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GENERALIZED WEYL’S THEOREM AND TENSOR PRODUCT
V3ATAJIBHEHA TEOPEMA BEIJISI TA TEH30PHUM JJOBYTOK

We give necessary and/or sufficient conditions ensuring the passage of generalized a-Weyl theorem and property (gw) from
Aand Bto A® B.

HaBeneno HeoOXinHi Ta/abo 1ocTaTHi YMOBH, 1[0 TAPaHTYIOTh IMOLIMPEHHS y3arajlbHeHol a-TeopemMu Belins Ta BacTuBoCTI
(gw) i3 Ata Bua AR® B.

1. Introduction. Given Banach spaces X and Y, let X®Y denote the completion (in some reasonable
uniform cross norm) of the tensor product of X and Y. For Banach space operators A € £(X) and
Be L(Y),let A® B € L(X®Y) denote the tensor product of A and B. Recall that for an operator
S, the Browder spectrum o4(S) and the Weyl spectrum o,,(S) of S are the sets

op(S) ={A € C: § — X is not Fredholm or asc(S — \) # dsc(S — )},

ow(S)={A e C: S — X isnot Fredholm or ind(S — \) # 0}.
In the case in which X and Y are Hilbert spaces, Kubrusly and Duggal [15] proved that

if op(A) = 0w(A) and op(B) =o0y(B), then o0(A® B)=0u(A® B)
if and only if 0,(A® B) = 0(A)ow(B) Uoy(A)o(B).

In other words, if A and B satisfy Browder’s theorem, then their tensor product satisfies Browder’s
theorem if and only if the Weyl spectrum identity holds true. The same proof still holds in a Banach
space setting.

For a bounded linear operator S € £(X), let 0(5),0,(S) and 0,(S) denote, respectively, the
spectrum, the point spectrum and the approximate point spectrum of S and if G C C, then G'*°
denote the isolated points of G. Let «(S) and ((S) denote the nullity and the deficiency of S,
defined by a(S) = dimker(S) and 5(5) = codim R(S).

If the range R(S) of S is closed and a(S) < oo (respectively 3(S) < o0), then S is called an
upper semi-Fredholm (respectively a lower semi-Fredholm) operator. If S € £(X) is either upper
or lower semi-Fredholm, then S is called a semi-Fredholm operator, and ind (), the index of S,
is then defined by ind(S) = «(S) — B(S). If both a(S) and 5(S) are finite, then S is a Fredholm
operator. The ascent, denoted asc(S), and the descent, denoted dsc(S), of S are given by asc(S) =
= inf {n € N: ker(S") = ker(S"™}, dsc(S) = inf {n € N: R(5™) = R(S" '} (where the infi-
mum is taken over the set of non-negative integers); if no such integer n exists, then asc(S) = oo,
respectively dsc(S) = 00.)

For S € L(X) and a nonnegative integer n define S}, to be the restriction of S to R(S™)
viewed as a map from R(S") into R(S™) (in particular, S5 = S). If for some integer n the range
space R(S") is closed and S}, is an upper (a lower) semi-Fredholm operator, then S is called

(© M. H. M. RASHID, 2012
ISSN 1027-3190. Ykp. mam. scypu., 2012, m. 64, Ne 9 1289



1290 M. H. M. RASHID

an upper (a lower) semi-B-Fredholm operator. In this case the index of S is defined as the index
of the semi-B-Fredholm operator S}, see [8]. Moreover, if S}, is a Fredholm operator, then S is
called a B-Fredholm operator. A semi-B-Fredholm operator is an upper or a lower semi-B-Fredholm
operator. An operator S is said to be a B-Weyl operator [9] (Definition 1.1) if it is a B-Fredholm
operator of index zero. The B-Weyl spectrum oy (S) of S is defined by opy (S) = {\ € C: S—AI
is not a B-Weyl operator}.

