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We present a detailed theory of induced persistent current (PC) produced by hyperfine interaction
in mesoscopic rings based on a 2D-electron (hole) gas in the absence of external magnetic field. PC
emerges due to combined action of the hyperfine interaction of charge carriers with polarized nuclei,
spin-orbit interaction and Berry phase.
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Introduction

The current situation in solid state physics is
characterized in particular by a hectic search of
various macroscopic topological quantum effects.
The most popular of these are the persistent current
(PC) phenomena (the oscillations of the diamag-
netic moment) in a non-simply connected meso-
scopic conductor. PC is produced by a sensibility of
a single particle wave function to a force-free field
which is taken into account via the twisted boun-
dary conditions:

Ψ|ϕ=0 = ei∆ϕ Ψ|ϕ=2π , (1)

where ϕ is an angular variable, and ∆ϕ is the
topological phase shift.

In multiparticle systems, Eq. (1) results in the
oscillatory dependence of the thermodynamic and
kinetic characteristics on ∆ϕ. If ∆ϕ is governed by
any varying external parameter γ, e.g. the magnetic

field, the response of a system is the oscillatory
function of γ.

Normally, the actual experiments are performed
on thin quasi-one-dimensional submicron metallic
or semiconductor based [1] loops pierced by a mag-
netic flux Φ, and ∆ϕ reveals the Aharonov-Bohm
effect (ABE) [2,3]:

∆ϕ
AB

 = 
q

h−c
 ∫O A⋅dl = 2π 

Φ
Φ0

 , (2)

where Φ0 = hc/q, q is the charge of a conduction
particle*.

The ABE-oscillations of the diamagnetic moment
(the PCs) reflect the broken clockwise-anticlock-
wise symmetry of charge carriers momenta caused
by the external vector potential. The PC is de-
fined as

I
PC

 = − c(∂F/∂Φ) , (3)

where F is the free energy of the loop.
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*  The external flux is swept adiabatically slowly with time, and, in fact, one observes oscillations with a certain temporal period
connected with Φ

0
 .



In a recent publication [4], we have proposed a
new mechanism for the observation of adiabatically
slow oscillations of PC with time specific for 2D
quantum Hall systems. This mechanism does not
apply to an external magnetic field, i.e., the oscil-
latory current IPC (Eq. (3)) exists even at Φ = 0
[4]. The bottomline physics behind these spontane-
ous PC can be understood along the following lines.

The time reversal symmetry breaking is in gen-
eral achieved as the combined action of the ABE
and topological spin-orbit interactions. It was
shown in [5] that the topological phase shift ∆ϕ in
Eq. (1) is the sum of the ABE, Aharonov-Casher
[6] and Berry [7] phases providing the topologically
nontrivial spatial charge carriers spins distribution:

∆ϕ = ∆ϕ
A B

 + ∆ϕ
A C

 + ∆ϕ
B
 , (4)

where

∆ϕ
AC

 = 
µ

B

h−c
 ∫O dl⋅(E×σσ) , (5)

∆ϕ
B
 = sπ(1 − cos χ) , (6)

here µB is the Bohr magneton, E is the electric
field, σσ is the charge carrier spin vector, χ is the tilt
angle of a magnetic texture, s = ± 1 is the spin
projection on a magnetic field.

As (d/dΦ)(∆ϕ) = 2π/Φ0 , the PC can be a non-
zero function of ∆ϕA C + ∆ϕB  even at ∆ϕA B = 0.

It was proposed in Ref. 4 to create a spatial
distribution of the charge carriers spins through the
hyperfine interaction with polarized nuclei. The
contact hyperfine interaction is [8]

H
hf

 = 
8π
3

 gµ
B

µ
n
 ∑ 

i

I
i
⋅σσδ(r − R

i
) , (7)

where µn is the nuclear magneton, g is the g-factor,
Ii , σσ, Ri , r are the nuclear and the charge carrier
spins and the position vectors, respectively. Once
the nuclear spins are polarized, i.e., if 〈∑iIi〉 ≠ 0,
the charge carriers feel the effective field Bhf(t)
which lifts the spin degeneracy even in the absence
of an external magnetic field. At low temperatures,
the nuclear relaxation rates are inconveniently
small [9], in particular in GaAs/AlGaAs the nu-
clear spin relaxation times are of the order of
103 sec [10]. The Zeeman splitting reaches one
tenth of the Fermi energy [11,12]. The Aharonov-
Casher phase (5) arises from the spin-orbit interac-
tion [13] which in GaAs/AlGaAs 2D-gas has the
form [14]

