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To characterize carborundum nanoclusters (nano-SiC) we employ the topological Kirch-
hoff index and average energy of molecular graphs. Additionally, electron-kinematic in-
dexes which reflect an average curvature of electron paths in molecule, are invoked. The
main polytypes, namely, 3C-SiC and 2pH-SiC, p = 1+4, are investigated. It is established that the
topological indexes make only a slight distinction between nano-SiC of the different polytypes.
Quite the opposite, the electron curvature indexes provide a clear discrimination of the polytypes.
In particular, the curvature indexes are ordered just in the same manner as the hexagonality
measure known for such polytypes. For the electron curvatures, an effective algorithm is elabo-
rated, allowing us to analyze nano-SiC with 10* and more atoms even by using laptops.

Keywords: carborundum polytypes, topological indexes, quantum kinematics, resis-
tance distances, bipartite networks, hexagonality.

IInsa xapakTepusalyyu HAHOKJIACTepoB KapGopyHiaa (HaHo-SiC) MCIoJb30BaHBI TOIIOJIOIH-
yeckue uHIeKchl Kupxroda u cpemneii sueprum rpada. K mamemy aHanimsy IpPUBJIEYEHBI
TAKIKe DIEKTPOH-KMHEMATUYEeCKUE HHIEKCHI, OTPAMKAIOI[NE CPEeIHIO KPUBU3HY JJIEKTPOH-
HBIX IIyTell B MoJeKyJie. VI3yueHbl HAHOKJIACTEDPbI OCHOBHBIX IIOJIUTUIIOB, a uMmeHHO, 3C—-SIiC u
2pH-SiC, rme p = 1+4. YcTaHOBIEHO, YTO TOIOJIOIMYECKNe MHACKCHI IPUBOLAT K CIa0OMy IMC-
KPUMUHUPOBAHNIO HaHO-SIC pasanuunix moamTurob. HampoTus, sJeKTpOHHAas KPUBU3Ha obec-
MMeUYNBaeT YeTKOe AUCKPUMUHHAPOBAHNE HOJUTUIIOB. B HacTHOCTU, NHAEKCHI KPUBUSHLI, YIOPALO-
YNBAIOTCA TOYHO TAKHMM Ke 00pasoM, KaK CTeleHb I'eKCArOHAILHOCTH COOTBETCTBYIOIIUX IIOJIM-
TunoB. s Hawo-SiC paspaboran sh@EKTUBHBIN aJITOPUTM pacueTa 3SJeKTPOHHBIX KPUBUSH,
IOBBOJIAONINI aHAINSHPOBATL cucTeMHbI ¢ 104 1 Goiblle aTOMOB AasKe ¢ IOMOINBIO HOYTOYKA.

Inperkcu Kipxroda ta enekrponnoi kpusunu niua HaHoriaactepis SiC. A.B.JTysanos.

IITo6 3xapakTepusyBaTy HaHOKJacTepu Kapbopyuzay (Hamno-SiC), BUKOPUCTOBYIOTHCS TO-
moyoriuni ingexcm Kipxroda ta cepeamboi eneprii rpada. o Hamoro amamgisy saayueHo
TAKOM eJIeKTPOH-KiHeMaTUuHi iHgexkcu, AKiI BiLoOpakarTh cepelHI0 KPUBUHY €JeKTPOHHUX
IIIAXIB y MoJIeKyJaX. BHUBUEHO HaHOKJAcTepW OCHOBHUX moJaitumis, a came 3C-SiC Ta
2pH-SIiC, nme p = 1+4. BcTanoByeHO, IO TOMOJOTiUHI iHAEKCH TPUIBOAATL A0 CJIabKOTO
posainerHa Kaacrepis HaHO-SIC pisEnx noxirtmmis. Hasnakm, esexTpoHHA KpuBHHA 3abese-
uyye UiTKy mucKpuMizamiio moaituiris. 3okpema, iHIeKCH KPUBUHM YIIOPSIKOBAHI Tak camo,
AK Mipa rexcaroHaabHoOCTi Bignmosigamx moaitunis. CrocoBro HanO-SIC pospobiieHo ederTnB-
HUU aJTOPUTM PO3PAXYVHKY €JeKTPOHHMX KPHUBUH, IO JO3BOJAE 3a AOIOMOI'OI0 HABITHL HOYT-
Gyra amaxisyBaru cucremu 8 10% ra Ginpine aromis.

