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Equilibrium vortex configuration in conventional type II superconductors containing short-range
columnar defects is investigated theoretically. In the bulk superconductor near the upper critical field
H, a single defect causes a strong local deformation of the vortex lattice which has C; or C point
symmetry. The vortices can collapse onto attractive defect, while in the case of repulsion the regions free
of vortices appear near a defect. Increasing the applied magnetic field results in an abrupt change of the
configuration of vortices related to the formation of multiquantum vortices and giving rise to reentering
transitions between configurations with C, or C, symmetry. In the case of a small concentration of
defects these transitions manifest themselves as jumps of magnetization and discontinuities of the
magnetic susceptibility. Columnar defects also essentially influence the magnetic properties of a
mesoscopic superconducting disc. They help the penetration of vortices into the sample, thereby
decreasing the sample magnetization and reducing its upper critical field. Even the presence of weak
defects splits a giant vortex state (usually appearing in a clean disc in the vicinity of the transition to a
normal state) into a number of vortices with smaller topological charges. In a disc with a sufficient
number of strong enough defects vortices are always placed onto defects. The presence of defects lead to
the appearance of additional magnetization jumps related to the redistribution of vortices which are

already present on the defects and not to the penetration of new vortices.

PACS: 74.60.Ge, 74.60.Ec, 74.62.Dh

I. Introduction

Magnetic properties of type I superconductors
in mixed state or Shubnikov phase [1] are mostly
determined by Abrikosov vortices penetrating into
the sample [2]. A single vortex in a macroscopic
superconductor with size much bigger than the
penetration length A(T) carries the superconducting
flux quantum @, = 12c/e. Repulsive interaction be-
tween vortices leads to formation in a uniform
sample a triangular vortex lattice. The lattice con-
stant decreases with the increasing of a magnetic
field and near the upper critical field H,, for an
infinite sample it is of order &) (the coherence
length at temperature 7). The magnetization den-
sity also decreases, and at H o it vanishes, that is,
the superconductor becomes a normal state.

In a mesoscopic superconductor, with size much
smaller than the penetration length, each vortex

carries flux that is less than flux quantum. In the
uniform disc with size of order of a few coherence
lengths in a strong field H, < H < H 4, all the
penetrated vortices are located at the disc cen-
ter [3—5] forming so-called giant vortex. Penetra-
tion of the new vortices into the sample (as the
applied magnetic field increases) manifests itself as
a sequence of jumps on the magnetization curve.
These jumps were observed experimentally [6] and
have been discussed in a series of theoretical
works [4,5,7-9].

Various kinds of defects, such as dislocations,
groups of point defects, twinning boundaries or
regions with different superconducting properties
can pin the vortices, deforming the vortex lattice
and increasing the critical current. The most effec-
tive in this sense are the columnar defects appearing
after the heavy ion irradiation of superconducting
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sample [10]. These defects serve as strong pinning
centers, each of which is able to pin a single vortex
as a whole. The radius of the columnar defect could
be much more or less than the coherence length
(long-range or short-range defects, respectively).
Strong long-range columnar defects may lead to the
formation of multiquantum vortices in high tem-
perature superconductors [11,12]. Such vortices
were observed experimentally on submicron artifi-
cial holes in mutlilayers Pb,/Ge [13]. Columnar
defects, essentially influence magnetic properties of
the sample. In bulk high temperature superconduc-
tors they lead to important changes of the reversible
magnetization curve [14].

In this paper we show that short-range columnar
defects strongly affect the properties of conven-
tional type II superconductors. In a bulk supercon-
ductor near the upper critical field H , these defects
cause a strong local deformation of the vortex
lattice. This deformation has C, or C, point symme-
try. If the vortex-defect interaction is attractive,
the vortices can collapse onto defect, promoting a
formation of the multiquantum vortex. Increasing
the applied magnetic field results in reentering
transitions between configurations with C5 or Cg
symmetry. In the case of a small concentration of
defects these transitions manifest themselves as
jumps of magnetization and discontinuties of the
magnetic susceptibility.

On the contrary in a mesoscopic superconducting
disc near the upper critical field H_; even weak
defects can destroy a giant vortex state splitting it
into a number of vortices with smaller topological
charges. Columnar defects should also essentially
change the magnetic properties of mesoscopic super-
conductors. When the number of defects is of the
order of the number of vortices one can expect that
they will essentially suppress the magnetic response
of the sample and reduce the critical field H , . If
the number of defects is larger than the number of
vortices and the defects are strong enough it seems
plausible that all vortices could be pinned by de-
fects. As the applied field changes the vortices can
change their position on the defects. These rear-
rangements should lead to increasing of the number
of mesoscopic jumps of the magnetization curve as
compared with that of a clean sample. In the pre-
sent paper we show that all these a scenarios really
take place in small enough superconducting discs.

The paper is organized as follows. The rest of
this section containins basic notations and descrip-
tion of the model. In section II we consider bulk
superconductor with small concentration of colum-
nar defects. The third section is devoted to the
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properties of mesoscopic superconducting disc con-
taining a number of defects. In the last section the
main results are summarized.

