fields
X and Y on M. This is a curvature condition which can be easily expressed in terms the Riemann
curvature tensor as R(X,£)Y = g(&,Y)X — g(X,Y)&. Equivalently, the Riemannian cone defined
by (C(M),g,Q) = (R XM, dr? +r2g,d(r?n)) is Kéhler with the Kihler form = d(r?n), where
7 is the dual 1-form of £. The 4-tuple s = (£, 7, ®, g) is commonly called a Sasakian structure on M
and & is its characteristic or Reeb vector field.

Sasakian geometry is a special kind of contact metric geometry such that the structure transverse
to the Reeb vector field ¢ is Kéhler and invariant under the flow of £. On the analogy of Sasakian
manifolds, in 1989 Matsumoto [1, 2], introduced the notion of LP-Sasakian manifolds. Again the
same notion is introduced by Mihai and Rosca [3] and obtained many interesting results. LP-Sasakian
manifolds are also studied by De et al. [4], Shaikh et al. [5 — 8], Taleshian and Asghari [9], Venkatesha
and Bagewadi [10] and many others.

The M -projective curvature tensor of a Riemannian manifold M defined by Pokhariyal and
Mishra [11] is in the following form:

1

W(X,Y)Z = RXY)Z = 5o

S(Y,2)X — S(X, Z)Y + g(Y, Z)QX — g(X, Z)QY),

(1.1)
where R(X,Y)Z and S(X,Y) are the curvature tensor and the Ricci tensor of M, respectively and
@ is the Ricci operator defined by S(X,Y) = g(QX,Y’). Some properties of this tensor in Sasakian
and Kéhler manifolds have been studied before [12, 13]. In 2010, Chaubey and Ojha [14] investigated
the M-projective curvature tensor of a Kenmotsu manifold.

The object of the present paper is to study LP-Sasakian manifolds admitting M -projective curva-
ture tensor. The paper is organized as follows. Section 2 is concerned with some preliminaries about
LP-Sasakian manifolds. Section 3 deals with LP-Sasakian manifolds with M -projective curvature ten-
sor. Section 4 is devoted to M -projectively flat LP-Sasakian manifolds. In Section 5, M -projectively
flat LP-Sasakian spacetimes are introduced.
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2. Preliminaries. An n-dimensional differentiable manifold M is called an LP-Sasakian man-
ifold [1, 2] if it admits a (1,1) tensor field ¢, a contravariant vector field £, a 1-form 7 and a
Lorentzian metric g which satisfy:

P =I+n®E¢, 2.1

n(é) = -1, (2.2)

9(@X, oY) = g(X,Y) +n(X)n(Y), (2.3)
Vxé=¢X,  g(X, ¢ =n(X), 2.4)
(Vxp)Y = g(X,Y)§+ 2n(X)n(Y)E, (2.5)

where V denotes the operator of the covariant differentiation with respect to the Lorentzian metric g.
It can be easily seen that in an LP-Sasakian manifold, the following relations hold:

pE =0,  n(eX)=0,
rankp =n — 1.
Again if we put
QX,Y) = g(X, ¢Y)

for any vector fields X and Y, then Q(X,Y") is symmetric (0,2) tensor field [1]. Also since the
1-form 7 is closed in an LP-Sasakian manifold, we have [1, 4]

(VX'U)(Y) = Q(va)v Q(Xv g) =0

for any vector fields X and Y.
Also, in an LP-Sasakian manifold, the following conditions hold [2, 4]:

9(R(X,Y)Z,§) = n(R(X,Y)Z) = g(Y, Z)n(X) — (X, Z)n(Y), (2.6)
R(E,X)Y = g(X,Y)E —n(Y)X, 2.7)

R(X,Y)§ =n(Y)X —n(X)Y, (2.8)

R(§, X)§ = X +n(X)¢, (2.9)

S(X,8) = (n—1n(X), (2.10)

S(eX,¢Y) = S(X,Y) + (n = D)n(X)n(Y) (2.11)

for any vector fields X, Y, Z where R(X,Y)Z is the curvature tensor and S(X,Y") is the Ricci
tensor.
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3. LP-Sasakian manifold satisfying W (X,Y).S = 0. Let us consider an LP-Sasakian mani-
fold (M, g) satisfying the condition

W(X,Y).S =0. 3.1
Now, we have
S(W(EX)Y,Z)+ S(Y,W(,X)Z) = 0. (3.2)