1. Introduction them the carborundum nanoclusters

(termed further as nano-SiC) have become

Recently, for mnanoelectronics devices, one of leading objects [1-38]. As in the case
new carbon-containing nanostructures have of mnanodiamonds [4, 5], nano-SiC, especially
been proposed and investigated, and among their electronic properties, attract a significant
434 Functional materials, 24, 3, 2017
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interest owing to the potential applicability
of nano-SiC in spintronics, quantum informa-
tion processing, and in other fields [6-9].

It should be stressed that nano-SiC prob-
lems present special difficulties in compari-
son with nanodiamonds, and the so-called
polytypism of carborundum crystal bodies is
a main impediment to studying respective
nanostructures thoroughly. Indeed, there
are more than 250 polymorphic types
(polytypes) for carborundum as a layered
material (see p.92 in [2]). In the layered
materials we have repeating structural lay-
ers, but the layer-stacking sequence of the
total structure is generally varied. Clearly,
the same peculiarities occur in nanostruc-
tured silicon carbides. Furthermore, for
complex polytypes a number of atoms in
elementary cell can be very large (up to
hundreds). Happily, too complicated struc-
tures are not important for practical use.
However, even in the case of simple
polytypes one needs to investigate the fi-
nite-size nanostructures with hundreds and
thousands atoms in order to model realistic
nanoparticles more or less satisfactorily.

Under these circumstances, we must re-
course to quite simplistic approaches that
allow us to grasp, at least qualitatively,
typical structural features of complex ag-
gregates. Such a philosophy is adopted in
the present paper in which we propose a
certain electron-geometrical charac-
terization of typical SiC nanoclusters. For
this aim we make using the classical topo-
logical index due to Kirchhoff, as well as
one suitable quantum chemistry charac-
teristics (average electronic curvature)
which we earlier introduced for quantifying
molecular complexity [10, 11]. A prelimi-
nary and very restricted usage of the elec-
tronic curvature for nano-SiC was given re-
cently in our brief article [12].

2. Kirchhoff topological index

In this section we give notations and
definitions needed for computations of the
usual Kirchhoff index. Notice that there is
a vast literature on topological methods for
molecular structures [13, 14], and many
current papers are dedicated to the graph-
theoretic approach to the molecular "resis-
tance distances”™ based on the so-called
Kirchhoff index (see, e.g., [15, 16]). The
combinatorial Laplacian matrix is used for
this purpose [17], leading to a suitably for-
malized theory of electric networks due to
Kirchhoff. The papers [15, 16, 18] had
caused a new surge of interest in this field.
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For the recent results of the Kirchhoff
index theory see [19].

Notice, however, that conventional topo-
logical schemes are rather restricted in
principle, as taking no account of many es-
sential details of chemical structure (atomic
electronegativity, nature of chemical bonds
etc.). At the same time, similar topological
entities (especially the combinatorial
Laplacian) appeared previously in mathe-
matical models of phase transitions and dy-
namics of polymer molecules within so-
called Gaussian model [20-22].

Passing to the computational aspects, we
introduce the standard adjacency matrix
Atop (topological matrix) of the graph or
network in question. Namely, for the given
graph with N nodes (vertices), A;,, is the
NXN square matrix whose (i,j) th element is

(Atop)ij =1,iff, i ~j (1)
where i~ j signifies that i and j are the
connected nodes. The usual Huckel matrix
is just of this type. Slightly less familiar is
the combinatorial Laplacian L having ma-
trix elements of the form

Lij = Lid;; — Apopijp (2)

where
L= Z(Atop)ij (3
j

is the node degree (its "valency”). The
reader can find more details about
Laplacian matrices in review [17]. In par-
ticular, L is a positive semi-definite, more
exactly, a singular matrix because it has a
single zero eigenvalue due to the evident

property: ZLU = 0 for each i .