H
SO

 = 
α
h−
 (σσ × p)⋅νν , (8)

where p is the charge carrier momentum, νν is the
normal to the surface, α = 0.25⋅10−9 eV⋅cm for holes
[14] and α = 0.6⋅10−9 eV⋅cm for electrons [15], and

∆ϕA C = 
m∗

h−2  ∫O α(νν × σσ)⋅dl . (9)

The combination ∆ϕA C + ∆ϕB itself does not de-
pend on Bhf explicitly, the oscillatory dependence
on Bhf(t) emerges in the PC through the mesoscopic
factor cos (2π √µs(Bhf)/∆ ) [5] where µs(Bhf) is the
Zeeman shifted chemical potential of the charge
carriers with the spin projection s, and ∆ is the
spacing between the quantized electron levels in
a 1D-ring. The effect of Berry phase in 2DEG based
AlSb/InAs/AlSb heterostructure was observed
in [16].

In this paper we consider PC in two cases:
i) when nuclei are polarized along a certain direc-
tion in the plane and ii) when nuclear spins form an
out-of-plane crown texture. We show that:

i). In this case ∆ϕB = 0, and ∆ϕA C ≠ 0 only if the
spin-orbit coupling is inhomogeneous [α = α(ϕ)]
such that

∫
0

2π

 dϕ α(ϕ) eiϕ ≠ 0 . (10)

The inhomogeneity of the spin-orbit coupling
plays the same role as the topologically nontrivial
spin texture [4,17].

ii). In this case the PC exists at α = const and
even at α = 0 the PC is nonzero due to ∆ϕB .

Calculation of persistent currents

The induced PC is given by the Eq. (3) at
Φ = 0. The standard algebra (see the Appendix)
gives the following equation for the IPC :

I
PC

 ≅ 
eT

h−
 ∑ 

l=1

∞

∑ 
j

 sin (2πln
F
(j))

sinh (lT/T~(j))
 







Φ=0

 , (11)

where T is the temperature, index j numerates the
roots of the equation:

ε(n
F
(j)) = µ . (12)

Here ε is the eigenvalue of the Schro..dinger equa-
tion, µ is the chemical potential and
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T
~(j) = 

1

2π2 




∂ε
∂n



n=n

F

(j)
 , (13)

is the crossover temperature.
In what follows we solve the Schro..dinger equa-

tion for the charge carriers confined to a 1D-ring
with the radius ρ, obtain nF

(j) and T~(j), and analyze
IPC in various geometries.

i). The in-plane polarized nuclei, ∆ϕB = 0.
The charge carriers Hamiltonian takes the form

Ĥ = 
p̂2

2m∗
 + 

1

2h−
 



ασσ ⋅ n, p̂


+ − gµ

B
Bhf σx

 , (14)

here Bhf is oriented along the x-axis in the xy-plane,
m∗ is the effective mass, g is the g-factor, {...}+
stands for the anticommutator,

 σσ ⋅ n = σ
x
 cos ϕ + σ

y
 sin ϕ ,

p̂ = − (ih−/ρ)(∂/∂ϕ − i(Φ/Φ0)),  Φ0 = hc/e.

Consider weak spin-orbit coupling α << ∆ρ,
where ∆ = h−2/2m∗ρ2.

The spectrum linear in α is

ε
n
± ≅ ∆ 




n − 

Φ
Φ0





2

 −+ gµ
B
B

hf
 ± 2∆ 




n − 

Φ
Φ0




 
〈α cos ϕ〉

2∆ρ
 ,

(15)

where

〈α cos ϕ〉 = 
1

2π
 ∫
0

2π

 dϕ α(ϕ) cos ϕ . (16)

The PC takes the form

I
PC

 ≅ 
4πeT

h−∆ρ
 〈α cos ϕ〉 ×

× ∑ 
l=1

∞

l 
sin (2πl √µ/∆) sin (πl b/√∆µ)

sinh (π2 lT/√∆µ)
 ,  (17)

where b = gµBBhf(t).
At low temperatures T << √∆µ/π2 the r.h.s. of

Eq. (17) takes the form of the series rectangles:

