
Fizika Nizkikh Temperatur, 2002, v. 28, No. 7, p. 768–773

Specific heat study of magnetic excitations in

a one-dimensional S =1 Heisenberg magnet

with strong planar anisotropy

A. Feher, M. Orendáè, A. Orendáèová, and E. Èiz¡már

Department of Experimental Physics, Faculty of Science, P.J.Šafárik University,
Park Angelinum 9, 04154 Košice, Slovakia

E-mail: feher@kosice.upjs.sk

Received February 14, 2002

The results of experimental studies of the specific heat of the magnetic chain compounds
Ni(C2H8N2)2Ni(CN)4, Ni(C11H10N2O)2Ni(CN)4, and Ni(C10H8N2)2Ni(CN)4·H2O are re-
ported. All compounds are identified as S = 1 planar Heisenberg magnetic chains with large
planar anisotropy and different values of the in-plane anisotropy constant. The low-tempera-
ture specific heat data are interpreted assuming the existence of noninteracting excitons and
antiexcitons as elementary excitations from the singlet-ground state. The extended
strong-coupling model is used for analysis of the data at higher temperatures. The applicabi-
lity of the models used with respect to the value of the in-plane anisotropy is discussed.

PACS: 75.40.Cx, 71.20.Be, 75.50.Ee

1. Introduction

The physics of one-dimensional (1d) Heisenberg
magnetic systems has been of interest during the
last three decades, but particularly significant
progress in both experiment and theory has been
made during last several years. The failure of the
description of the thermodynamic properties of 1d
magnetic systems in the framework of the
spin-wave model demonstrated the importance of
spin fluctuations and nonlinear effects in these sys-
tems [1]. For example, solitary excitations were
used for the explanation of spin fluctuations in the
systems possessing a Haldane gap [2], whereas
out-of-easy-plane fluctuations from the singlet
ground state, i.e. (anti)excitons, have been pre-
dicted theoretically in systems with strong planar
anisotropy [3,4].

In this paper we report low-temperature specific
heat results of the three magnetic chain compounds
Ni(C2H8N2)2Ni(CN)4, Ni(C11H10N2O)2Ni(CN)4,
and Ni(C10H8N2)2Ni(CN)4·H2O (hereafter abbre-
viated as NENC, NDPK, and NBYC, respectively).
Our specific heat data measurements together with
complementary data of susceptibility, magnetiza-
tion, and ESR measurements, which were pub-
lished elsewhere [5–7], have confirmed that NENC,

NDPK, and NBYC can be considered as a quantum
S = 1 magnetic chain with planar anisotropy and
nonzero in-plane anisotropy. Specific-heat data
were analyzed within the framework of the ex-
tended strong-coupling theory with in-plane aniso-
tropy incorporated [8]. We focus our attention on
the validity of this model with changing value of
the in-plane anisotropy constant. Moreover, the
specific heat of NENC and partially NDPK below
600 mK can be interpreted assuming the presence of
noninteracting (anti)excitons predicted in [3,4].

2. Strong-coupling theory for S=1 planar
magnetic chain

The behavior of 1d S = 1 Heisenberg–Ising
model characterized by the Hamiltonian
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where n is the site index; Sn are spin operators at
the nth site; J is the intrachain exchange interac-
tion: � is the exchange interaction anisotropy con-
stant, and D characterizes the single-ion aniso-
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tropy. This Hamiltonian was studied numerically in
dependence on the magnitude and sign of the pa-
rameters � and D [9]. The D vs. � phase diagram
for the ground state of the Hamiltonian (1) has
been constructed [10]. It is evident from Fig. 1 that
the relatively simple Hamiltonian (1) possesses a
variety of physically different ground state phases
with quantum phase transitions between them.

The spectrum of the Hamiltonian (1) depends
strongly on the value of the dimensionless parame-
ter � = D/	J
. Here we are interested in a so-cal-
led large-D phase, for which D J/ �� 1 (grey area
in the phase diagram on Fig. 1). For the large-D
phase the exchange Hamiltonian in (1) may be
treated as a perturbation [3,4]. Consequently, for
the strong-coupling approximation the Hamilto-
nian (1) can be transformed to the form
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In the limit � � � (J = 0), the ground state of
the Hamiltonian (2), H = H0, is given by the pro-
duct of states with vanishing azimuthal spin
0 0 0 0� , ,..., (Sn

z= 0 for n sites). The ground state
is nonmagnetic and disordered even at zero tempe-
rature. The first excited states with one nonzero
azimuthal spin (Sn

z � �1) for any n are denoted as

n and n , these are so-called exciton (e) and
antiexciton (e), respectively. Both n and n are
eigenstates of the unperturbed Hamiltonian H0 for
any n.