Consider a type II superconductor containing
columnar defects. The sample is subject to an ap-
plied magnetic field, which is parallel to the de-
fects. Therefore the problem becomes essentially 2D
one. Throughout all the paper we use dimensionless
variables, measuring magnetic field and vector poten-
tial in units of H,, = ®y/2m€*(T) and &, 21%(T),
respectively. Any length appearing is measured in
units of the temperature dependent coherence
length &(7). In these units the penetration length
coincides with the Ginzburg—Landau parameter k.
Then the density of the thermodynamic potential
and the order parameter are measured in units
0((2)/[5 and V-a,/B, where a;, < 0 and B > 0 are the
standard Ginzburg-Landau coefficients of the clean
sample. In the presence of defects located at the
points r; (r being a 2D vector) the coefficient o
should be modified:

a(r) = a (1 - da(r)]
and depends on position as

da(r) = z o, (r - r].).
J

In what follows we use the simplest model
0 »20
oa (r) = o, exp D'?D’

g ~od

)

where [ is the dimensionless size of the defect. The
modification term is simply related to the critical
temperature change 87 (r) caused by defects:

oa(r) = ; (2)

where T, is the critical temperature of a clean
sample. Generally speaking, the third Ginzburg-
Landau coefficient y (y, =1,2m) should also be
modified as

V() =y [t + 3y @)1

This modification term is described by analogous
equations where o should be replaced by y. For a
fixed temperature close to the critical temperature
T, , the Ginzburg-Landau density g of the Gibbs
potential [16] of such a superconductor is written
as
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where a is the vector potential of the magnetic
induction b(r).

2. Bulk superconductor

Consider a superconductor containing columnar
defects. In the linear approximation with respect to
small concentration of defects the problem is effec-
tively reduced to a single defect problem [15]. Near
the upper critical field =1 of a uniform bulr
superconductor, the behavior of a superconductor
can be derived within the lowest Landau level
(LLL) approximation [17,18] by minimization of
the density of the Gibbs potential

%

+ 30t (1) [W + By, (r) W |,

g, (W) = (1 = h) WP + |Lv|*

(3)

which depends only on the order parameter. Here
h stands for a dimensionless external magnetic field
and D° is gauge invariant gradient with the vector
potential of the external field H. In what follows
we shall use the vector potential in the symmetric
gauge.

To find the order parameter which realizes this
minimum one can expand W(r) in terms of Landau
functions L (r) of the lowest Landau level (m is the
orbital momentum) substitute this expansion into
Eq. (3) and find the expansion coefficients from the
minimum condition [19]. Such an expansion serves
as a good approximation and one can neglect the
contribution of the highest Landau levels even at a
field much less than upper critical field [20,21]. In
the case of isotropic functions a(r) and y,(7) the

(L m)

3! /4
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symmetry of the unperturbed Abrikosov lattice en-
ables us to consider only two cases corresponding
either to C, symmetry or to C; symmetry. The
hexagonal symmetry corresponds to the distorted
vortex lattice with one vortex placed on the defect.
The trigonal one corresponds to the lattice with the
defect located in the center of the vortex triangle.
In the hexagonal case the trial order parameter can
be written as

29

Wi(r) =i Y [0 M(m) + Dm)] L, (r).

m=0

(4)

Here D(m) are the variational parameters which
are to be found. The case when all D, are equal to
zero and only the coefficients M (m) remain, cor-
responds to the order parameter LI—'A(r) which de-
scribes the Abrikosov lattice with one of the vor-
tices located at the origin and one of the symmetry
axes parallel to the x axis. The -coefficients
M(m) are real and obey the selection rule [19]
m=6M+1, M=0,1,2 .... In the trigonal case
the trial order parameter is written as

W)= S i T My(m) + Dm) L, (1), (5)

m=0

The case when all D(m) are equal to zero, corre-
sponds to the order parameter LI—'g(r) which describes
the Abrikosov lattice whose origin coincides with
the center of the vortex triangle and one of the
symmetry axes is parallel to the x axis. The real
coefficients M4(m) obey the selection rule m = 3M,
M=0,1,2, ...

To obtain the lattice deformation caused by a
single defect we have to find separately the extre-
mal set of the variational parameters D(m) within
each of the two symmetry classes separately, and to
choose the most preferable one from the two of
them. Direct substitution of the test function W(r)
expressed in the forms (4) or (5) into the expres-
sion for the Gibbs potential density (3) and minimi-
zation with respect to the variational parameters
D(m) yields

[TD()D(m)DXI + m - k) + M(I + m - k\D()D(m)] +
|

- O
VE )J(k+l)DD(l)DD—

AN

{fap +y[¢* + k(1 +20D)]}1=0 (6)
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Here

o =hi2, (D

B, =1.1596, a and B are properly scaled strengths
of defect:

a = ) = ’ (8)
1-h Y 1-h
and
) ( + m)! M(m) M(I + m ~ k)
Ik, 1) = % VRl (UF =) 21 +m+ 1].[

kO Mm)M(k-m)
(k- m)! okt

W=y @n,

Equations (6) were obtained by Ovchinnikov [19]
who used their linearized version for studying pos-
sible structural transitions. They are valid for both
two symmetries C, and C5 . In each of these cases
one should take into account the selection rules

M (m) =8, ., M.(3M),

Mym)=3 . MOM+1), M=0,1,2, .., (9

,6M+1
and use for M3’6(m) their corresponding (real)
values [22]. A quite natural assumption (which is
verified below) is that the perturbed lattice con-
serves its initial symmetry. This means that the
coefficients {D(m)} obey the same selection rules
that the initial coefficients M(m) do. We use this
assumption in our analysis below.

