
Experimental Oncology �����������������������������34, 231–242, ���������������� (September)	231

SPHINGOLIPIDS IN APOPTOSIS
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Forty years ago, the term “apoptosis” was introduced to describe a form of programmed cell death. Key players that mediate 
apoptosis at the molecular level such as caspases, death receptors, Bcl-2 family members have since been identified and their 
regulation remains a research focus of many laboratories. In 1993, approximately 20 years after the introduction of apoptosis, the 
sphingolipid ceramide was first linked to this form of cell death. Sphingolipids are bioactive components of cellular membranes that 
are involved in numerous physiological functions. In this paper, we discuss the inherent complexities of sphingolipid signaling and 
elaborate on how sphingolipids, primarily ceramide, influence apoptotic events such as death receptor aggregation in the plasma 
membrane and pore formation at the mitochondria. Possible roles of sphingolipids in other subcellular compartments, such as the 
nucleus, endoplasmic reticulum and lysosomes are also discussed. We conclude by summarizing the recent developments in sphin-
golipid based cancer therapy. This article is part of a Special Issue entitled “Apoptosis: Four Decades Later”.
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HISTORICAL PERSPECTIVE
This year marks the 40th anniversary of the seminal 

publication by Kerr, Wyllie and Currie in the British 
Journal of Cancer in which the term “apoptosis” was 
introduced to describe a form of programmed cell 
death [1]. In the Greek language “apoptosis” means 
“dropping off” of leaves from trees or petals from flow-
ers. The British scientists used the term for the mor-
phological description of blebs that are pinched of the 
cell as it undergoes programmed cell death. Apoptosis 
is a carefully controlled signaling cascade that can 
be initiated through extrinsic signals or intrinsic stress. 
Although key players of apoptosis such as death re-
ceptors, caspases, and Bcl-2 family members have 
been identified, their regulation remains under intense 
investigation. This review focuses on the influence 
of sphingolipid signaling on apoptotic cell death.

Sphingolipids were first described by the German 
biochemist, J.L.W. Thudichum in 1884. For approxi-
mately 100 years sphingolipids were thought to function 
merely as structural components of cellular membranes. 
In 1993, a seminal paper published by the labora-
tory of Yusuf Hannun linked the sphingolipid ceramide 
to apoptosis [2]. Prompted by the observation that TNF 
treatment of U937 leukemia cells resulted in hydrolysis 
of sphingomyelin and generation of ceramide, they in-
vestigated whether ceramide itself can induce apoptosis. 
Indeed, exogenous ceramide but not other amphipathic 

lipids or structurally similar dihydro-ceramide induced 
DNA laddering, a classical hallmark of apoptosis. Other 
laboratories subsequently demonstrated a role for ce-
ramide in response to various apoptotic stimuli in cells 
derived from diverse tissues [3–8]. Sphingolipid signal-
ing has now taken center stage as cloning of enzymes, 
development of tools to study their roles, and methods 
of detection, have permitted insights into the complexity 
of sphingolipid biology. 

THE COMPLEXITY OF SPHINGOLIPID 
SIGNALING
Sphingolipids have been shown to modulate 

apoptosis at multiple steps of the process, including 
clustering of cell surface receptors and involvement 
in permeabilization of the outer mitochondrial mem-
brane. Here we will review the complexity of sphingolipid 
signaling and elucidate the role of metabolic enzymes 
and sphingolipids in various subcellular compartments 
in relationship to apoptotic signaling. Three main levels 
of complexity have to be considered when discussing 
sphingolipid signaling. First, a large variety of sphingo-
lipids with diverse signaling capabilities can be gener-
ated by substrate utilization and modification of the 
sphingoid backbone. Second, numerous sphingolipid 
enzymes and enzyme families catalyzing opposing bio-
chemical reactions function to maintain homeostasis 
by interconverting different sphingolipids. Finally, 
sphingolipid metabolism is highly compartmentalized.

Sphingolipid variety
Mammalian sphingolipids have an 18-carbon chain 

sphingoid backbone attached to a head group and are 
conjugated to an acyl group of varying carbon chain 
length [9]. Ceramide is the basic unit of sphingolipids 
that contains a sphingosine backbone, a fatty acid side 
chain and a hydrogen atom as the head group. Variety 
is achieved by incorporation of fatty acids that differ 
in chain length and substitutions in the head group. 

The activity of a “ceramide synthase” had been 
described biochemically but it was not until the early 
2000’s that a family of six enzymes with preferential sub-
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strate specificity was identified at the genetic level [10, 
11]. These ceramide synthases, also initially described 
as “LASS” for longevity assurance genes, generate 
ceramides with fatty acids ranging from 14 to 26 car-
bons. For example, ceramide with a 16-carbon fatty 
acid is known as C16-ceramide, whereas incorporation 
of an 18-carbon fatty acid yields C18-ceramide. The 
increased use of liquid chromatography-mass spec-
troscopy (LC-MS) to determine changes in specific ce-
ramide species reveals that generation of C16-ceramide 
maybe preferentially associated with apoptosis. Studies 
from the Amascato laboratory demonstrated that ex-
posure of cells to FasL or radiation induced a specific 
increase in mitochondrial C16-ceramide that closely 
paralleled the decrease in mitochondrial mass during 
apoptosis [12, 13]. Krosen and co-workers showed that 
crosslinking of the B-cell receptor results in increased 
C16- but not C24-ceramide during early apoptosis [14]. 
Similarly, we detected a preferential increase in C16-
ceramide during TRAIL-mediated apoptosis in sensitive 
but not resistant cells [15]. Recently, C16-ceramide was 
linked to triacylglycerol-induced apoptosis in macro-
phages [16]. In addition to C16-ceramide, C18-ceramide 
is also important for apoptosis. The Ogretmen labora-
tory found that head and neck squamous cancer cells 
have a selective decrease in C18-ceramide and that 
restoration to normal levels by overexpression of murine 
ceramide synthase 1 (CerS1) resulted in modulation 
of telomerase activity and induction of apoptosis resul
ting in 70–80% growth inhibition [17]. C18-ceramide may 
also contribute to amyloid protein mediated apoptosis 
in neuronal cells in Alzheimer’s disease [18]. In contrast, 
growth arrest may be more specifically associated with 
an increase in C24-ceramide [19]. Taken together, these 
studies indicate that cellular responses can be influ-
enced by changes in specific ceramide species.