I
PC

 ≅ 
4e

h−
 √µ/∆ 

〈α cos ϕ〉
ρ

 ×

× 

δ~ 


2π √µ/∆ 1 − 

b

2µ





 − δ~ 


2π √µ/∆ 1 + 

b

2µ









 ,

(18)

where δ~(x) is the rectangle with the height √∆µ/πT
and the width π2T/√∆µ  << 1 centered at the points
x = 2πk, where k is an integer. The magnitude of
IPC (17) is of the order of

I
PC

 ∼ α
∆ρ

 I0 , (19)

where I0 = eVF/2πρ is the magnitude of a normal
ABE persistent current. At high temperatures,
T >> √∆µ/π2 ≡ T~, the PC decreases with tempera-
ture in a standard exponential way:

I
PC

 ≅ 
8πeT

h−∆ρ
 〈α cos ϕ〉 ×

× e−π2
T/√∆µ sin (2π √µ/∆ ) sin (πb/√∆µ) .   (20)

In submicron rings, the opposite limit α >~ ∆ρ is
more favorable. In this case we can perform the
perturbation scheme over the «parity» of the spin-
orbit coupling. One can achieve slowly varying on
the scale of kF

−1 coordinate dependent α(ϕ) by means
of a controlled distribution of impurities. If the
«even» component 〈α cos ϕ〉 is made much larger
than the «odd» one 〈α sin ϕ〉 the unperturbed Ha-
miltonian takes the form

Ĥ = 
p̂2

2m∗
 + 

1

2h−
 



ασ

x
 cos ϕ, p̂


+ − gµ

B
Bhf σx

 ,    (21)

and the Schro..dinger equation can be solved exactly.
The spectrum is

ε
n
± = ∆ 




n ± 

〈α cos ϕ〉
2∆ρ





2

 −+ gµ
B
B

hf
 . (22)

The perturbation potential is

V̂ = 
1

2h−
 



ασy sin ϕ, p̂


+ . (23)

One can easily see that the first correction over
V̂ to the spectrum is zero, and the second correction
is negligible at b >> (α/ρ) √µ/∆ .

The PC is

I
PC

 ≅ 
4eT

h−
 ×

× ∑ 
l=1

∞ sin 



πl 

〈α cos ϕ〉
∆ρ




 sin (2πl √µ/∆) sin (πl b/√∆µ)

sinh  (π2 lT/√∆µ )
 .

(24)
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In mesoscopic devices b decreases with time ex-
ponentially b ∼ b0 exp (−t/t1). The time scale t1 is
macroscopically long at low temperatures [10]. The
dependence of the IPC on b (i.e., on t) for Eq. (24)
is shown at Fig. 1.

Equation (24) differs from Eq. (17) provided
〈α cos ϕ〉 ∼ ∆ρ. If the fluctuating component
〈α cos ϕ〉 << ∆ρ, the result (24) is reduced to (17).

ii). The polarized nuclear spins form a crown,
∆ϕB ≠ 0. Consider Bhf directed along the cylindri-
cally symmetric crown (Fig. 2) tilted to the z-axis
by the angle χ. The electron spectrum can be
obtained exactly following the paper [18]. We
represent the Hamiltonian in the form

Ĥ = ∆ 



−i ∂

∂ϕ
 + 

Φ
Φ0





2

 + 
1

2
 














 0  e−iϕ

eiϕ  0




 ,

α
ρ

 


−i 

∂
∂ϕ

 + 
Φ
Φ0




 − b sin χ


+

− b cos χσz .

(25)

The solution to the spectral equation is

Ψ = 







Ψ1 e
i(m−1⁄2)ϕ

Ψ2 e
i(m+1⁄2)ϕ







 , (26)

where m = n + 1/2, n is an integer.
The spectrum is

ε
m
±  = ∆ 


λ
m
2  + 

1

4



 ± 








∆2 + 

α2

ρ2



 λ

m
2  + 2∆κbλ

m
 + b2




1/2

,

(27)

where λm = m + (Φ/Φ0) , κ = cos χ − (α/∆ρ) sin χ.
The dependence of the PC (Eq. (36)) on b calcu-
lated numerically with the spectrum (27) is plotted
at Fig. 3.