The qualitative information concerning the be-
havior of the coefficients D(m) in a magnetic field
can be obtained directly from Egs. (6). Consider,
for example, an attractive defect with a, > 0 and
Y; = 0. In this case, if one is not too close to the
critical field £ = 1, the hexagonal symmetry should
be realized and one starts from an analysis of the
C¢ solutions. Due to selection rules, the first non-
vanishing equation of the system (6) corresponds to
the value m = 1. This equation depends strongly on
the (scaled) defect parameters a, y and ¢. But right
in the next equation (which corresponds to the
value m = 7) this term is proportional to ¢” and due
to the short range nature of the defect (¢ < 1) it is
very small. Therefore all the higher order equa-
tions (6) with m =13, 19, ... are practically homo-
geneous. As a result, the solution of (6) will give
nonzero coefficients D(m) only for some small val-
ues of m. Thus the deformation of a vortex lattice
happens mainly near the defect, at the distance of
order of the Larmor radius R, [ m}n/ai correspond-
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ing to the largest value of m such that
D(m_,.) # 0, while the rest of the lattice remains
undistorted.

With raising of the applied magnetic field the
effective coupling constants o and y increase drasti-
cally [see Eq. (8)], while the parameter ¢ (7) does
not undergo any visible change. This leads to in-
creasing values of the higher coefficients D(m) in
the expansion (4) of the order parameter and as a
result, to spreading of the deformation far from the
defect. The further the growth of the magnetic
field, the larger the effective coupling constants.
This implies that the last term in Eq. (6) for m=1
becomes much larger than all preceding terms. In
this case the solution is Dy(1) = - T[_1M6(1), ie.,
the first expansion coefficient practically reaches its
limiting value. This value completely compensates
the contribution of the unperturbed Abrikosov lat-
tice to the m = 1 expansion coefficient in Eq. (4).
In this region of fields the expansion (4) begins
from m =7. The order parameter in the nearest
vicinity of the defect becomes

W e’®

This means that the six nearest vortices have (al-
most) collapsed on the defect which pins the vortex
containing seven flux quanta. One can see this
effect in Fig. 1,a.

With further increasing the applied field the
next coefficients Dy(7), D(13), and so on will reach
their limiting compensation values - T1T'M ¢,
- _1M6(13), ..., and one could principally get a
vortex containing thirteen, nineteen, etc., flux
quanta. However, numerical calculations show that
for a realistic field range (not extremely close to the
upper critical field) only the first collapse can be
realized.

A similar behavior of the expansion coefficients
{D(m)} takes place in the trigonal case C4 . Here in
the case of attraction the coefficient D4(0) is the
first one that reaches its compensation value
-mM 5(0), which corresponds to the three vortices
collapse on the defect. Such a configuration is
displayed in Fig. 1,b. With increasing magnetic
field one expects the appearance of six-, etc., multy-
quanta vortices. As in the previous case, numerical
analysis shows that only the first collapse occurs in
a realistic range of field.

Note that for the same set of parameters the first
collapse within the trigonal symmetry occurs at a
weaker field (£ = 0.85) than in the hexagonal sym-
metry (k= 0.93). The reason is that in the C,
symmetry seven vortices must overcome their mu-
tual repulsion in order to fall on the defect, while
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Fig. 1. The square modulus of the order parameter for o = 0.5,
Y=0, /2 =05 in the hexagonal case for the applied field
h = 0.93. Seven vortices collapse on the defect (2) and for the
applied field 2 = 0.85. Attractive defect causes a comparatively
weak vortex lattice deformation (/) the same in the trigonal
case for the applied field £ = 0.85 and three vortices callapse on
the defect (¢).
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in the Cg system only three vortices collapse. For
the field ~ = 0.85, at which, in the symmetry Cj ,
three vortices are already collapsed on the defect
(Fig. 1,b) in the C; symmetry, the lattice is dis-
torted but still without any vortex collapse
(Fig. 1,0).

Up to now we analyzed the solutions of Egs. (6)
within two symmetries C, and C, separately. Now
we can choose the most preferable one from them
and describe the typical vortex lattice behavior in
some interval of the magnetic fields close to the
upper critical field. We start from the same case of
attractive defects a; > 0 (y1 = 0) of a small concen-
tration of defects. If the applied field is not too
close to the upper critical field, then a deformation
of the lattice near a single deffect is small and the
preferable local symmetry near each defect is Cj .
The defects are occupied by vortices and the rest of
the lattice is slightly deformed. With increasing of
the magnetic field the deformation near defects
becomes stronger (as shown in Fig. 1,¢) and at some
critical field &, the C, solution of Eqgs. (6) corre-
sponding to collapse of three vortices on the defect
becomes preferable (see Fig. 1,6). As a result, a
local structural transition C; — C5 occurs. With
further increasing of the field, one deals with Cg4
symmetry, three vortices occupying the defect and
the deformation of the nearest part of the vortex
lattice (with respect to the defect) is observed. But
at some critical field %, the C, solution of Egs. (6)
corresponding to collapse of seven vortices on the
defect (see Fig. 1,a) becomes preferable and a local
structural transition C4 — Cg occurs and so on.
Thus, one has a sequence of reentering first order
phase transitions C; -~ C5 - Cp — ...