An operator S € L£(X) is called Drazin invertible if it has a finite ascent and descent. The Drazin
spectrum o p(S) of an operator S is defined by op(S) = {A € C: S — AI is not Drazin invertible}.
Define also the set LD(X) by LD(X) = {S € £(X): a(S) < oo and R(T*5)*1) is closed} and
orp(S) = {AeC: S—X ¢ LD(X)}. Following [10], an operator S € £(X) is said to be left
Drazin invertible if S € LD(X). We say that A € 0,(T) is a left pole of S if S — A € LD(X),
and that A € 0,(95) is a left pole of S of finite rank if A is a left pole of 7" and a(S — A\I) < oc.
Let 7,(S) denotes the set of all left poles of S and let 70(.S) denotes the set of all left poles of S of
finite rank. From [10] (Theorem 2.8) it follows that if S € £(X) is left Drazin invertible, then S is an
upper semi-B-Fredholm operator of index less than or equal to 0. Note that 7, (S) = 04(S5) \ orp(5)
and hence A € 7, (5) if and only if A\ ¢ o1,p(5).

Following [9], we say that generalized Weyl’s theorem holds for S € £(X) (in symbol S € gWV)
if AI(S) = o(S)\ opw(S) = E(S), where E(S) = {A € ¢™(5): 0 < (S — AI)} is the set
of all isolated eigenvalues of S, and that generalized Browder’s theorem holds for S € £(X)
(in symbol S € gB) if AI(S) = =(S), where 7(T) is the set of poles of the resolvent of
T. 1t is proved in [5] (Theorem 2.1) that generalized Browder’s theorem is equivalent to Brow-
der’s theorem. In [10] (Theorem 3.9), it is shown that an operator satisfying generalized Weyl’s
theorem satisfies also Weyl’s theorem, but the converse does not hold in general. Nonetheless
and under the assumption E(S) = w(S5), it is proved in [11] (Theorem 2.9) that generalized
Weyl’s theorem is equivalent to Weyl’s theorem. Let W, (X) be the class of all upper semi-B-
Fredholm operators, ¥ (X) = {S € ¥ (X): ind(S) < 0} . The upper B-Weyl spectrum of S is
defined by TsBr; () ={AeC: T —X ¢ ¥V (X)}. We say that generalized a-Weyl’s theorem
holds for S € L£(X) (in symbol S € gaW) if AJ(S) = o,(S) \ O‘SBFJ:(S) = E,(S), where
El(S) = {Ae€ok(S): a(S —A) >0} is the set of all eigenvalues of S which are isolated in
04(S) and that S € L(X) obeys generalized a-Browder’s theorem (S € gaB3) if Af(S) = 7, (S).
It is proved in [5] (Theorem 2.2) that generalized a-Browder’s theorem is equivalent to a-Browder’s
theorem, and it is known from [10] (Theorem 3.11) that an operator satisfying generalized a-Weyl’s
theorem satisfies a-Weyl’s theorem, but the converse does not hold in general and under the as-
sumption E,(S) = m,(S) it is proved in [11] (Theorem 2.10) that generalized a-Weyl’s theorem is
equivalent to a-Weyl’s theorem.

The operator T € L£(X) is said to have the single valued extension property at Ao € C (abbrevi-
ated SVEP at )g) if for every open disc D centred at )¢, the only analytic function f: D — which
satisfies the equation (7" — X) f(A\) = 0 for all A € D is the function f = 0. An operator " € £(X)
is said to have SVEP if T" has SVEP at every point A € C.

Obviously, every T' € £(X) has SVEP at the points of the resolvent p(T") := C\ o(T"). Moreover,
from the identity theorem for analytic function, it easily follows that 7" € £(X), as well as its dual
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T*, has SVEP at every point of the boundary do (T') = do(T™) of the spectrum o (7). In particular,
both 7" and 7™ have SVEP at every isolated point of the spectrum, see [1, 4, 2, 3].
Let

U, (S)={\eC:S— X\ is upper semi-B-Fredholm} ,
U(S)={AeC:S— X\ is B-Fredholm},
osBF, (S) ={A € 04(9): A& ¥ (5)},

O'SBF;(S) ={A€0a(5): A€ ogpp,(S) or ind(S—A) >0},

Ho(S) = {w e X: lm_|[s"|"/" = 0}.