]

In computing the topological Kirchhoff
index (Rg;, in the present paper) we follow
the spectral representation of Rg;,., given in
the above cited papers. Let us define the
Laplacian spectrum as a decreasing set {u;,
U, ..., Uy.;} of all nonzero eigenvalues of L
(that is, uy is excluded). Then, up to a
factor, Rg;. is a sum of their reciprocals.
For our purposes, we apply a suitable scale
factor, so that the working expression for

the reduced (average) Kirchhoff index
which we shall use below is
Riir= (L/N)Y1/1; (4)
1<j<N-1
435
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Remark that Rg,;,. and a similar quantity
defined in [22] can be treated as a graph-
theoretic measure of total connectivity of
the network under study. Additionally,
physics-like interpretation of Rg;,. can be
based on Kirchhoff theory of electric nets in
modern language. Namely,

N2Rg;, = YRy,

i<j

where quantities Rij are explicitly express-
ible in terms of pseudoinverse L¥, and can
be treated as the effective resistances (resis-
tance distances) between nodes i and j.

3. Curvature indexes in
topological approximation

As mentioned, the electron curvature in-
dexes were proposed for molecules more
than 20 years ago [10, 11], but their usage
have been limited to few examples of appli-
cations. As we will see later, carborundum
nanoclusters is a gratifying example of the
curvature analysis in the topological (graph-
theoretic) approximation.

Following [11]), we exploit the average
curvature index (K-index) in a modified
form. By the definition adopted here, K-index
is a full matrix trace of the squared root of
the first-order curvature operator [PAF|,
with P being a linear momentum operator,
and F = P its time derivative. We will also
invoke a high-order curvature characteristic
which is produced by the second-order time
derivative

T=P.

Again, as in the case of Kirchhoff index
(4), we will deal with the average values of
curvatures. Thus we employ the following
curvature indexes:

K = Tr|PAF[1/2/N, (5)
and
K{91= TrlFAT|Y/2/N. (6)

In practice, the such modified (by using
the sqrt operation) curvature indexes are
more suitable for large-scale structures, as
the previous results for carbon nanotubes
have confirmed this [23].

Further, to be more precise, we must
specify more details of the computational
model we use. In the topological approxima-
tion to the molecular kinematics [10, 11],

436

we identify one-electron Hamiltonian ma-
trix h with adjacency matrix (1):

h = Atop' (7)

Then the momentum Cartesian compo-
nents, P,, Py, P,, and their time derivatives
(the electronic force components) are easy
to be computed by the standard matrix com-
mutations with the Hamiltonian:

P=hr—rh, F=hP—Ph, T=hF -Fh,(8)

where r is the matrix of position operator;
an unimportant imaginary unit factor is
omitted in Eq. (8). Matrix r is simply
formed to be a diagonal matrix of the usual
Cartesian coordinates R; of all atomic nodes
(i=1, 2,...N):

(;)ij = RS, (9

(for more detail see also [24]).

It is worth reminding that according to [10,
11], the electronic curvature indexes are a pos-
sible tool for quantifying a structural complex-
ity of the studied molecular systems. In par-
ticular, K and Ko reflect a nonlinear (in a
kinematic sense) character of electron move-
ment in nanoclusters treated in a discrete
(nodal) representation. As a consequence, lin-
ear chains are the structurally simplest sys-
tems because in them K = K[z] = 0.