This qualitative analysis is supported by numeri-
cal solution of the infinite nonlinear system of
Ovchinnikov equations without any simplification
in the general case where o0 #0 and y#0. The
results obtained confirm our symmetry assumption
formulated above and enable us to construct a phase
diagram in the (a,y) plane for a fixed scaled size
¢(7) of a defect. Part of such diagram is given in
Fig. 2. Here the two solid curves separate the
regions where the local symmetry is hexagonal
(Cg) or trigonal (Cj). Near the upper critical field
¢ O l(z) and the diagram becomes universal. For each
fixed defect parameters and for each value of the
magnetic field the diagram enable us to determine
the preferable local symmetry of the system.

To explain how to extract this information from
the phase diagram consider a sample with some
fixed parameters o, y, , and [; , and start from an
initial applied field 4, . This corresponds to a start-
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Fig. 2. Phase diagram in the (a, y) plane of a superconductor
with o = 0.1. The initial magnetic field is hy=0.9. Solid ray:
y=0.01. Dashed ray: y=0.03. Dotted ray: y= 0.06. Dashed-
dotted ray: y=— 0.01.

ing point (a = a®, y=VP) in the diagram of Fig. 2,
where a and y° are determined by Egs. (8) with
h = hy, . Further evolution of the parameters a and
y with growth of the magnetic field is described by
the equation

y
y=—"(a-a%+y
a1

and corresponds to some ray in the phase diagram,
starting at the initial point (a®, ) and directed out
of the origin. Four such rays are displayed in Fig. 2.
For all rays the starting field is &, =0.9 and
a, =0.1. Increasing of the magnetic field leads to
alternation of the effective coupling constants (8),
i.e., to the motion of a starting point along the ray.
This movement in its turn results in a sequence of
reentering transitions from one local symmetry to
another.

The most interesting case is represented by a
dashed ray and corresponds to the value y, = 0.03.
Here even in the comparatively low field A=
= 0.775 < hy (the corresponding point of the ray is
not displayed in Fig. 2) the C,—C, symmetry tran-
sition occurs. In both the two lattice configurations
below and above the transition the lattice deforma-
tion is small. The dashed ray on the diagram starts
from the field 2, = 0.9 and for the first time crosses
the lower solid curve at a field £ = 0.906, at which
the lattice undergoes the next C; - C transition.
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No vortex collapse still happens at this field (see
Fig. 1,c) because the value of Dg(1) is still far from
its compensating value. However two next transi-
tions take place because of vortex collapse. The
second transition to the symmetry Cg at a field
h=0.94 happens when the coefficient D4(0) in
the symmetry C, almost reaches its compensating
value D4(0) = -1t M 5(0) and therefore this transi-
tion corresponds to the collapse of the three vortices
at the defect (Fig. 1,b). Similarly the third transi-
tion to the symmetry C, at a field 2 =0.99 corre-
sponds to the collapse of the seven vortices at the
defect (Fig. 1,a).

Note that the Figs. 1,b,c already referred to
above, present the contour plots of the square
modulus of the order parameter near defect in the
vicinity of the C; - Cj transition due to collapse of
the three nearest vortices on the defect. These plots
correspond to the point (= 4.0) on the ray coincid-
ing with the positive d-semiaxis on the phase dia-
gram. At this point the order parameter exhibits a
small deformation in the symmetry C, as it is
displayed in Fig. 1,c, while in the symmetry C it is
strongly deformed due to the collapse (see
Fig. 1,b).

Untill now we dealt with a single defect problem
that corresponds to a linear approximation within
the Gibbs potential concentration expansion. To be
sure that our results are related to a macroscopic
system with a small but finite concentration (di-
mensionless density) of defects we have to be sure
that the next (second order) concentration correc-
tion to the Gibbs potential is small. To estimate this
correction one has to solve exactly the two defects
problem [15], which is much more complicated.
Therefore, we choose another way. Consider for
simplicity an attractive case and magnetic field
which is not too close to H ., . Put the undistorted
vortex lattice on the plane where (point) defects are
distributed and shift one of the vortices nearest to
each inhomogeneity to the position of that inhomo-
geneity. There are many similar ways to arrange the
vortex lattice, but one has to choose such a way
which leads to alternation of the regions where the
lattice is compressed with ones where its rarefied.
Finally, let us distort the regions of the lattice close
to inhomogeneities according to the results obtained
within single defect approximation. This latter dis-
tortion is already taken into account exactly. So one
has only to estimate the additional contribution to
the thermodynamic potential from the intermediate
regions (between inhomogeneities) whose deforma-
tion is well described by elastic theory.
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Fig. 3. Dimensionless magnetization of a superconductor with
parameters o = 0.1; y=0.03 for the concentration values
¢ =0.03 (A) and 0.05 (O).

The number of extra vortices per region is of
order of unity. Therefore, the deformation tensor up
to a numerical factor of order unity equals the
concentration ¢ of defects. The correction to the
thermodynamic potential will be of order Cc?,
where C is the elastic modulus. But the elastic part
of the deformation has an alternating behavior with
a characteristic wavelength of the order of the
average distance between inhomogeneities. As it
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Fig. 4. Magnetic susceptibility of a superconductor with pa-
rameters o = 0.1; \7: 0.03 for the concentration values ¢ = 0.03
(A) and 0.05 (O).