Substitution of different head groups yields complex 
sphingolipids. For example, replacing the hydrogen 
head group with phosphocholine yields sphingomy-
elin, whereas substitution with sugars leads to genera-
tion of glycosphingolipids. Since these substitutions 
can occur on ceramides with different fatty acid chain 
lengths, sphingomyelin species also exist as C16-SM, 
C18-SM, C20-SM etc. Sphingolipids can also be modi-
fied by phosphorylation. The combination of different 
fatty acids with head group substitution and further 
modification such as phosphorylation, yields a large 
number of sphingolipids that each may have its own 
importance in cell physiology. According to the LIPID 
MAPS structure database, nearly 4000 different sphin-
golipids that occur naturally in organisms from yeast 
to mammals as well as those generated synthetically 
have been described (http://www.lipidmaps.org/data/ 
structure/index.html).

Metabolic flux
Second, sphingolipid metabolic enzymes function 

as a family to maintain homeostasis. Ceramide is con-
sidered the “hub” of sphingolipid metabolism and can 
be generated by multiple pathways. The entry point into 
sphingolipid metabolism is the condensation serine 

palmitoyl transferase, which catalyses the condensation 
of serine and palmitoyl CoA. The product is reduced, 
acylated and desaturated to generate ceramide via the 
de novo pathway. Alternatively, ceramide can be gen-
erated from hydrolysis of complex sphingolipids. For 
example, cleavage of sphingomyelin by sphingomy-
elinases results in phosphatidylcholine and ceramide. 
Lastly, sphingosine can be utilized by ceramide syn-
thases to generate ceramide via a salvage pathway. Just 
as ceramide can be generated by multiple mechanisms, 
it can also be cleared by several metabolizing enzymes, 
including sphingomyelin synthases and ceramidases. 
Sphingosine, the product of ceramidase action, serves 
as a substrate for sphingosine kinase to generate 
sphingosine-1-phosphate (S1P). Hydrolysis of S1P 
into ethanolamine phosphate and hexadecenal by S1P 
lyase is the only route to exit sphingolipid metabolism. 
Virtually all metabolic reactions between entry and 
exit points of sphingolipid metabolism are intercon-
vertible [9]. Consequently, sphingolipid metabolism 
is in constant flux with the balance between pro- and 
anti-apoptotic metabolites determining cellular fate. 
Over the last 10 years, this concept has become known 
as the “sphingolipid rheostat” [20, 21]. The metabolites 
ceramide and sphingosine have been associated with 
apoptosis, cell cycle arrest, senescence and differentia-
tion whereas S1P plays an important role in suppression 
of apoptosis, survival, angiogenesis and inflamma-
tion. A simplified sphingolipid pathway and rheostat 
are shown in Fig. 1. A shift of sphingolipid metabolism 
(or the rheostat) towards increased production of ce-
ramide is anti-proliferative while a shift towards S1P fa-
vors survival [22]. Thus enzymes participating in sphin-
golipid metabolism form an intricate network to maintain 
homeostasis and to dictate cellular physiology. 

Fig. 1. Sphingolipid metabolism and homeostasis. Ceramide 
is synthesized de novo and can also be generated through 
breakdown of complex sphingolipids. Ceramide can also be fur-
ther metabolized to sphingosine, which is then phosphorylated 
to generate S1P. Degradation of S1P by S1P lyase marks the 
exit from sphingolipid pathway. Ceramide has been linked 
to anti-proliferative responses including apoptosis while S1P 
is important for survival. Homeostasis is maintained through 
interconversion of ceramide and S1P though sphingosine. Ab-
breviations used: SMase — sphingomyelinase, SMS — sphingo-
myelin synthase, CerS — ceramide synthase, SK — sphingosine 
kinase, SPP — sphingosine-1-phosphate phosphatase, S1P 
lyase — sphingosine-1-phosphate lyase
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Compartmentalization
Compartmentalization of sphingolipid metaboliz-

ing enzymes into different subcellular locations adds 
a third dimension of complexity. De novo ceramide 
generation occurs at the endoplasmic reticulum and 
is followed by modification to glycosphingolipids and 
sphingomyelin in the Golgi network. The ceramide 
transporter CERT shuttles ceramide from the endo-
plasmic reticulum to sphingomyelin synthase 1 in the 
Golgi for synthesis of sphingomyelin [23]. CERT is highly 
specific for ceramide [24] but it is not yet known whether 
CERT transfers ceramide to subcellular locations other 
than the Golgi or whether additional ceramide transport 
proteins exist. Once incorporated into complex sphin-
golipids within cellular membranes, ceramide can be lib-
erated by hydrolysis but its range of activity is locally 
restricted by its hydrophobic nature. Only sphingosine 
is soluble and can be recycled via the salvage pathway 
to regenerate ceramide in other cellular compartments. 
Thus sphingolipid enzymes and products are largely 
restricted to act at the site of generation and different 
pools of ceramides may be important for specific func-
tions in certain subcellular compartments. 