4. Computational details

Before reporting the results obtained
here, it is appropriate to specify the main
objects of study. These are the nanostruc-
tures derived for the most important SiC
polytypes. In naming the polytypes we use
the standard nomenclature due to Ramsdell:
3C-SiC for the cubic polytype, and pH-SiC
(p is integer) for the hexagonal polytypes.
In our study of SiC nanoclusters we have
restricted ourselves to 3C and hexagonal pH
polytypes with p =2, 4, 6 and 8. Through-
out the paper we employ an idealized model
geometry which is based on quite a realistic
geometry of bulk SiC polytypes. For conven-
ience, we have relegated most technical de-
tails (building of primitive cells etc) to the
appendix A. In practical computations, it is
sensible to scale all atomic coordinate R,;.
Namely, for clusters of all polytypes we
make the same replacement R; — R;/a
where a = 4.3602 A is the lattice constant
of the cubic politype 3C-SiC. Then all cur-
vature indexes become comparable in order
of magnitude.

Functional materials, 24, 3, 2017
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Fig. 1. Plots of the Kirchhoff index vs. the
conditional length parameter, n, for large-
scale nano-SiC in various polytypes: 3C (1),
2H (2), 4H (3), 6H (4), and 8H (5).

We also significantly improved the com-
putation scheme for curvature indexes by
using the bipartite symmetry of carborun-
dum lattices (see the full account in Appendix
B). The programming and most of the compu-
tations were done within a MATHEMATICA
5.02 environment [25]. The computations for
the first members of polytype series were per-
formed on a modest laptop, and for very large
clusters, with ten thousand and more atoms, a
more powerful desktop was used.

5. Indexes for large-scale
nano-SiC

We now consider the results of using the
above defined indices for our main problem
of interest. We look first at the obtained
data for the Kirchhoff index Rg;,. (Fig. 1).
We can only perceive in Fig. 1 that for
cubic polytype 3C-SiC, index Rg;, takes val-
ues which are certainly smaller than those
of the rest polytypes. More interesting are
the results for electron-topology curvature
measures (Fig. 2). Both curvature indexes,
K and K[Z]’ provide a clear diserimination
of the large-scale nanoclusters in depend-
ence of the prescribed polytype. Namely, in
the case of curvature index K the following
sequence is observed:

K[3C] < K[8H] < K[6H] < K[4H] < K[2H] (10)

for corresponding values of length pa-
rameter n (see Eq. (A5) in Appendix A). Al-
most the same is valid for the high-order
curvature K;5;. We see again that for suffi-
ciently large values of n, 3C-SiC clusters
have the lowest calculated curvature in-
dexes. Interestingly, Eq. (10) is precisely
the same sequence which the so-called
hexagonality measure H generates (see
chapter 2 in [2]). The known sequence for H
(in %) is of the form
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Fig. 2. Plots of curvature indexes vs. condi-
tional length parameter n for large-scale
nano-SiC in various polytypes: 8C (1), 2H (2),
4H (3), 6H (4), and 8H (5).

H[3C] =0, H[8H] = 25, H[6H]= 33.3,
H[4H] = 50, H[2H] = 100. (11)

Some physical properties, in particular,
energy gap Aeg, is ordered as in Egs. (10)
and (11). The experimental A¢ values in the
bulk SiC are as follows [26]:

Ag[8C] = 2.39, Ag[6H]=3.05, (12)
Ae[4H] = 3.26, Ag[2H] = 38.33.

For many other semiconductors which
allow the polytypism we find the similar
picture (see Table 5 in the review article
[27] where theoretical values of A¢ are pre-
sented). However, it is known the systems
with an opposite correlation Ae vs.
hexagonality [28]. There are several rather
sophisticated models [26, 29] (not absolutely
convincing) which try to elucidate a non-
trivial behavior of Ae in polytypic semicon-
ductors. The problem is too intricate to be
solved easily, and probably, many different
aspects must be taken into account in it.

Seemingly, the electron-topological indi-
ces given here may through an additional
light on this problem. For instance, the
computed Kirchhoff indexes tell us about a
resistance distance (in average). So we can
presumably expect from Fig. 1 that 3C-SiC
polytype must be, in a sense, less resistant
to electron flow than hexagonal carborun-
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dum polytypes. Analogous is the assumption
that the smaller the curvature index, the
greater is an electron mobility in the net-
work (movements on more simple straight lines),
all other things being equal. Thus, a essentially
smaller value of the electron curvature in the
cubic SiC is falling in line with smaller value of
energy gap just in this polytype.