From (1.1), (2.7) and (2.10), we get

1 1

W(EX)Y = 39(X. V)¢ = 5n(Y)X = 5o s SXY)E+ etmn(VIQX. (33

By using (2.10) and (3.3), (3.2) takes the form

51— Dg(X.YIn(2) + (n— )g(X, Z)n(Y) — S(X, Z)n(¥)~

1 1

—S(X,Y)n(Z) + mS(QXa Z)n(Y) + mS(QX,Y)U(Z) = 0. (3.4)

Let X be the eigenvalue of the endomorphism () corresponding to an eigenvector X. Then
RX = )\X. (3.5)

By using (3.5) in (3.4), we obtain
1 1
5(n=1g(X,Y)n(2) + 5(n = 1)g(X, Z)n(Y') = S(X, Z)n(Y)~

A A

—S(X,Y)n(Z)+ mS(X, ZnY) + mS(X,Y)n(Z) =0. (3.6)

Remembering that g(QX,Y) = S(X,Y) and using (3.6), we have
9(QX,Y) = gAX,Y) = Ag(X,Y) = S(X,Y). (3.7)

Thus, from (3.6) and (3.7), taking Z = £ in (3.6) and using (2.2), it can be easily seen that

T () — () = 0 63)
Finally, taking Y = £ in (3.8) and using the properties (2.2) and (2.4)5, we obtain
A2 n—1

In this case, as 7(X) # 0, we have from (3.9)
M —2n—1DA+(n—-1)>%*=0. (3.10)

From (3.10), it follows that the non-zero eigenvalues of the endomorphism () are congruent such as
(n — 1). Thus we can state the following theorem.
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Theorem 3.1. [f an n-dimensional (n > 3) LP-Sasakian manifold admitting M-projective cur-
vature tensor and with non-zero Ricci tensor S satisfies

W(X,Y).S =0,

then the non-zero eigenvalues of the symmetric endomorphism Q of the tangent space corresponding
to S are congruent such as (n — 1).

4. M-projectively flat LP-sasakian manifolds. Let us consider that M be an M -projectively
flat LP-Sasakian manifold. Thus, we have W (X,Y)Z = 0 for all vector fields X, Y, Z. Then, we
get from (1.1)

R(X,Y)Z = Q(nl_l)(sm 2)X - S(X, )Y +¢(V, 2)QX — g(X, 2)QY).  (&1)
Taking Z = £ in (4.1) and using the relations (2.4), (2.8) and (2.10), we find
A)X —(X)Y = [p(V)QX —n(X)QV]. 42)

Again taking Y = € in (4.2) and applying (2.2), (4.2) reduces to
RX =Mn-1)X. (4.3)
Hence in view of (2.7), (4.1) and (4.3), we get
S(X,Y)¢=(n—-1)g(X,Y)E. 4.4)
Taking the inner product of both sides (4.4) with £ and using (2.2), we have
S(X,Y)=(mn-1)g(X,Y). (4.5)

Next, we have the following theorem.

Theorem 4.1. Let M be an n-dimensional M -projectively flat LP-Sasakian manifold. Then M
is an Einstein manifold and the Ricci tensor of M is in the form S(X,Y) = (n —1)g(X,Y).

In this case, by the use of (4.3) and (4.5) in (4.1), we obtain

R(X,Y)Z = g(Y,2)X — g(X, Z)Y. (4.6)

According to Karcher [15], a Lorentzian manifold is called infinitesimally spatially isotropic relative
to a unit timelike vector field U if its Riemann curvature tensor R satisfies the relation

R(X,Y)Z =6[g(Y,Z)X — g(X, 2)Y]

forall X,Y,Z € U* and R(X,U)U =~X for X € U~ where 6, 7 are real valued functions on the
manifold. Hence, we can obtain the following theorem.

Theorem 4.2. An n-dimensional M -projectively flat LP-Sasakian manifold is infinitesimally
spatially isotropic relative to the unit timelike vector field .