SPHINGOLIPID-MEDIATED REGULATION 
OF APOPTOSIS PROXIMAL TO THE 
PLASMA MEMBRANE
Apoptosis can be initiated through extracellular 

stress, which involves propagation of an extrinsic stimu-
lus such as binding of a ligand (FasL, TNF, TRAIL) to their 
respective death receptors on the cell surface. Alterna-
tively, extrinsic apoptosis can be initiated through de-
pendence receptors (i.e. netin receptors) when ligands 
fall below a critical threshold [25]. Death receptors are 
found in the plasma membrane, where they likely exist 
as timers in so-called pre-ligand assembly domains 
[26]. Ligand binding results in receptor stabilization 
and conformational changes in its cytoplasmic domain 
to permit binding of intracellular signaling molecules. 
In FasL and TRAIL-mediated apoptosis, the adaptor pro-
tein FADD and pro-caspase-8 (-10) are recruited to form 
the death inducing signaling complex (DISC) in which 
caspase-8 is cleaved into an active tetramer. In TNF-
mediated apoptosis, caspase-8 is activated in a two-step 
manner via complex I (TNF-R1/RIP1/TRAF2/TRADD) 
and complex II (RIP1/TRAF2/TRADD/FADD/caspase-8).

Sphingolipids have important roles in initial apop-
totic events at the plasma membrane. According 
to the classic fluid mosaic model that was proposed 
by Singer and Nicolson phospholipids and proteins 
were uniformly distributed in membranes [27]. How-
ever, Simons and Ikonen subsequently suggested the 
presence of specific structures called lipid rafts that 
are enriched in sphingolipids [28]. Indeed, ceramide 
has been shown to increase rapidly following engage-
ment of surface Fas, suggesting that it was liberated 
by activation of sphingomyelinases. Several sphingo-
myelinases exist in mammals including acid sphingo-
myelinase (ASM) and three neutral sphingomyelinases 
(NSM1, NSM2 and NSM3). Both ASM and NSM2 have 

been linked to apoptosis [29, 30]. Ceramide generated 
at the plasma membrane following ASM-mediated 
hydrolysis of sphingomyelin is thought to be instru-
mental in reorganization of signaling molecules into 
ceramide-enriched platforms. 

Acid sphingomyelinase
Acid sphingomyelinase (ASM) is an enzyme lo-

cated within the lysosomal/endosomal compartment 
whose lack of function was initially known to cause 
the lysosomal storage disorder Niemann-Pick disease 
[31]. Joint efforts of several research groups have 
established ASM as an important stress activated 
enzyme following ligation of death receptors as well 
as non-receptor stimuli [29]. ASM acts on sphin-
gomyelin to liberate ceramide by cleavage of the 
phosphocholine head group. A role for ASM in apop-
tosis was discovered when cells from Niemann-Pick 
patients were evaluated for radiation responsiveness. 
Interestingly, Niemann-Pick lymphoblasts resisted 
radiation-induced apoptosis, a phenotype that was 
reversible upon restoration of ASM expression [32]. 
Mouse embryo fibroblasts from ASM-deficient mice 
were also resistant to radiation-induced apoptosis 
and partially resistant to TNF or serum withdrawal 
induced apoptosis [33]. In a model of Fas-induced 
apoptosis, ceramide generation was attributed to ac-
tivation of both neutral and acid sphingomyelinase, yet 
only ASM activation was linked to propagation of the 
apoptosis signal [34]. Taken together, these studies 
clearly defined a role for ASM in apoptosis.

ASM-mediated formation of ceramide-en-
riched platforms

An important early event at the plasma membrane 
following initiation of death receptor mediated apopto-
sis involves clustering of the receptors. Cremesti et al. 
demonstrated rapid formation of receptor signaling 
platforms into “caps” following stimulation of Fas. 
This event was ASM-dependent and a defect in “cap” 
formation could be overcome by providing cells with 
exogenous C16-ceramide [35]. Grassme and Gulbins 
first proposed a model in which ASM translocates 
to the plasma membrane, flips to the outer side of the 
cell and hydrolyzes sphingomyelin in the outer leaflet 
of the membrane to generate ceramide, which then fa-
cilitates clustering of receptors into signaling platforms 
[36]. Several studies have shown that ASM activation 
following stimulation of Fas is dependent on the activity 
of the initiator caspase-8 and that ceramide functions 
to amplify caspase-8 activity [37–39]. In contrast, 
radiation-induced apoptosis was independent of cas-
pase activation [39]. Although initial studies were con-
ducted in models that involved stimulation of Fas, it was 
subsequently shown that chemotherapeutic agents, 
including doxorubicin and cisplatin, also activate ASM 
and facilitate death receptor-mediated apoptosis [40, 
41]. Both Fas and the related death receptor ligand 
TRAIL activate ASM via a redox dependent mechanism 
[42], suggesting the possibility that induction of oxida-
tive stress, common to both chemotherapy and death 
receptor-mediated apoptosis, may be involved in this 
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process. However, the exact mechanism by which 
non-receptor ligands induce ceramide-rich signaling 
platforms within plasma membranes remains unclear. 