2. Main results. Let 04(S) = {\ € 0(S) : S — A is not surjective} denote, the surjectivity spec-
trum. Let U_(X) be the class of all lower semi-B-Fredholm operators, ¥F(X) = {S € ¥_(X):
ind(S—A) > 0}. The lower semi-B-Weyl spectrum of S is defined by o5 o (S) = {A € C: S—A ¢
¢ UF(X)}. Define RD(X) = {S € £(X): dsc(S) = d < oo and R(S?*?) is closed}. The right
Drazin invertible is defined by orp(S) = {A € C: S — X ¢ RD(X)}. It is not difficult to see
that op(S) = orp(S) U orp(S). Moreover, o1,p(S) = ogp(S*) [7]. Then S satisfies generalized
s-Browder’s theorem if o ¢ ;5 o+ (S) = orp(S). Apparently, S satisfies generalized s-Browder’s theo-
rem if and only if S* satisﬁesigeneralized a-Browder’s theorem. A necessary and sufficient condition
for S to satisfy generalized a-Browder’s theorem is that S has SVEP at every A € AZ(S) [12]
(Theorem 3.1); by duality, S satisfies generalized s-Browder’s theorem if and only if S* has SVEP at
every A € 05(S) \ 045 p+(S). More generally, if either of S and S* has SVEP, then S and S* satisfy
both generalized a-Browder’s theorem and generalized s-Browder’s theorem. Either of generalized
a-Browder’s theorem and generalized s-Browder’s theorem implies generalized Browder’s theorem,
but the converse is false. generalized a-Browder’s theorem fails to transfer from A and B to A ® B
[13] (Example 1).

Lemma 2.1. Let Ac L(X)and B € L(Y). Then 0 ¢ 0,(A® B) \ 0sBr, (A® B).

Proof. Suppose 0 € 04(A® B) \ 0spr, (A® B). Then 0 € 0,(A® B) NV, (A® B). So,

there exists an integer ng such that for any n > ng, A ® B — —I has closed range and 0 <
n
1 1
<« <A ® B — I> < 00. Since A ® B — —1 is injective if and only if A and B are injective, we
n n

1
have a(A) > 0 or a(B) > 0. But then oo ( A ® B — —I | = 00, and we have a contradiction.
n
Lemma 2.2. Let A€ L(X) and B € L(Y). Then

T5pr (A® B) C 0a(A)ogpp-(B)Uagpp(A)oa(B) C

- Ua(A)O‘LD(B) U ULD(A)O'Q(B) = ULD(A &® B)

Proof. Since O'SBF;(S) C orp(S) for every operator S, it follows that the inclusion
aa(A)aSBF;(B) U TsBr: (A)oa(B) C 04(A)orp(B) Uorp(A)oa(B) is evident. To prove the
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inclusion TSBE; (A® B) C O'a(A)O'SBF;(B) U JSBF;(A)GG(B), take A\ ¢ Ua(A)USBF;(B) U
U O’SBF;(A)O'a(B). Since

osBr, (A® B) C UQ(A)O'SBFJ: (B)U TSBE; (A)oy(B),

Lemma 2.1 implies that A # 0. For every factorization A = pv such that u € 0,(A) and v € 04(B)
we have that p € aa\aSBF; (A)and v € aa(B)\aSBFJ:(B), ie,pue Vv, (A),re ¥, (B),ind(A—
—p) < 0and ind(B — v) < 0. In particular, A ¢ ospr, (A® B).

We prove next that ind(A ® B — X) < 0. Suppose ind(A ® B — A\) > 0. Then there exists an

1
integer ng such that for any n > ng we have o | A® B — A\ — —1 > < oo. But this implies that
n

1
ﬁ<A®B—/\I—I> < 00, so that A ® B — X is B-Weyl. Let
n

F= {(ui,yi);;l € o(A)o(B): piv; = /\}.

Then F' is a finite set. Furthermore

(i) if m > 1, then pu; € 0'°(A) for 1 < i < m;

(i) if k> m, then v; € 0™°(B) for m + 1 < i < k;

(i) ind(AwB=\) =37 ind(A— ) dim Ho(B—vg)+Y " ind(B—v;) dim Ho(A4
— fi)-

Since ind(A— ;) and ind(B—v;) are non-positive, we have a contradiction. Hence, ind(A® B—\) <
< 0, and consequently, A\ & o¢ L (A ® B). This leaves us to prove the equality o;p(A ® B) =
= O'Q(A)O'LD(B) U ULD(A)O'Q(B).