Theorem 4.3. Let M be an n-dimensional M -projectively flat LP-Sasakian manifold. Then M
is semisymmetric, i.e., the condition R(X,Y).R = 0 holds.
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Proof. Let M be an n-dimensional M -projectively flat LP-Sasakian manifold. Thus, we can
write

R(X,Y).R=R(X,Y)R(Z,U)V — R(R(X,Y)Z,U)V—
—R(Z,R(X,Y)U)V — R(Z,U)R(X,Y)V 4.7
for all vector fields X, Y, Z, U, V on M. So from (4.6), we get

R(R(X,Y)Z,U)V =g(UV)g(Y,Z)X —g(Y, Z)g(X,V)U—

—9(X, 2)g(U, V)Y + g(X, Z)g(Y,V)U. (4.8)
Again, we obtain

R(Z,R(X, YUV =g(U,Y)g(X,V)Z — g(U,Y)g(Z, V)X —

and finally

R(Z,U)R(X,Y)V = g(U,X)g(Y,V)Z — g(X, Z)g(Y,V)U~

So from (4.7)—(4.10), one can easily get
R(X,Y).R=0.

Theorem4.3 is proof is proved.

Corollary 4.1. Let M be an n-dimensional M -projectively flat LP-Sasakian manifold. Then M
is Ricci semisymmetric, i.e., the condition R(X,Y).S = 0 holds.

Proof. Let M be an n-dimensional M -projectively flat LP-Sasakian manifold. Since a semisym-
metric manifold is also Ricci semisymmetric, [16], from Theorem 4.2, the proof is clear.

5. M-projectively flat LP-Sasakian spacetimes. In this section, we consider that M is an
M -projectively flat LP-Sasakian spacetime (M*, g) satisfying the Einstein’s equations with a cosmo-
logical constant. Further let £ be the unit time-like velocity vector of the fluid. It is known that the
Einstein’s equations with a cosmological constant can be written as [17]

S(X,Y) - %g(X, Y) + Ag(X,Y) = kT(X,Y) (5.1)

for all vector fields X and Y. Here, S(X,Y) and 7'(X,Y") denote the Ricci tensor and the energy-
momentum tensor, respectively. In addition, A is the cosmological constant and k is the non-zero
gravitational constant.

Hence by use of (4.5), (5.1) forms into

T(X,Y) = <A;3> g(X,Y). (5.2)

Thus, we have the following theorem.
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Theorem 5.1. Let M* be an M-projectively flat LP-Sasakian spacetime satisfying the Einstein’s
equations with a cosmological constant. Then the energy momentum tensor of this space is found as
in (5.2).

In a perfect fluid spacetime, the energy momentum tensor is in the form

T(X,Y) = (¢ +p)u(X)u(Y) +pg(X,Y), (5.3)

where o is the energy density, p is the isotropic pressure and u(X) is a non-zero 1-form such that
g9(X,V) = u(X) for all X, V being the velocity vector field of the flow, that is, g(V,V) = —1.
Also, o0 +p # 0.

With the help of (5.2) and (5.3), we obtain

(A=3—kp)g(X,Y) =k(o + p)u(X)u(Y). 5.4

Contraction of (5.4) over X and Y leads to

A:g-%(a—sp). (5.5)
Ifweput X =Y =V in (5.4) then we find
A =3—ko. (5.6)
Combining the equations (5.5) and (5.6), we get
oc+p=0. (5.7

Hence we have the following theorem.

Theorem 5.2. In an M-projectively flat LP-Sasakian spacetime M* satisfying the Einstein’s field
equations with a cosmological term then the matter contents of M* satisfy the vacuum-like equation
of state.

If we assume a dust in a perfect fluid, we have

o = 3p. (5.8)

By putting (5.8) in (5.7), we get

Thus, we can state the following theorem.
Theorem 5.3. The M-projectively flat LP-Sasakian spacetime admitting a dust for a perfect
fluid is filled with radiation.

In a relativistic spacetime, the energy-momentum tensor is in the form
T(X,Y) = pu(X)u(Y). (5.9
From (5.2), (5.9) takes the form
A=3)9(X,Y) = kpu(X)u(Y). (5.10)
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Contraction of (5.10) over X and Y leads to
1
A=3— Zk'u' (5.11)
And, if we put X =Y =V in (5.10), we get
A=3—kpu. (5.12)

Thus, combining the equations (5.11) and (5.12), we finally get that ;x = 0. From this relation and
(5.9), we find 7'(X,Y’) = 0. This means that the spacetime is devoid of the matter. In this case, we
can give the following theorem.

Theorem 5.4. A relativistic M-projectively flat LP-Sasakian manifold satisfying the Einstein's
field equations with a cosmological term is vacuum.
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