830

was shown by Brandt [23], all the elastic moduli
are proportional to (1 — /%) if this distance is much
less than the penetration length divided by
(1 = h)1/2. The latter inequality can be rewritten as
36kc >> 1 — h. In the region of parameters which
we are mostly interested in ¢ =0.03, 1 — 2 =0.06
and the inequality kK >> 1 is evidently valid. This
means that corresponding contribution to the ther-
modynamic potential is of the order of (1 — h)*c?.
This is exactly the second order concentration cor-
rection which in the case ¢ << 1 is smaller than the
contribution accounted for within the linear concen-
tration expansion.

Thus in the case of small concentration one can
use the results obtained in the two previous sections
and describe the thermodynamics of the system near
the upper critical field. All the local symmetry
transitions described above manifest themselves as
jumps of the magnetization M or its dimensionless
version

M
m = - 4T(2K> - 1)BAH7
c2

(see Fig. 3) and as discontinuities of the magnetic
succeptibility

L= om
oh

(Fig. 4). The most pronounced jumps occur at the
two transitions accompanied by vortex collapse,
namely at the fields 2 = 0.94 and /4 = 0.99.

3. Mesoscopic disc

Consider now a type Il superconducting disc
with dimensionless thickness d and radius 7, con-
taining columnar defects of size [, and subject to an
applied magnetic field, which is parallel both to the
defects and to the disc axis. In this section we
assume that defects change only the Ginzburg—Lan-
dau coefficient a. We assume that the disc is thin
and small d << r, <K (in all numeric calculations
we use the value r, =2.6). All the dimensions of
such a disc are smaller than the penetration depth K.
Therefore as in the previous case the problem be-
comes essentially 2D one, and, moreover, it is
possible to neglect the spatial variation of the
magnetic induction b inside the disc and replace it
by its average value O[5] (here and below the
brackets [J.00Jmean averaging over the sample area).
As a result one gets the following expression for the
Gibbs potential per unit area:
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G =< |W + W'+ [D_W[* + Ba(r) [Wf*> +

+ KX(DO- h). (10)

Here the vector potential entering to the expression
of the gauge invariant gradient D_ is given by

a=[Du6,2.

According to the general approach of the Gin-
zburg-Landau theory one has to minimize the Gibbs
potential density (10) with respect to the order
parameter W with an average induction B0 fixed
and then to minimize the result once more with
respect to B0 The first step results in a nonlinear
differential equation with a boundary condition

D_LPlr:r():O, an
the solution of which is rather difficult even in the
absence of defects. Therefore, we use the variational
procedure choosing the trial function as a linear
combination of the eigenfunctions of the operator
(D_)? with the boundary condition (11). The corre-
sponding eigenfunctions A m and eigenvalues Opm
depend on the disc radius 7, . As in the previous
section m is an orbital number and » stands for the
number of the Landau level which this eigenvalue
belongs to when the disc radius 7, tends to infinity.
In strong enough magnetic field one can take into
account only n = 0 states and therefore the quantum
number n will be omitted in what follows. Such an
approximation is adequate when the strength of
defects da(r) is much smaller than the distance
between the n =0 and 1 eigenvalues. Then, to
describe states with a fixed number N of vortices
the maximal orbital number or topological charge
which enters the trial function should be equal to
N, . Finally, our trial function can be written as

N

W= z C, exp (-imB)A, (12)
m=0

where A is given by

0 12 Ia0- O'm ;,2 O

A =VDOexp F -BMOD® B—, m + 1; - BHID.
m 02 0 g2B0 2 g
(13)

In Eq. (12) the expansion coefficients C, serve
as variation parameters and ®(a, ¢, x) in Eq. (13) is
the confluent hypergeometric function [24].

To proceed further one should substitute the trial
function (12) into the expression (10) for the ther-
modynamic potential density and first minimize it
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with a respect to the expansion coefficients C, at
fixed average induction (B0 As a result one obtains
a system of a finite number of nonlinear equations
for the coefficients C . This system is a finite
version of the Ovchinnikov [19] Egs. (6). However
in the presence of disordered set of defects the
solution of these equations is very complicated. The
point is that now no selection rule (successfully
used in the homogeneous case [5,19,22] can be
applied. Thus the problem needs another approach.

In what follows we consider a disc that contains
N, short-range defects of range [ << 1 placed at the

points r, ry,...,ry, . The number of defects N, is
d

assumed to be larger than the maximal possible
number of vortices N, . As we could see below a

small enough clean disc can accumulate vortices
only in its center. The defects attract the vortices
and due to their short range can pin the latters
exactly on their positions. Therefore, we consider
only some special configurations of vortices such
that they occupy only the positions of defects and
the disc center. This choice of trial function implies
the following procedure. Let us fix a defect configu-

ration {rj}, 7=0,1,..,N,;, r,=0, aset of corres-

ponding topological charges {p(j)}, an external mag-
netic field £ and an average induction B[ Each
topological charge p(7) is a non negative integer and
the set {p(j)} satisfies the condition

Ny

Y PO) =N, (14)

J=0

Thus our procedure accounts for the existence of
multiple vortices located on the disc center or on
any defect position as well. The trial function (12)

has zeros only at points {r]-} with miltiplicities p(j).
The latter condition completely defines all coeffi-
cients {C,} (m=0, 1, ..., N; - 1) up to a common
multiplier Cy, , which we term as the order pa-

rameter amplitude. Further, we need to minimize
the thermodynamic potential with respect to this
amplitude and the average induction. The result has
to be compared with those obtained for different
total numbers of vortices and different sets of «oc-

cupation numbers» {p(j)}. Comparing the obtained
value of the thermodynamic potential with that
corresponding to a normal state one finally finds the
preferable state of the disc for a fixed value of
external magnetic field. Repeating this procedure
for various values of the magnetic field one could
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In the case r,=2.6 considered here the highest
possible field at which superconductivity still ex-
ists is &5 = 1.98. This corresponds to the intersec-
tion point of the curve 0, and the dashed line
0 =1. Thus a clean superconducting disc of this
radius at the phase transition point can accumu-

late only four vortices since the curve for n =0, m =35

never reaches the line 0 = 1.