Suppose that A ¢ op(A® B). Then A # 0, A € LD(A® B), a = asc(A® B — \) < o0
and (A ® B — \)**! is closed and hence A € 7,(A ® B). Observe that A € ¢5°(A ® B). Let
A = pv be any factorization of A such that u € 0,(A) and v € 04(B); then p € LD(A) and
v € LD(B). Furthermore, since 0*°(A ® B) C 0°(A) Uc'°(B) U {0}, A has SVEP at ;1 and B
has SVEP at v. Consequently, i € m,(A), v € mo(B), that is, u ¢ orp(A) and v ¢ orp(B). But
then A\ ¢ 0,(A)orp(B)Uorp(A)o.(B). Hence 0,(A)orp(B)Uorp(A)o.(B) C orp(A® B).

To prove the reverse inclusion we start by recalling the fact that if y € 0i5°(A) and p € 05°(B)
for every factorization A = uv of A\ # 0, then A = puv € 05°(A® B). Let A € 0,(A)orp(B) U
Uorp(A)og(B). Then A # 0. Furthermore, if A = pv is any factorization of A such that p € o,(A)
and v € 0,(B), then the following implications hold:

wéorp(A) and véopp(B) = p€ma(A) and v € m(B) =
S ANem(A@B),p€c(A) and veo™(B)=

a

= A€ (A®B) and A€ o*(A®B)=

:>A¢ULD(A®B).

Hence ULD(A & B) - O'Q(A)O'LD(B) U ULD(A)O'Q(B).
Lemma 2.2 is proved.
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Lemma 2.3. Let A € L(X)and B € L(Y). If A® B satisfies generalized a-Browder s theorem,

then
TsBr; (A® B) = Ja(A)JSBF; (B)U TsBr; (A)ou(B).

Proof. A® B satisfies generalized a-Browder’s theorem if and only if 0 ¢ Fy (A®B) = orp(A®
® B). Thus the stated result is an immediate consequence of Lemma 2.2.

The next theorem, our main result, proves that A and B satisfy generalized a-Browder’s the-
orem implies A @ B satisfies generalized a-Browder’s theorem if and only if og F;(A ® B) =
= UQ(A)USBF; (B) U TsBE; (A)ou(B).

Theorem 2.1. Let A € L(X) and B € L(Y). If A and B satisfy generalized a-Browder s
theorem, then the following are equivalent:

(1) A® B satisfies generalized a-Browder s theorem;

(ii) TSBE- (A® B) = UG(A)USBF; (B)U TsBE; (A)oq(B);

(iii) A has SVEP at every p € V. (A) and B has SVEP at every v € V. (B) such that (0 #
#N) =puv € o,(A® B) \O'SBFJ:(A ® B).

Proof. 1f A and B satisty generalized a-Browder’s theorem, then o7p(A) = ogp Py (A) and
orp(B) = O'SBF; (B).

(1) = (i1). By Lemma 2.3 we have, without any extra conditions.

(i) = (1). If (ii) is satisfied, then

O’SBF;(A ® B) = UQ(A)O'SBF;(B) U O’SBF;(A)O'G(B) =
= O‘a(A)ULD(B) @] JLD(A)Ua(B) =

=orp(A® B) (by Lemma 2.2).

Hence A ® B satisfies generalized a-Browder’s theorem.

(ii) = (iii). Suppose (ii) holds. Let A € 0,(A ® B) \O'SBF; (A® B). Then A # 0 and for every
factorization A = pv such that p € 04,(A) NV (A) and v € 0,(B) N V4 (B). Hence p € m,(A)
and v € m,(B).So it follows from [10] (Remark 2.7) that u € ¢*°(A) and v € ¢%°(B). Therefore,
A and B have SVEP at (all such) 4 and v, respectively.

(iii) = (ii). In view of Lemma 2.2, we have to prove that o;p(A ® B) C O'SBF;(A ® B).
Suppose that (ii) is satisfied. Take a A € 0,(A ® B) \ TSBE; (A® B). Then (0 #)A € ¥, (A® B)
and ind(A® B —\) < 0. The equality ospr, (A®B) = 04(A)ospr, (B)Uospr, (A)oq(B) implies
that for any factorization A\ = pv (such that p € 04(A) and v € 0,(B)) we have that p € U, (A)
and v € U (B). The SVEP hypotheses on A and B implies that asc(A — pJ) and asc(B — \) are
finite. Hence, 1 € 01%°(A) and p € 01%°(B). So, it follows from Theorem 2.8 of [10] that p € 7, (A)
and v € 7, (B). Therefore, u ¢ orp(A) and v ¢ orp(B). But then A ¢ o7;p(A ® B). Hence
ULD(A & B) c USBF; (A & B)

Theorem 2.1 is proved.