6. Characterization of small
nanoclusters

Small nanoclusters are interesting perse,
and here we study how small nanocclusters
of the different polytypes behave in regard
to the main topological and electronic charac-
teristics. In this case we will invoke an addi-
tional quantity, topological energy (graph en-
ergy) Etop’ which is frequently used for de-
scribing molecular graphs [30]. To calculate
E;,, we need simply to sum up the A;,, eigen-
values (taken in their module); in fact this is
a counterpart of the Huckel mn-electron en-
ergy (for more detail see Appendix B).

The results obtained for nanoclusters
with 274 and 275 atoms are given in
Table 1. For convenience, in the Table all
clusters are given in the same order as in
corresponding hexagonality sequence (11).
In the first column of Table 1 we displayed
the structural images which show an evi-
dent layer-like structure of the considered
systems. We see that purely topological in-
dexes Ry;, and E;,, cannot provide a clear
discrimination between small nanoclusters.
At the same time, electron-kinematic in-
dexes, K and especially K91, present the
picture which is consistent with the
hexagonality percentage H.

7. Conclusions

We focused in this paper on quantifica-
tion schemes which aimed at a certain elec-
tron-topology approach to discriminate SiC
polytype structures. In reality, the atomic
spatial structure of various polytypes is
very similar in small-scale vicinity — main
differences begin only in the third and more
order of neighborhood. So, it is not a simple
matter to design an universal, computation-
ally not complicated, and sufficiently sensi-
tive tool to distinguish clusters of different
polytypes. In the present paper we made use
of two types of description: the conven-
tional topological (graph-theoretic) approach
and the electron-kinematic index approach
(from [10, 11]). We expected that for the
most commonly studied polytypes the
graph-theoretic Kirchhoff index Rg;. would
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Table 1. Kirchhoff Ry, , topological energy
Etop, and curvature indexes K and K[Z] for
small nano-SiC of various polytypes. In struc-
tural images the green color is applied for C
atoms, and the brown color is for Si atoms.

Cluster R Er K Ka
S(i?lsé?m 0.613 | 1.623 | 0.347 | 2.443
Sgéﬁ?m 0.609 | 1.635 | 0.473 | 3.405
Sgéﬁ?m 0.615| 1.625 | 0.493 | 3.587
ngﬂ?m 0.607 | 1.635 | 0.593 | 4.154
52123;?139 0.609 | 1.640 | 0.743 | 5.126

be an appropriate complexity measure. How-
ever, our computations show that by Rg;,,
only the cubic SiC polytype can be clearly
distinguished among other ones. The topologi-
cal index E, , is also not expressive, so fine
distinctions between the hexagonal nanoclus-
ters are beyond the possibilities of the topologi-
cal approach itself. Concurrently, using our
electron-curvature indexes proved to be a quite
satisfactory way of reaching a consistent de-
scription which is in close line with the inter-
pretation based on the hexagonality percentage.
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Appendix A: Building of atomic
structure of ideal nano-SiC

Here we describe the computational
scheme by which we built SiC nanoclusters
with an ideal geometry. By the ideal-geome-
try cluster we understand the one having the
same atomic structure as the corresponding
crystal fragment has. Thus, for constructing
cluster structures, the known -crystal-
lographic SiC data (see, e.g.,
https://homepage.univie.ac.at/michael.leitne
r/lattice/struk/b4.html) should be invoked.