How does an enzyme, which is primarily located 
in the lysosomal compartment with optimal function 
at an acidic pH, hydrolyze sphingomyelin in the outer 
leaflet of the plasma membrane? While earlier studies 
employing immunohistochemistry demonstrated that 
ASM relocates to the plasma membrane in response 
to stress stimuli, a mechanism was eluded only recently. 
Using a UV stress model, Zeidan et al. demonstrated that 
PKC-mediated phosphorylation of ASM on Ser508 was 
required for translocation of ASM to the plasma mem-
brane [43]. A recent study confirmed a role for PKC 
in translocation of ASM to the plasma membrane. 
Tsukamoto and coworkers found that phosphorylation 
of PKC on Ser664 was required for ASM translocation 
to the plasma membrane of multiple myeloma cells that 
had been exposed to the green tea polyphenol EGCG 
[44]. While generation of ceramide was not determined, 
it may have contributed to lipid raft clustering of the lam-
inin receptor thereby promoting apoptosis [44]. While 
ASM is partially active at neutral pH [45], the possibility 
that phosphorylation improves activity at physiological 
pH has not yet been investigated. 

Although several investigators demonstrated that 
ASM plays an important role in apoptosis, its activity 
is not universally required. For example, ASM-deficient 
cells can still undergo staurosporine-induced apopto-
sis, which is independent of ceramide formation [33]. 
In addition, the Blitterswijk group found that ceramide 
generation upon Fas stimulation occurs within hours 
rather than minutes and is independent of ASM [46, 
47]. Our laboratory has studied ceramide generation 
in response to TRAIL using the isogenic colon can-
cer cell lines SW480 and SW620, which are TRAIL 
sensitive and resistant, respectively. Similar to the 
Blitterswijk group, we were unable to detect a rapid 
increase in ceramide generation, although ceramide 
did increase at later time points paralleling caspase ac-
tivation [15]. In our hands, clustering of TRAIL receptor 
2 (DR5) correlated with apoptotic susceptibility in the 
SW480/SW620 model but disruption by pretreatment 
with nystatin did not impact effector caspase activity 
in SW480 cells (White-Gilbertson and Voelkel-John-
son, unpublished data). These results suggest that 
the requirement for ASM in apoptosis may be stimulus 
and cell type-specific. The observation that apoptosis 
resistance in ASM-deficient cells can be overcome 
by exogenous ceramide, suggests that ceramide, not 
necessarily ASM, it critical for apoptosis [33].

SPHINGOLIPID-MEDIATED REGULATION 
OF APOPTOSIS AT THE MITOCHONDRIA
Mitochondria play a central role in the extrinsic 

as well as intrinsic pathway of apoptosis. In extrinsic 
apoptosis, mitochondrial events serve as an amplifica-
tion loop. Caspase-8, activated in response to death 
receptor ligands, not only cleaves downstream ex-
ecutioner caspases but also Bid, a pro-apoptotic 

BH3-only protein of the Bcl-2 family. Truncated Bid 
facilitates oligomerization of Bax (and/or Bak) leading 
to pore formation, permeabilization of the outer mito-
chondrial membrane, and leakage of proteins such 
as cytochrome c, SMAC/Diablo, and AIF, and other 
apoptogenic factors into the cytosol. Cytochrome c to-
gether with pro-caspase-9 and Apaf-1 forms the apop-
tosome, the complex in which caspase-9 is activated 
to cleave the executioner caspase-3. SMAC/Diablo 
relieves the inhibitory function of IAP’s on executioner 
caspases and AIF translocates to the nucleus where 
it is involved in DNA fragmentation [48]. These post-
mitochondrial events are also initiated when stressors 
such as chemotherapeutic agents or radiation trigger 
apoptosis intrinsically, except that BH3-only proteins 
other than Bid promote Bax (or Bak) mediated pore 
formation in the outer mitochondrial membrane [49].

Ceramide plays an important role in these mi-
tochondrial events. Zhang et al. demonstrated that 
hydrolysis of SM and generation of ceramide following 
TNF stimulation occurs in a compartment distinct from 
the plasma membrane [50]. In support, transfection 
of but not exogenous treatment with bacterial SMase 
recapitulated ceramide-mediated apoptosis, indicating 
that intracellular ceramide generation is required for the 
response. In a subsequent study, targeted expression 
of bacterial SMase resulted in elevated ceramide levels 
in the respective subcellular compartments, yet apop-
tosis occurred only when bacterial SMase was targeted 
to the mitochondria [51]. Mitochondrial ceramide plays 
an important role in Bax oligomer formation following 
exposure to TNF [52]. Importantly, ceramide and Bax 
synergize to induce permeabilization of the outer mito-
chondrial membrane [53].

Ceramide may facilitate apoptosis via formation 
of channels in the mitochondrial membrane. Mark 
Columbini’s group first demonstrated the forma-
tion of ceramide channels in cell-free phospholipid 
membranes [54] and subsequently confirmed these 
results in isolated rat liver mitochondria [55]. Ce-
ramide channels permitted the release of proteins 
smaller than 60kDa, such as cytochrome c, from the 
intermembrane space of the mitochondria [55]. Of sig-
nificance is that ceramide channel formation appears 
to be unique to the outer mitochondrial membrane and 
occurs in response to ceramide concentrations that are 
physiologically relevant [56]. Furthermore, the forma-
tion of these channels is a regulated process, since 
disassembly can occur by the action of anti-apoptotic 
proteins like Bcl-xL [57] and since channel formation 
in isolated mitochondria and liposomes can be inhib-
ited by the sphingolipid dihydro-ceramide, which until 
recently had been believed to be biologically inactive 
[58]. Lastly, while the ceramide metabolite sphingosine 
can also form channels in isolated mitochondria, these 
channels are smaller than those formed by ceramide, 
and do not allow passage of pro-apoptotic proteins 
out of the mitochondria [59]. In fact, sphingosine 
may also play a role in disassembly of ceramide chan-
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nels, suggesting the existence of a positive feedback 
mechanism that regulates ceramide channels [60].