Substituting the test function (12) for the or-
der parameter into the expression for the averaged
Gibbs potential (10) one obtains

NU
G=- Z|cm|2(1 ~o ) +
m=0

NU
O

0~0 2 2 2
Fig. 5. Eigenvalues o,  for the disc of radius r,=2.6 as a + 9 z CanCka+n—k ‘]m,n,k+ |:60‘|qu O+ k“[B0O- A]°,

function of the applied field 4.

describe magnetic properties of the sample in a
wide range of the fields up to the upper critical
field H , .

To construct the trial function (12) one should
first obtain the eigenvalues o, and eigenfunc-
tions A, = of the operator (D_)* with boundary
condition (11). This textbook problem was solved
many times but we need the solution for various
disc radii and various average induction values.
Therefore we tabulated some needed eigenvalues
Opm and the corresponding eigenfunctions A for
various quantum numbers n=0, 1,
m=1, 2, 3, 4, 5 and disc radius r,=2.6. The
eigenvalues as functions of an average induction
are shown in the Fig. 5. These results are com-
pletely consistent with, e.g., those obtained ear-
lier in Ref. 25. One can observe that the distance
between the zeroth and the first Landau levels is
of the order of unity. So we can indeed neglect in
expansion (12) the contributions of higher «Lan-
dau levels» as long as defects are not extremely
strong, da(r) < 1.

The results shown in Fig. 5 help us estimate
how many vortices can enter the sample. Indeed,
for 0 =1 the eigenvalue equation for operator
(D))? coincides with the linearized Ginzburg—
Landau equation. Therefore the maximal average
induction [L] corresponding to ¢, =1 can be
treated as the upper critical field for a given
orbital number m. The highest of these fields is
the genuine upper critical field 4, and the corre-
sponding value of m gives the topological charge
of the giant vortex usually appearing in the vicin-
ity of the clean disc phase transition point [3,4].

832

k,m,n=0

15)

where the brackets [..0mean averaging over the
sample area; I, = m2mu
jm,n,k = mmAnAkAmm_kEnd 0, =0y, For the
state characterized by a topological charge N the
coefficient C,; necessarily differs from zero. We
choose it as ait amplitude of the order parameter
and introduce new expansion coefficients D, and

new order parameter

gjm = CNva’

D, =1, (16)
=c,u

D v

Rewriting the thermodynamic potential (15) in
terms of these new variables and varying it with
respect to the amplitude C,, we obtain the fol-
lowing expression for its extrémal value ¢:

Ny
S -0,1,- Balyo
=0 Can

of* =
N‘U
Iy D,DWDDD D J

n kK mtn—k Y mnk

k,m,n=0

The expansion coefficients of the order pa-
rameter (12), (16) are completely defined by the
position of vortices on the defects. Let us choose
some configuration of vortices {rj}. In this set
there are points occupied by a single vortex
(p(j) =1) and points corresponding to multiple
vortices with topological charge p(f) > 1. Then
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the set of coefficients {D, } = {¢_1Cm} can be calcu-
lated from the following system of N linear equa-
tions:

N -1
> D, exp (- im8) Agg(f))(rj) =
m=0
=exp (- iNUej) A%U))(rj) , (18)

where the notation f")(x) is used for the nth deriva-
tive.

As in the previous section we choose the Gaus-
sian form (1) for the «defect term» proportional to
da(r) in Eq. (10). In this case the «defect term» in
(15) in the leading approximation with respect to
our small parameter /, can be rewritten as

ZZ Nd

2 0 2
Bal 0= 20, 5 5 Wlr )l (19)
0 5=1
Substituting equations (16), (17) and (19) into Eq.

(15) we obtain the final expression for the averaged
Gibbs potential of the disc with defects:

2

v l(z) N, E

> D, -0,)1,) - 20053 i)l
G=- k=0 0 =1 O +

= N
00
ZDM{ DmDnDkDm+n—k Jm,n,k
k,m,n=0

+ K (BO- h)2 (20)

We solve the system (18) for each combination
of vortices on the defects in order to find the set of
expansion coefficients {D } as a function of the
average induction O The set of coefficients is then
plugged into expression (20) for the Gibbs poten-
tial G at a fixed applied field 2. Now we can find
the average magnetic induction @O at which the
thermodynamic potential (20) has a minimal value
at fixed applied field and configuration of vortices.
After that we must repeat this procedure for differ-
ent configurations and different values of the ap-
plied field. As a result, we obtain a number of data
sets for the Gibbs potential as a function of the
applied field for different configurations of vortices.
Then for each value of an applied field we should
choose the preferable vortex configuration which
minimizes the thermodynamic potential. This en-
ables us to obtain the disc magnetization as a
function of the applied magnetic field.
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Q0000
DO

Fig. 6. Possible configurations of vortices inside clean disc of
radius r, = 2.6.