First we consider the lattice of cubic
3C-SiC polytype which is similar to the
well-known sphalerite lattice. The crystal
basis of the 3C-SiC primitive cell is com-
posed of two kinds of atoms, Si and C. The
corresponding crystal basis vectors Rgj and
R are conventionally given in terms of the
primitive translation vectors a, b and ec.
The latter can be chosen in the following
Cartesian representation:

_a _a _a (A1)
a= 2(0’1’1), b - 2(1’091), c= 2(1,1,0)7

where the cubic lattice constant is a = 4.3602 A
for the 3C-SiC polytype. Accordingly,
RSI = 0, RC = (a + b + C)/4- (AZ)

The entire bulk crystal is formed by a set

of all allowed translations. In the case of
3C-SiC polytype it can be cast into the form

(A0

rgi = RSI +ia + ]b + ke, (A3)

r%’j'k) = R; +ia + jb + ke,

(A4)
where rg(/#) and rg(/#) denote the neigh-
boring nodes determined by integers i, j,
and k.

In the specific computations we made a
finite-size crystal region which was created
by using a restricted set of i, j, k integers,
in Egs. (A3) and (A4), as follows:

—n<ijk<n, (A5)

with n being a certain integer. This n is in
fact a parameter of geometrical size of the
constructed system, and in the main text it
is named the length parameter of large-scale
nanoclusters generated by Eqgs. (A4)—(A5).
Because we have two atoms in the primi-
tive cell of 3C-SiC we thereby produce, by
Eq. (A5), N = 2(2n+1)3 of nodes. Generally,
we have arbitrary number, n_,;, of atoms in
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the primitive cell, and the total number of
nodes is thus

N =n,,,(2n + 1)3. (A6)

cel

When building our nano-SiC we use in
practice n < 6. The clusters thus obtained
will be named the initial nanoclusters. The
above relations were programmed within
MATHEMATICA 5.2 environment [25].

Next, we must separate out from the
large-scale initial nanocluster a small sym-
metric nanocluster. It is also simply per-
formed by imposing a condition on the
maximal size of the required cluster (by set-
ting a cut-off radius). The example of the
obtained small clusters for 3C-SiC is given
in Table 1 of the main text. Incidentally, we
remark that in the 3C-SiC ideal nanoclus-
ters which we construct, all Si-C bonds
have the same length ||Si— C|=aV3/4
(1.888 A if a = 4.3602 A).

Now we provide the similar procedure for
hexagonal polytypes. In this case, the primi-
tive translation vectors are of the form

a=51,-3,0, b=51.3,0, &7

c=1¢(0,0,1),

with lattice constant a = 3.076 A, and ¢ =
V83a [31]. Furthermore, now n,, > 2, and
we need a more general notation for all
atoms of the crystal basis. Let us denote by
Rgi[v] the position vector of the vth Si atom
in the primitive cell. Then

Rg[vl=A,a+ Bpb + Cyc, (A8)

where

(4,B,C,) =V (A9)

are coordinates of the v-th Si atom in the
primitive translation basis. For instance, in
the case of 2H-SIC polytype, 1 = (%, %, 0), so
Rgj[1] = (a + 2b)/3. The full information con-
cerning v-vectors can be founded in [31, 32];
these v-vectors are suitably reproduced in
Table 2. For the even-order 2pH-SIiC
polytypes (p =1, 2, 3, and 4), counterparts
of Egs. (A3) and (A4) are of the form

(irj,k)

rsi = Rglv] + ia + jb + pke, 1 < v < 2p, (Al10)

(1:,F) (1,7,F)

re [V] = rg; (All)

[v] + gc.
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Table 2. Crystallographic atom-position vectors
v for hexagonal polytypes 2pH-SiC (p = 1+4).

\Y% 2H 4H 6H 8SH

1] Gio | @0 | 000 | 000
RN E R S e
:
:
:
:
:

For the ideal-geometry hexagonal
polytypes, the presented relations guarantee
the same length ISi — C|| = V38a =
1.88866 A) for all Si—-C bonds.

Appendix B: Improving
computations by using bipartite
symmetry of nano-SiC

We describe now a more efficient algo-
rithm which was specifically elaborated here
for computing main curvature indexes of
large-scale SiC structures. The key idea of
the improvement is using bipartite symmetry
of systems in question. As well known, the
bipartite lattice consists of two kind of
sublattices in such a way that any atom of
one sublattice can be a nearest neighbor only
with atoms of the second sublattice and vice
versa. The plane nanographenes which we
studied recently in [33, 34] are of this sym-
metry type. From the cited references we will
take notations and other things which are
well known due to classical works of Coul-
son, Hall and others. Evidently, the carborun-
dum networks are just of this symmetry type.