The source of mitochondrial ceramide is largely 
unknown, but several enzymes involved in sphingolipid 
metabolism are localized to the mitochondria and may 
play a role in generation of a local pool of ceramide 
that facilitates apoptosis. For instance, the Gudz 
group showed that CerS1 and CerS6 partially localize 
to the brain mitochondria upon ischemia reperfusion 
injury and elevate C18- and C16-ceramides respec-
tively [61]. The Kolesnick group described mitochon-
drial ceramide-rich macrodomains that are sensitive 
to ceramide synthase inhibition and are involved in Bax 
membrane insertion and mitochondrial apoptosis 
in HeLa cells [62]. While providing the ceramide syn-
thase substrate sphingosine to isolated mitochondria 
resulted in ceramide generation, this response was not 
impacted by the ceramide synthase inhibitor fumonisin 
B1 but was partially blocked by ceramidase inhibition 
[59]. A later study found that mitochondria from neu-
tral ceramidase knockout mice had a reduced ability 
to generate ceramide from sphingosine implicating 
that the reverse activity of this enzyme contributes 
to mitochondrial ceramide generation [63]. Recently, 
Wu et al. characterized a novel mitochondria associated 
neutral sphingomyelinase [64] but whether this enzyme 
contributes to apoptosis has not yet been investigated.

SPHINGOLIPIDS AND NUCLEAR 
APOPTOTIC EVENTS
Sphingomyelin is present not only in the plasma 

membrane but also in the nuclear envelope and intra-
nuclear sites. Several laboratories have demonstrated 
a role for nuclear ceramide in apoptosis. Tsugane and 
co-workers found that hepatocyte apoptosis following 
portal vein ligation in an in vivo model was preceded 
by an increase in neutral sphingomyelinase (NSM) 
activity and subsequent generation of ceramide and 
sphingosine [65]. A French group found that ionizing 
radiation failed to induce ceramide generation in nuclei-
free lysates and cytoplasts, although cytoplasts did 
respond to Fas by externalization of phosphatidylserine 
[66]. Activation of NSM, ceramide generation and fea-
tures of apoptosis, such as PARP and DNA cleavage, 
were observed in highly purified nuclei [66]. Watanabe 
et al. found that Fas stimulation of Jurkat T cells resulted 
in increased nuclear ceramide though the activation 
of a putative nuclear NSM and inhibition of sphingo-
myelin synthase (SMS) [67]. The caspase-3 inhibitor, 
Ac-YVAD-cmk, prevented Fas-induced apoptosis, 
generation of ceramide and stimulation of NSM acti
vity, suggesting that these events occur downstream 
of executioner caspase activation [67]. Similarly, serum 
deprivation of hippocampal cells resulted in activation 
of a putative nuclear NSM and inhibition of SMS [68]. 
Stimulation of NSM, inhibition of SMS and increased 
ceramide is also observed in response to radiation 
of nuclei isolated from proliferating cells [69]. Taken 
together, these studies suggest activation of a nuclear 
NSM and generation of nuclear ceramide play an impor-

tant role in a variety of apoptosis models. However, the 
role of nuclear ceramide in apoptosis remains to be ad-
dressed. One possibility is that ceramide affects nucleo-
cytoplasmic trafficking.

Numerous proteins translocated to and from the 
nucleus during apoptosis. One of the hallmarks dur-
ing apoptosis is DNA fragmentation, which is medi-
ated by AIF, EndoG and CAD [70, 71]. These proteins 
translocate from the mitochondria to the nucleus 
(AIF, EndoG) or are activated by caspase-mediated 
cleavage of an inhibitory unit (CAD). Other proteins 
that enter the nucleus during apoptosis include mi-
tochondrial proteins (AIF, WOX1, EndoG) and death-
fold proteins, which are directly or indirectly involved 
in caspase activation (DEDD, TRADD, FADD, Apaf-1, 
PEA-15) [72, 73]. Proteins that are released from the 
nucleus during apoptosis include p53, which interacts 
with Bcl-2 at the mitochondria and histone H1.2, which 
appears to be involved in oligomerization of Bax at the 
mitochondria [72]. Nucleo-cytoplasmic exchange oc-
curs through nuclear pore complexes (NPC), which 
consist of about 30 different proteins that make up the 
cytoplasmic fibrils, the central framework and the 
nuclear basket [74]. Of the 28 nucleoporins in the NPC 
only 7 are caspase substrates [75]. Passive transport 
into the nucleus is restricted to small molecules and 
timing of nucleoporin degradation suggests that active 
transport is required for exchange of proteins between 
the nucleus and the cytoplasm during apoptosis. For 
example, active caspase-3 is found in the nucleus 
during apoptosis and is transported into the nucleus 
by a specific but yet unidentified mechanism [76]. A-
kinase-anchoring protein 95 (AKAP95) has been iden-
tified as a potential carrier of active caspase-3 [77]. 