The next theorem gives a sufficient condition for A ® B to satisfy generalized a-Weyl theorem,
given that A and B satisfy generalized a-Weyl theorem. But before that a couple of technical lemmas.
Recall that an operator S is said to be a-isoloid if A € 015°(.S) implies A € ().

a
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Lemma 2.4. Suppose that A, B and A ® B satisfy generalized a-Browders theorem. If |1 €
€ ma(A) and v € 74(B), then A = pv € 7,(A® B).

Proof. Since p € 04(A) \ O'SBF;(A), v € 04(B) \ O'SBF;(B) and O'SBF;(A ® B) =
= O'a(A)O'SBFI (B)UUSBF; (A)ou(B). Hence, A = pv € O'a(A®B)\O'SBF+— (A®B) = m,(A® B).

Theorem 2.2. Suppose that A € L(X) and B € L(Y) are a-isoloid which satisfy generalized
a-Weyl theorem. IfaSBFJ: (A® B) = aa(A)aSBF;(B) Uospp: (A)oo(B), then A ® B satisfies
generalized a-Weyl theorem.

Proof. The hypotheses imply that A ® B satisfies generalized a-Browder’s theorem, that is,
0.(A® B) \ TsBE; (A® B) = ma(A ® B). Since m,(A ® B) C E.(A ® B), we have to prove
that E,(A® B) C m,(A® B). Let A € E,(A® B). Then 0 # A\ = pv for some y € 0i5°(A) and
v € 0%°(B). The operators A and B being a-isoloid, it follows from A = uv € E,(A ® B) that
€ Eq(A) =me(A) and v € E,(B) = m,(B). By Lemma 2.4, A € m,(A ® B).

Theorem 2.2 is proved.

Following [16], we say that S € £(X) satisfies property (w) if 04(9) \ 0aw(S) = E°(S). The
property (w) has been studied in [2, 3, 4, 16]. In [3] (Theorem 2.8), it is shown that property (w)
implies Weyl’s theorem, but the converse is not true in general. An operator S € £(X) is said to be
satisfies property (gw) if 0,(5)\ogp o (S) = E(S). Property (gw) has been introduced and studied
in [6]. Property (gw) extends property (w) to the context of B-Fredholm theory, and it is proved in
[6] that an operator satisfying property (gw) satisfies property (w) and generalized Weyl’s theorem
but the converse is not true in general.

The following theorem gives a necessary and sufficient condition for the transference of property
(gw) from isoloid A and B to A ® B But before that a lemma and some observations, which will
often be used in the sequel. Let A € £(X) and B € £(Y). Then 0'°(A ® B) C 0'°(A).c'*° U {0}.
If 0 is in the point spectrum of either of A and B, then (A ® B) = 0; in particular, 0 ¢ E(A® B)).
It is easily seen, see the argument of the proof of [15] (Proposition 2), that E(A® B) C E(A)E(B).

Theorem 2.3. [fA € L(X) and B € L(Y) are isoloid operators which satisfy property (gw),
then the following conditions are equivalent:

(i) A ® B satisfies property (gw);

(ii) the generalized a-Weyl spectrum equality TsBr; (A® B) = O'a(A)O'SBF; (B) U
Uospr: (A)ou(B) is satisfied,

(i) A ® B satisfies generalized a-Browder s theorem.