We consider a standard block-matrix rep-
resentation of topological matrix (1) for the
bipartite graph corresponding to the given
nano-SiC:

0 B (B1)
h :Atop = ( Bt 0]'

Here, block B is a bond matrix, that is
B;;=1, if i and jare nearest-neighbor sites,
otiqerwise B;; = 0. Simultaneously, the coor-
dinate matrices r = (X,Y,Z) from Eq. (9) are
block diagonal, e.g.,
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Px =B.X%X, -X,.B;
py =B.Y,-Y,.B;
Pz =B.Z,-Z,.B;

T T T T
FXx, =B.p, +px-B; FX, = —(B.px +px.B) ;

T T T T
Fy,=B.py+py-B; Fy, = —(B-py +py-B) ;

T

T T
Fz,=B.p,+pz.B; Fz, = —(B.pz +132-B) ;

ty =B.Fx,-Fx,.B;
ty =B.Fy,-Fy,.B’
t,=B.Fz,-Fz,.B;

Fig. 3. Computational scheme for intermedi-
ate matrices.

Myy = (Px-FYo + FY, -Px —Py-FXo -FX,.py )/2;
myy = (Pz-FXo + FX,.pz - Px-F2o -Fz,.px )/2;

My, = (Py-FzZo + FZ,.py - Pz .-FY, -FY,.Pz)/2;

T T T
k=my, .My, + Myy .My + Myy .My ;

T T T

k = Myy -Myy + Mzy Mzy + My .My
{u3} = Spectrum [k]/
{fi;} = Spectrum [k],

Ny
K=Z (Mg + Hiy) /N;
j:l
Fig. 4. Computational scheme for curvature
index K.

X, 0 (B2)
kR
where diagonal matrices of atomic x-coordi-
nates, X, and Xo., are relating to the first
sublattice and the second sublattice, respec-
tively. The block-diagonal structure (B2)
holds as well for the force matrices F,, F,
and F, from Eq. (8). In accordance to Egs.
(8), (B1), and (B2), momentum matrices P,,
P,, and P, reproduce the block structure of

Eq. (B1):
_( 0 ps (B3)
Fe= (p} 0 ]

In Figs. 3—5 we listed the full set of the
needed relations which are given in the for-
mat of MATHEMATICA 5.2. In these fig-

ures the Greek letter T above matrix symbol
signifies a transposed matrix. Moreover, ad-

Functional materials, 24, 3, 2017
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Nuy = (FY,-tx + 2 FYo - FXu .ty -ty . FXo) /
Nzy = (Fx, .t +t, . Fxo-Fz, .ty -t .Fz,) ;
ny; = (Fz,.ty +ty .Fz, -Fy,.t; -t;.Fy,);

T T T
K[2] = Dygy-Ngy + Nzy .Ngy + Nyy .Nyz;
~ T T T
K[2] = Dyy -Nygy + Nzx .Nzy + Dyz .Nyz;

{v5} = Spectrum [k[21]/

{V5;} = Spectrum []2[2] 1,
Ny

K[Z] = Z (Vj+ {'/7) /N,'
j=1

Fig. 5. Computational scheme for curvature
index K[2].

ditional symbol N. is used for number of
atoms in the first sublattice; in so doing,
N. < N/2 is implied.

For completeness, we present also the
compact expression for topological energy
Eiop (for the definition see [30]). The work-
ing expression follows from Eq. (B1):

E;op = T4, |/ N = 2Tr(BBH/2/N,
or
" (B4)
Eyop = (2/N)Y (112,
j=1

where A; are the usual eigenvalue spectrum
of BB*. The analogous relation for alter-
nant (bipartite) hydrocarbons within the
Huckel theory was long ago obtained by
Hall [35].
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