Faustino and co-workers recently addressed the 
hypothesis that ceramide inhibits cell growth by im-
pacting nucleo-cytoplasmic trafficking and demon-
strated that treatment of vascular smooth muscle 
cells with exogenous ceramide altered the distribution 
of importin-α and the RanGTP bound exportin Cellular 
Apoptosis Susceptibility (CAS) protein via a p38-medi-
ated mechanism [78]. Whether endogenous ceramide 
induces similar changes has not yet been investigated. 
Additionally, it is not yet known whether ceramide af-
fects the redistribution of proteins involved in nucleo-
cytoplasmic transport during apoptosis and whether 
a nuclear pool of ceramide specifically contributes 
to these events. It has been established that nucleo-
cytoplasmic transport is affected at an early stage 
of apoptosis independent of caspase activity. The 
redistribution of Ran, importin-α and importin-β upon 
induction of apoptosis occurs in the absence or pres-
ence of the pan-caspase inhibitor ZVAD [79]. Cyto-
plasmic Ran also accumulates in response to cispla-
tin, hydrogen peroxide, and UV irradiation and may 
represent a general early event during apoptosis [80]. 
Permeability to larger size dextrans increases during 
this phase of apoptosis but the mechanism mediating 
increased NPC permeability is unknown [80]. Given 
that ceramide can influence the behavior of proteins 
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in the plasma membrane and contributes to the for-
mation of mitochondrial channel formation during 
apoptosis, it is tempting to speculate that ceramide 
may also play a role in the dilation of the NPC. 

SPHINGOLIPID-MEDIATED REGULATION 
OF APOPTOSIS IN OTHER SUBCELLULAR 
COMPARTMENTS
So far we have discussed the role of ceramide in ag-

gregation of death receptors into signaling platforms 
at the plasma membrane, in channel formation of the out-
er mitochondrial membrane, and the existence of a puta-
tive sphingomyelin cycle in the nucleus. However, other 
compartments such as the lysosomes and endoplasmic 
reticulum are also involved in apoptosis and some links 
to sphingolipid metabolism have been established.

Lysosomes
In 1998, Monney and co-workers reported that an 

“acidic compartment” contributes to TNF-induced 
apoptosis [81]. It was subsequently shown that the 
ceramide metabolite sphingosine is lysosomotrophic 
and its accumulation in the lysosome results in partial 
rupture prior to caspase activation and loss of mito-
chondrial function [82]. Lysomotropic acid ceramidase 
inhibitors have also been shown to induce apoptosis 
by modulating ceramide metabolism [83]. Cathepsin 
D, an aspartic protease found in the lysosome that can 
contribute to death receptor mediated apoptosis, has 
been identified as a direct target of ceramide, which 
is generated following activation of ASM [84, 85]. 
As discussed above, chemotherapeutic agents can 
mediate apoptosis via an ASM/ceramide-dependent 
pathway. Dumitru et al. demonstrated that clinically rel-
evant concentrations of gemcitabine induced apopto-
sis in glioma cells via activation of ASM, which resulted 
in lysosomal accumulation of ceramide, activation 
of cathepsin D and insertion of Bax into the mitochon-
drial membrane ultimately leading to cell death [86]. 
Camptothecin-mediated apoptosis in U937 myeloma 
cells was mediated by activation of PKC∆, which trans-
located to the lysosomal compartment to phosphory-
late and stimulate the activity of ASM [87]. In summary, 
both extrinsic and intrinsic apoptotic pathways have 
been linked to lysosomal sphingolipid metabolism.

Endoplasmic reticulum (ER)
Stress caused by changes in cellular ATP, redox 

states or calcium concentration results in reduced 
ability of the ER to chaperone protein folding, thereby 
activating the Unfolded Protein Response (UPR) [88]. 
Prolonged UPR may trigger apoptosis via three different 
signaling pathways, involving inositol-requiring pro-
tein 1α (IRE1α), protein kinase RNA-like endoplasmic 
reticulum kinase (PERK) and activating transcription 
factor 6 (ATF6) [89]. These may activate caspases di-
rectly or through activation of mitochondrial apoptosis 
[88, 90–92]. Since de novo ceramide synthesis takes 
place in the ER links between sphingolipid metabolism 
and ER stress-induced apoptosis have been explored. 

Ceramide synthases are ER resident enzymes 
involved in the de novo pathway of sphingolipid me-

tabolism. Several studies indicate a possible role for 
CerS6 in ER stress. For example, in renal cancer cells, 
MDA7/IL-24 induced apoptosis via a Fas-mediated 
mechanism that was dependent on the expression 
of CerS6 [93]. Ceramide plays an important role 
in MDA7/IL-24 induced apoptosis and may mediate its 
effects via interaction with Beclin 1 as well as calpain-
mediated cleavage of ATF5, thereby switching the 
physiological response from autophagy and to apopto-
sis [94, 95]. Another study demonstrated that geldana-
mycin (17AAG) results in loss of GRP78/BiP function and 
induced de novo ceramide synthesis [96]. CerS6 was 
implicated in this response, since SW620 colon cancer 
cells overexpressing the enzyme were more susceptible 
to 17AAG than control cells [96]. CerS6 may also con-
tribute to apoptosis in yeast and rat pancreatic INS-1E 
cells in which activation of the UPR resulted in tran-
scriptional activation of CerS6 and generation of C16-
ceramide [97]. On the other hand, in squamous cell 
carcinoma cells downregulation of CerS6/C16-ceramide 
was required to enhance ER stress induced apoptosis 
via activation of ATF6 activation [98]. Thus contribu-
tion of CerS6 activity towards ER stress and apoptosis 
may be context-specific. Studies in HEK293 cells 
indicate that CerS1, which preferentially generates 
C18-ceramides, translocates from the ER to the Golgi 
following treatment with cisplatin [99] while apoptosis 
in response to serum starvation increased the propor-
tion of the pro-apoptotic sphingosine kinase 2 in the 
ER [100]. Therefore, apoptotic stimuli not only affect 
the activity of sphingolipid enzymes but can also alter 
their distribution to and from the ER.