Let us start from the case of a clean disc with
radius r;, = 2.6 and K = 3. Although this value of K
limits the condition K >> 7, , the chosen region of
applied fields enables us to neglect the spatial
variation of the magnetic induction [5]. As we al-
ready showed the maximal number of vortices in
such a disc equals four. Due to the sample geometry
and small maximal number of vortices they can
form only a number of symmetric configurations
when some vortices occupy the disc center and the
others are placed away from the center in such a
way that they form a regular polygon. All these
configurations are presented in Fig. 6. In cases b, &;
d, and ¢ the topological charge of the multiple
vortex at the origin is equal to 2, 3, and 4, respec-
tively. In cases ¢, e, f, h, i, j the shifted vortices are
place at a distance p from the origin.

For a given vortex configuration the expansion
coefficients {D_} can be calculated from the system
of linear equations (18). For each possible vortex
configuration we substitute these coefficients into
the expression for the thermodynamic potential of
the clean disc

2

v 0

o 0

§ D [(((1-0,)1, E

G=-_ 5% + K (BO- )’
NU
205y DUDYD D J
m n k mitn—k Y mmnk

k,m,n=0

and minimize it with respect to the average induc-
tion (B0 We repeat this procedure for all configura-
tions and for various distances of vortices from the
disc center inside each configuration. Thus the
problem has three variational parameters: the type
of vortex configuration (Fig. 6), the distance p of
vortices from the disc center and the average induc-
tion B0 We changed the distance p by step of
dp = 0.1r, . Numerical calculation showed that be-
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Fig. 7. Magnetization curve of a clean superconducting disc of
radius 7, = 2.6.

cause of the disc small size only configurations in
which p =0 (Fig. 6, a, b, d, g ) gain the energy. So
within the calculation accuracy dp = 0.26 we have
only a multiple vortex at the disc center with a
possible topological charge p(0) = 1, 2, 3, 4.

The dimensionless magnetization m = A — B0of
the clean disc is presented in Fig. 7. Penetration of
an additional vortex inside the sample is manifested
by magnetization jump. Each branch of the curve
corresponds to the one-, two-, three- and four-vor-
tex states. This result is similar to that obtained by
Palacios [5] and Deo et.al. [7] for discs with larger
radii and it will be used further.

In the case of disc with defects, one should take
into account the defects configuration and minimize
the Gibbs potential (20). We present below the
results for a single configuration of the defects
obtained with the help of a random number gener-
ator. We hope that it is rather typical (see Fig. 8).
In any case the results obtained below for this
configuration enable us to demonstrate all the new
features characterizing the magnetic properties of a
sample with defects and to confirm all the expecta-
tions formulated above in the Introduction.

We analyze the thermodynamic properties of the
disc for various values of the scaled defect strength
a= 0(1l(2) . This constant can be easily varied experi-
mentally by changing the sample temperature (see
Eq. (2)). To present the results more clearly we
collect all configurations of vortices which will be
realized for values considered for the defect strength
o in Table. The left column of the Table contains
the values of the coupling constants. The upper line
enumerates the vortex configurations ordered with
accordance to their appearance with the growth of a
magnetic field. The same numbers enumerate differ-
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ent regions of the magnetization curves in Fig. 9.
Note that the last configuration in each line appears
just before the phase transition to the normal state
at the upper critical field & ,. Then, each configura-
tion is described by an ordered sequence of six
numbers. The jth number is equal to the topological
charge located at the point r._; . In other words, the
first number is the topological charge at the disc
center, the second number is the topological charge
at the first defect and so on. For example configu-
ration {211000} corresponds to double vortex at the
disc center and two single vortices placed at the
first and the second defects.

Table

Configurations of vortices

a 1 2 3 4 5 6
0.04 | 100000 | 200000 | 300000 | 40000 — —
0.08 | 100000 | 200000 | 300000 | 310000 — —
0.12 | 100000 | 200000 | 300000 | 211000 — —
0.16 | 100000 | 200000 | 101100 | 300000 | 101200 | 211000

0.30 000101 | 000110 | 000111 | 001110 | 000130 | 001210

One can get fom the Table that already at
o = 0.08 near the phase transition point the four-
multiple vortex at the disc center is split: three-
multiple vortex remains at the center and one more
vortex occupies the first defect (configuration
{310000}). More complicated splitting is observed
in the case o = 0.12 where two vortices remain at
the disc center, one occupies the first defect and
another one occupies the second defect (configura-
tion {211000}). Further increasing of the coupling
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Fig. 9. Magnetization curve of the superconducting disc of ra-
dius 7, = 2.6 and k = 3 in the presence of defects with an effec-
tive coupling constant a=0.3.