After some straightforward but cumbersome cal-
culations we get at κ < 1 the asymptotic expression
for IPC :

I
PC

 ≅ 
4eT

h−
 ∑ 
l=1

∞

(−1)l 

sin πlκ/√1 + (µα2/∆ρ2b2)   sin (2πl √µ/∆) sin (πl b/√∆µ)

sinh (π2 lT/√∆µ  )
 . (28)

Consider the case of a «strong» Zeeman splitting
b >> (α/ρ) √µ/∆ . In this limit one can easily see
that

(−1)l sin (πlκ) = sin (∆ϕAC + ∆ϕB) , (29)

where

∆ϕAC = 2π 
αm∗

h−2  ρ sin χ . (30)

Equation (30) is evidently obtained from the
general definition (5) by the substitutions

(νν×σσ) → σρ → sin χ , (31)

Fig. 1. Dependence of IPC upon b when nuclei are polarized
along a certain direction in the plane for µ ∼ 104, α/ρ ∼ 2.
(µ, α/ρ, b and T are expressed here in units of ∆; I in units of
I0 ; for real submicron rings ∆ = 10−3–10−2 K.)

Fig. 2. Bhf directed along the cylindrically symmetric crown
tilted to the z-axis by the angle χ.
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which means that in a «strong» hyperfine field all
the spins are aligned to the crown direction.

In a «weak» hyperfine field b << (α/ρ) √µ/∆ ,
the topological phases are expressed in terms of
averaged spin components:

∆ϕAC = 2π 
αm∗

h−2  ρ 〈σρ〉 , (32)

where 〈σρ〉 ≅ b √∆/µ  (ρ/α) sin χ << 1 , and

∆ϕB = π(1 − cos χ)〈σχ〉 , (33)

where 〈σχ〉 ≅ b √∆/µ  (ρ/α) << 1 .
The remarkable feature of the Eq. (28) is that

IPC ≠ 0 even at α = 0 when ∆ϕB ≠ 0, ± π, i.e. at
χ ≠ 0, π/2, (mod π).

Appendix

In this chapter, following the lines of [19] we
perform the derivation of the PC for the arbitrary
dispersion law of charge carriers.

At a fixed chemical potential, the PC is

I
PC

 = ∑ 

n=−∞

∞

 
i
n

e(ε
n
−µ)/T + 1

 , (A.1)

where in is the partial current of the n-th orbital:

i
n
 = 

e

h
 
∂ε
∂n

 . (A.2)

Making use of the Poisson summation formula
were present the r.h.s. in (A.1) in the form

I
PC

 = 
e

h
 ∫
−∞

∞

 dn 
∂ε/∂n

e(ε(n)−µ)/T + 1
 +

+ 2 
e

h
 ∑ 

l=1

∞

  ∫
−∞

∞

 dn 
(∂ε/∂n) cos (2πnl)

e(ε(n)−µ)/T + 1
 =

= − 
eT

h
 log 

e
−(ε(n)−µ)/T + 1



−∞

∞
 +

+ 4πT 
e

h
  ∑ 

l=1

∞

    ∑ 

Im (n
k
)>0

  Im e2πiln
k , (A.3)

where ε(nk) = µ + 2iπT(2k − 1) , which gives at
T << µ:

n
k
 ≅ n

F
 + 

iπT(2k − 1)
∂ε/∂n|

n=n
F

 . (A.4)

Eventually, we arrive to Eqs. (11)–(13):

I
PC

 ≅ 
eT

h−
 ∑ 
l=1

∞

∑ 
j

 sin (2πln
F
(j))

sinh (lT/T~(j))








Φ=0

 , (A.5)

where

T
~(j) = 

1

2π2 




∂ε
∂n



n=n

F

(j)
 , ε(n

F
(j)) = µ . (A.6)

Since T
~(j) for various j vary insignificantly*, we

safely replace T
~(j) by some averaged T~ ≅ T~(j) and get

IPC ≅ 
eT

h−
 ∑ 

l=1

∞

sinh−1 


lT

T~



 ∑ 

j

sin (2πlnF
(j)) .       (A.7)

Fig. 3. Dependence of IPC upon b in the case when nuclear
spins form an out-of-plane crown texture. (κ ∼ 0.5, µ ∼ 104,
α/ρ ∼ 2, quantities b, T, µ, α/ρ are expressed here in units of
∆; I in units of I0 .)

* E.g. for in-plane B
hf
-configuration T

~± = √µ ± b , so the difference between different T
~ (j) is of the order of B

hf
/µ.
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