INDUCTION OF APOPTOSIS 
BY MODULATING SPHINGOLIPIDS 
IN CANCER THERAPY
Strategies to eliminate malignant cells typically in-

duce apoptosis via the intrinsic or extrinsic pathway and 
frequently impact sphingolipid metabolism. Whether 
sphingolipid metabolism is targeted intentionally 
through recently designed sphingolipid analogs and 
antibodies or whether it is impacted by radiation and 
chemotherapy, a shift in the sphingolipid rheostat to-
wards increased ceramide and decreased S1P is a com-
mon denominator. We have summarized therapies 
that increase apoptosis through promoting ceramide 
generation, inhibiting ceramide clearance, or interfering 
with S1P generation and signaling (see Table).

Stimulation of ceramide synthesis
Ceramide can be generated through increased 

ceramide synthesis or breakdown of complex sphin-
golipids. In many models, the apoptotic response 
is sensitive to inhibition by myriocin and/or fumonisin 
B1, indicating a requirement for the activity of SPT 
and/or CerS [101–111]. Of the ceramide synthases, 
CerS1 and CerS6 have been primarily associated 
with apoptosis [111–118]. Strategies that facilitate 
the breakdown of sphingomyelin into ceramide via 
sphingomyelinase activation include radiation and 
well-known chemotherapeutics such as cisplatin and 
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camptothecin [4, 40, 87]. More recently, naturally 
occurring compounds such as the plant extract evodi-
amine, capsaicin an active component of chili peppers, 
the green tea extract EGCG, the vitamin E derivative 
α-TEA and cyclopamine, a naturally occurring alkaloid 
that inhibits hedgehog signaling were found to pro-
mote apoptosis via sphingomyelinase activity [44, 
119–122]. MDA7/IL-24 requires both CerS6 and ASM 
for induction of apoptosis in prostate and renal cell 
carcinoma cell lines [93, 123] and has shown efficacy 
against renal cell tumor growth in vivo [124].

Inhibition of ceramide metabolism
Intracellular ceramide may also be increased 

through prevention of subsequent metabolic conversion 
into sphingosine and S1P or into complex sphingolip-
ids. Development of ceramide analogs that interfere 
with acid ceramidase have been the most prominent 
approach. The prototype drug B13 effectively inhibited 
the growth of hepatic cancer xenografts [125], thereby 
prompting further modification and design of this drug 
[126–128]. B13-based drugs have been successfully 
combined with apoptin and FasL gene therapy in pre-
clinical models of prostate and head and neck cancers 
[129, 130]. AD-2646, which also inhibits acid cerami-
dase activity, induces apoptosis in TSU-Pr1 prostate 
cancer cells and xenograft models [131].

Strategies to prevent metabolism of ceramide into 
complex sphingolipids have primarily focused on glu-
cosylceramide synthase (GCS). Inhibition of GCS 

may result in a two-pronged effect of maintaining 
intracellular ceramide while also inhibiting the multi-
drug resistance gene MDR1 or P-glycoprotein (P-gp) 
to prevent drug efflux from the cell. For instance, the 
mixed backbone oligonucleotide designed against 
GCS (MBO-asGCS) sensitized multi-drug resistant 
NCI/ADR-RES xenografts to doxorubicin by increas-
ing C18-cer [132] and also reduced P-gp induced drug 
efflux in tumors [133]. GCS inhibition coupled with Bcr-
Abl inhibition has also proven effective against primary 
cells isolated from T3151 mutant CML patients [134].

Ceramide and its analogs
Short chain ceramides such as C6-cer have also been 

combined with inhibitors of phosphatidylinositol 3-kinase 
[135], the acid ceramidase inhibitor DM102 [136], HDAC 
inhibitors [137], and doxorubicin [138] to enhance cancer 
cell apoptosis. Delivery of short chain ceramides can 
be enhanced using transferrin liposomes that enable 
lysosomal internalization of ceramide resulting in ca-
thepsin mediated apoptosis of A2780 ovarian carcinoma 
cells in vitro and in vivo [139]. Another strategy to use 
short chain ceramide therapeutically is incorporation 
of the lipid into pegylated nanoliposomes [140–143]. 
Finally, analogs that mimic the function of ceramide 
can also facilitate apoptosis. For example, combination 
of LCL30 with photodynamic therapy induces apoptosis 
in SCCVII mouse squamous carcinoma cells [144] while 
LCL29, a mitochondrion-targeted ceramide analog 

Table. Overview of therapeutic strategies to induce apoptosis by sphingolipid modulation
Therapeutic Approach Enzyme Model System Reference

(A) Curcumin SPT Colon cancer cells [101]
γ-Tocopherol CerS Androgen sensitive prostate cancer cells [102]
Fenretinide (4-HPR) SPT/CerS HL60 acute myeloid leukemia cells (AML), MCF7 multi-drug resistant breast cancer cells, 

HT29 colon cancer cells
[103, 104]

Cannabinoids CerS Prostate, colon, cervical, lung and pancreatic cells as well as in vivo models of prostate and 
pancreatic cancer 

[105–108]

Carbonic anhydrase 
inhibitors

CerS CA IX-positive HeLa and 786-O cells and CA IX-negative 786-O/von Hippel-Lindau (VHL) cells [109]

Ursolic acid CerS T24 bladder cancer cells [110]
Celecoxib CerS6 Colon cancer cells and xenografts [111]