constant leads to the appearance of additional
mesoscopic jumps related to the rearrangement of
the vortices on the defects as the applied magnetic
field changes. Consider the case a = 0.16. At small
values of the applied field one gets one- and two-
vortex states at the disc center. However, when the
third vortex is allowed to penetrate the multiple
vortex is destroyed and the vortices occupy the disc
center, the second defect and the third defect (con-
figuration {101100}). With further increase in the
applied field the system turns again into the three-
multiple vortex state at the disc center. So in the
same sample two different vortex configurations
with the same total topological charge are possible.
When the fourth vortex penetrates the disc the
three-multiple vortex state splits again into double
vortex at the third defect, one vortex at the disc
center and another one at the second defect (con-
figuration {101200}). The appearance of the second
vortex on the third defect is a result of a very
restricted space of the trial functions. Indeed, ac-
cording to Eq. (20) any defect that is already
occupied by a vortex is put out of the game and one
cannot gain energy adding one more vortex to the
same defect. This means that in a wider variational
space the configuration {101200} would be replaced
by another one which would be preferable. At the
same time it will necessary lead to the correspond-
ing magnetization jump. With increase in the ap-
plied field we have a new jump of the magnetization
curve, which is caused by rearrangement of the
vortices into the configuration {211000} identical to
that of the four vortex state in the case a = 0.12.
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Fig. 10. Square modulus of the order parameter for o = 0.3 at
an applied field 2 = 0.71, the vortex configuration is {000101}
(@); at h = 1.31, the vortex configuration is {000130} (») and at
h =1.55, the vortex configuration is {001210} (¢).

Thus one can see that the stronger defects are the
greater is the tendency of vortices to occupy defects.
The destruction of the giant vortex at the disc
center begins near the upper critical field. Increas-
ing the defect strength destroys the centered multi-
ple vortices with lower multiplicity. The preferable
arrangement of the vortices corresponds to the
maximal reduction of the square order parameter
modulus.

At strong coupling constant one expects to get
states where all vortices are placed onto defects for
all values of the applied field. Consider the results
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Fig. 11. The upper critical field as a function of the defect
strength.

of studying the case a =0.3. The magnetization
curve of such disc is shown in Fig. 9. Penetration of
vortices inside the disc with such strong defects
occurs at values of the applied field smaller than
that of the previously considered discs with rela-
tively weak defects. Because of that, already at a
field 2 =0.6 the disc accumulates two vortices.
Their configuration is {000101} (see Fig. 10,a).
As the applied field increases this configuration
is changed by another one {000110} with the
same total topological charge. Three vortices ap-
pearing at higher fields always occupy three differ-
ent defects. The corresponding configurations are
{000111} and {001110}. Two configurations with
total topological charge four are realized. Both
contain a multiple vortex on one of the defects. The
first configuration appearing in relatively low field
is {000130}. Here one has three-multiple vortex
on the fourth defect. The second configurarion
{001210} preceding the transition to the normal
state at k5 contains a double vortex at the third
defect. Plots of the square modulus of the order
parameter for these cases are shown in Figs. 10,b,c.
Thus in the case of a strong defect a = 0.3 consi-
dered here, the number of magnetization jumps
within the same field region is twice the number of
possible values of the total topological charge. We
do believe that this number will increase in a disc of
the same radius containing more defects.

We have already noticed that the presence of
attractive defects reduces the upper critical field
h, at which the Gibbs potential of the supercon-
ductor (20) becomes equal to zero (the Gibbs po-
tential of normal metal). Figure 9 shows that the
larger the defect strength o is, the lower is the
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transition field. The dependence of the upper criti-
cal field on the defect strength o is shown in
Fig. 11.

Summary

We have studied the equilibrium properties of
conventional type II superconductor with randomly
placed identical short-range columnar defects.

The vortex lattice of the bulk superconductor
with a small concentration of defects in the vicinity
of the upper critical field H_ , undergoes a strong
deformation with two possible local symmetries —
hexagonal one C and trigonal one C5 . The charac-
ter of the deformation is determined by the vortex-
defect interaction. The vortices can collapse onto
attractive defects and the formation of multy-
quanta vortices becomes possible. Note that forma-
tion of the multiquantum vortices was predicted
earlier [11], but in «twice» opposite limiting case.
We deal with a short-range defect and gain an
energy because of softening of the Abrikosov lattice
near H, , while in [11] a very strong defect with a
radius comparable with the penetration length was
considered.

Increasing the external field gives rise to the
reentering transitions between the two possible
types of symmetry. These transitions are described
by a universal phase diagram. They manifest them-
selves as jumps of the magnetization and peculiari-
ties of the magnetic susceptibility. One of the way
to observe these equilibrium states near H, is to
cool a sample subject to a magnetic field in the
normal state, below the critical temperature. Ano-
ther possibility is to observe not the equilibrium
state as a whole, but to visualize the local deforma-
tion of the vortex lattice near defects.

We have also studied magnetic properties of
mesoscopic superconducting disc with such defects
the number of which is assumed to be larger than
the maximal possible number of vortices accumu-
lated by the disc. We obtained the magnetization
curves for various strengths of defects in a wide
region of the applied magnetic field. The results
show that the defects help the penetration of vor-
tices into the sample. They also reduce both the
value of the magnetization and the upper critical
field. Even the presence of weak defects can split
the giant vortex state at the disc center (usually
existing in a clean disc of small radius) into vortices
with smaller topological charges. This splitting oc-
curs in the vicinity of the upper critical field % .
Strong ehough defects always pin all vortices, split-
ting multiple vortex states at the disc center in all
field region. This leads to the appearance of addi-
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tional mesoscopic jumps in the magnetization curve
related not to the penetration of new vortices into
the sample but to redistribution of vortices within
the set of defects. The number of these jumps
increases with the number of defects.
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