Proof. Since property (gw) implies generalized a-Browder’s theorem, the equivalence (ii) < (iii)
and (i) = (iii) follows from Theorem 2.2. We prove (iii) = (i). The hypothesis A and B satisfy
property (gw) implies

Ja(A)\USBF;(A) = E(A), O'a(B)\USBF;(B) = E(B).
Observe that (iii) implies generalized a-Browder’s theorem transfers from A and B to A ® B: hence
TSBE; (A® B) = Ua(A)USBF; (B)U USBF;(A)JG(B). Let A € E(A® B); then A # 0 and hence
there exist u € 0%°(A) and v € ¢*°(B) such that A\ = pv. By hypotheses A and B are isoloid;

hence p is an eigenvalue of A and v is an eigenvalue of B. Hence p € E(A) = 04(A) \ TsBF; (A)
and v € E(B) = 04(B) \ O'SBF;(B). Consequently, A € 0,(A ® B) \ O'SBF;(A ® B); hence
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E(A® B) Co,(A® B)\ TsBE; (A ® B). Conversely, if A € 0,(A® B) \ TSBE; (A ® B), then
A # 0. So, there exist u € 04(A) \ TsBE; (A) = E(A) and v € 04(B) \ O'SBF;(B) such that
A = pv. But then A € E(A® B). Hence 0,(A® B) \ TSBF; (A® B) C E(A® B). Therefore, the
proof is achieved.

An operator S € £(X) is said to be polaroid (respectively, a-polaroid) if ¢'*°(S) (respectively,
01%°(8)) is empty or every isolated point of o(S) (respectively, o,(S)) is a pole of the resolvent.
S € L(X) is polaroid implies S* polaroid. It is well known that if S orS* has SVEP and S is polaroid,
then S and S* satisfy generalized Weyl’s theorem. Not as well known is the fact [6] (Theorem 2.10),
that if S is polaroid and S* (respectively, S ) has SVEP, then S (respectively, S*) satisfies property
(gw). Here the SVEP hypotheses on S and S* can not be exchanged. The following theorem is the
tensor product analogue of this result.

Theorem 2.4. Suppose that the operators A € L(X) and B € L(Y) are polaroid.

(i) If A* and B* have SVEP, then A ® B satisfies property (gw).

(ii) If A and B have SVEP, then A* @ B* satisfies property (gw).

Proof. (i) The hypothesis A* and B* have SVEP implies

O‘(A) :Ua(A), O‘(B):O'a(B), O-SBFJ:(A):O-BW(A)’ O-SBFJ:(B) :O‘Bw(B)
and
A*, B* and A*® B* satisfy generalized s-Browder’s theorem.

Thus generalized s-Browder’s theorem and generalized Browder’s theorem transform from A* and
B* to A* ® B*. Hence

ISBF; (A® B) = OsBF+ (A" ® B) = US(A*)USBFj (B*)U USBF,*(A*)US(B*) =

= UQ(A)USBF;(B) U TsBF; (A)oo(B) = o(A)opw(B)Uopw(A)o(B),

and
opw(A® B) = opw(A* ® B*) = 0(A")opw (B*) Uopw (A¥)o(B*) =
= o(A)opw (B) Uopw(A)a(B).
Consequently,
O'SBF;(A ® B) =o0pw(A® B).
Already,

04(A® B) = 04(A)o,(B) =0(A)o(B) = c(A® B).

Evidently, A ® B is polaroid by Lemma 2 of [14]; combining this with A ® B satisfies generalized
Browder’s theorem, it follows that A ® B satisfies generalized Weyl’s theorem, i.e., (A ® B) \
opw(A® B) = E(A® B). It follows then

0a(A® B) \USBF;(A@’ B)=0(A® B)\opw(A® B) = E(A® B),

that is, A ® B satisfies property (gw).
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(ii) In this case 0(A) = 04(A*), 0(B) = 04.(B*), opw(A*) = JSBFJ:(A*)ﬂ opw(B*) =

= Ospr; (B*, 0(A* @ B*) = 0,(A* ® B*), both generalized Browder’s theorem and generalized
s-Browder’s theorem transfer from A and B to A ® B. Hence

IsBF; (A*® B") = 0g5p+(A® B) = 05(A)ogpp+(B) Uoggp+(A)os(B) =
= Ua(A*)USBF;(B*) U USBF;(A*)%(B*) = o(A)opw (B) Uopw (A)o(B) =

= UBw(A(X)B) = UBw(A* X B*)

Thus, since A* ® B* polaroid and A ® B) satisfies generalized Browder’s theorem imply A* @ B*
satisfy generalized Weyl’s theorem,

0a(A" @ BY)\ 0gpp (A" @ B) = 0(A" @ B') \ opw (A" © BY) = E(A" @ BY),

that is, A* ® B* satisfies property (gw).

10.
11.

12.
13.

14.
15.

Theorem 2.4 is proved.
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