(B) MDA7/IL-24 ASM/CerS6 Renal and prostate cancer cells [93, 123, 124]
Radiation ASM/CerS Endothelial cells, Jurkat T cells, HeLa cells, MCF7 cells [4, 39, 43, 115]
Cisplatin ASM HT29 colon cancer cells [40]
20-S-camptothecin 
lactone

ASM U-937 lymphoma cells [87]

Evodiamine ASM/NSM SGC-7901 gastric cancer cells [119]
Capsaicin NSM PC3 prostate cancer cells [120]
EGCG ASM Multiple myeloma cells and xenograft model [44]
α-TEA ASM MDA-MB-231 breast cancer cells and xenograft models [121]
Cyclopamine NSM Daoy medullobastoma cells [122]

(C) B13 AC Colon cancer cells and xenografts [125]
LCL204 AC Prostate and head and neck cells and xenografts [129, 130]
AD-2646 AC TSU-Pr1 prostate cancer cells and xenografts* [131]
MBO-asGCS GCS Drug resistance breast, ovary, cervical and colon cancer cells and breast xenografts [132, 133]
PDMP GCS CML — T3151 mutant cells, in vivo transplants, primary cells from T3151 patients [134]

(D) C6-cer in combination Ovarian, breast, pancreatic, melanoma cell lines and pancreatic and ovarian xenografts [135–138]
C6/C16-cer transfer-
rin liposomes

Ovarian cancer cells and xenografts [139]

C6-cer nanoliposomes Pancreatic and hepatocellular carcinoma cells and xenografts, sygeneic model of leukemia [140–143]
LCL29 MCF7 breast cancer cells [145]
LCL30 SCCVII mouse squamous carcinoma cells [144]

(E) FTY720 SK1 Hormone refractory prostate cancer cells and PC3 xenografts [146, 147]
ABC294640 SK2 Multiple cells lines and breast cancer xenografts [148, 149]
SK I-II SK1, SK2 Breast cancer cells [150]
Sonepcizumab Clinical trial including various solid malignancies [151, 152]

 (A) Stimulation of ceramide synthesis. (B) Hydrolysis of sphingomyelin. (C) Inhibition of ceramide utilization. (D) Direct use of ceramide and ceramide ana-
logs. (E) Inhibition of S1P signaling. Abbreviations used: SPT — serine palmitoyl-CoA transferase, CerS — ceramide synthase, ASM — acid sphingomyelin-
ase, NSM — neutral sphingomyelinase, AC — acid ceramidase, GCS — glucosylceramide transferase, SK — sphingosine kinase. *Although TsuPr1 was ini-
tially described as a prostate cancer cell line, it was later shown to be a derivative of T24 bladder cancer cells.
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induces Bid-independent apoptosis in MCF7 breast 
cancer cells [145].

Inhibition of S1P signaling
The ceramide metabolite sphingosine serves 

as a substrate for sphingosine kinases, which gener-
ate S1P, thereby shifting the sphingolipid rheostat 
away from apoptosis (Fig. 1). Interfering with SK or its 
product S1P is an effective therapeutic strategy [146]. 
For example, the sphingosine analog FTY720, which 
affects several targets within the sphingolipid net-
work, was shown to inhibit SK1 in prostate cancer 
cells and sensitized orthotopic prostate tumors 
to radiation [147]. The orally bioavailable SK2 in-
hibitor ABC294640 induced apoptosis in endocrine 
therapy-resistant MDA-MB-231 and chemoresistant 
MCF-7TN-R cells, and reduced tumor volume in pre-
clinical models [148, 149]. Simultaneous inhibition 
of both SK isoforms by the SKI-II inhibitor induced 
apoptosis in multi-drug resistant breast cancer cells 
[150]. Lastly, given the complexity of sphingolipid 
signaling, it is remarkable that a monoclonal antibody 
against S1P known as Sonepcizumab yielded promi
sing results against several solid tumors in Phase 
I clinical trials and is now entering Phase II trials [151, 
152]. However, whether the efficacy of Sonepcizumab 
is primarily mediated through induction of apoptosis 
or through inhibition of S1P-mediated inflammation 
and angiogenesis may be difficult to determine.

CONCLUSION
Inducing apoptosis via modulation of sphingolipid me-

tabolism is a viable therapeutic strategy. As shown in Fig. 2, 
depending on the subcellular location of ceramide gen-
eration, apoptosis may be facilitated through events like 
formation of ceramide-enriched platforms in the plasma 
membrane, permeabilization of the outer mitochondrial 
membrane or other less well-defined mechanisms.

Fig. 2. Contribution of sphingolipids towards apoptotic signaling. 
Ceramide generated that the plasma membrane, mitochondria, 
lysosomes and nucleus may be required to enhance or promote 
the apoptotic signal. Details are described in the text. Abbrevia-
tions used: SMase — sphingomyelinase, ASM — acid sphingo-
myelinase, ASM-P — phosphorylated acid sphingomyelinase, 
SM — sphingomyelin, Cer — ceramide, Sph — sphingosine, 
CerS — ceramide synthase, DES — desaturase, dhSph — dihydro-
sphingosine, dhcer — dihydroceramide, SMS — sphingomyelin 
synthase, MTMP — mitochondrial permeability transition pore, 
ER — endoplasmic reticulum, NPC — nuclear pore complex

Generation of ceramide can occur in a tissue- and 
stimulus-dependent manner. Therefore, it will be impor-
tant to further elucidate the physiological roles of ce-
ramides with specific chain lengths and the contribution 
of specific subcellular pools of sphingolipids towards 
apoptosis in order to develop optimally designed 
therapeutic strategies to target various types of cancer.
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