Higher excited states can be obtained by assig-
ning the value S n

z � �1 to two or more sites with
corresponding energies 2D, 3D,... Generally, ex-
cited states fall into the bands of energies iD corre-
sponding to i sites with nonvanishing azimuthal
spins of both signs. These bands are highly degene-
rate in the limit � � �.

A finite and sufficiently small J value may be
considered as a perturbation which will transform
the energy levels to bands of a finite width. The
low-lying bands do not overlap for a sufficiently
large D/J ratio.The elementary excitations from
the singlet-ground state carrying total spin momen-
tum �1 have been named excitons and antiexcitons,
respectively. Perturbation theory to the third order
[3] was used to derive a dispersion relation for a
doubly degenerate (anti)excitonic mode, yielding:

� �� � � � � � � � � �k k� � � � �D 1 1 2
2
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where �1 = – 2 cos (k), �2 = 1 + 2 sin2 (k), �3 =
= 1/2 [1 + 8 sin2 (k)] cos(k) – 2� sin2 (k); k de-
notes the wave vector. In addition, the energies of
two-site excitations fall into a two-body continuum.
Near the Brillouin zone boundary, some bound states
emerge smoothly from the continuum.

This exciton dispersion was used for the
calculation of the specific heat at very low tempera-
tures, within a dilute-exciton approximation
(DEA). Since (anti)excitons obey Bose statistics,
their specific heat contribution will be of the form
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The analysis of NENC specific heat using DEA
[5] showed that the theoretical approach [3,4] re-
quires further extension in three ways. First, to
provide calculations of the specific heat that are
valid beyond the low-temperature region. Second,
to furnish a corresponding calculation of the mag-
netic susceptibility. Third, to include the effect of
small in-plane anisotropy. All three problems have
been addressed by Papanicolaou and Spathis in [8].
They carried out a systematic strong-coupling ex-
pansion to obtain analytical approximations for the
spectrum of elementary excitations, the specific
heat, and the magnetic susceptibility. A comparison
of these results for a uniaxial (� = E/D = 0, where
E characterises the in-plane anisotropy) ferromag-
netic chain with an intermediate easy-plane aniso-
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Fig. 1. (�, D) phase diagram for the ground state of
Hamiltonian (1) for S=1. D and � are in the units of J
[10].



tropy (� = 5) and numerical data calculated by
Blöte [9] led to the following conclusions: the ex-
panded strong-coupling approximation (ESCA)
takes over decisively for temperatures larger than
T ~ 0.15D/kB, where the DEA, in which effects
from mutual interaction of excitons are neglected,
begins to deteriorate. The value of the anisotropy
restricts the applicability of the ESCA. For rela-
tively low values of the easy-plane anisotropy in
the region � �� cr< 2.5, the predictions of the ESCA
begin to deteriorate gradually, and the disagree-
ment between the theory and Blöte’s numerical
data increases. This deterioration becomes apparent
by the formation of a kinklike anomaly on the
low-temperature side of the specific heat. Therefore
the results may be applied for |�|cr � 2.5 (for � = 0)
but with caution at the lower end of this inequal-
ity. The in-plane anisotropy (0 < � < 1) causes a
depression of the specific heat around the maximum
and its enhancement at low temperatures. The lat-
ter is partly explained by the softening of one of
the exciton modes at nonvanishing �. For reason-
ably large values of � �� the theory requires a stron-
ger condition for the value of the in-plane aniso-
tropy (� << 1 ).

3. Experimental details

3.1. Crystal structure

NENC crystallizes in the monoclinic space group
P21/n, a = 7.104(3) Å, b = 10.671(3) Å, c =
= 9.940(2) Å, � = 114.68(2)°, and Z = 2 [11].
The structure is built of neutral chains running
along the c axis. The repeating unit is
–[Ni(en)2–NC–Ni(CN2)–CN]–, where en = C2H8N2 ,
and two distinct nickel(II) sites are present. In the
[Ni(CN)4]

2– anion, the nickel is in a square planar
configuration, being bonded to four cyano groups
through C atîms. This nickel(II) ion is diamag-
netic. In the [Ni(en)2]

2+ cation, the nickel is in a
distorted octahedral configuration, where four N
atoms of two en molecules are in the basal plane
( Ni–Nen
d = 2.107 Å), while two N atoms from the

cyano group are in apical positions (dNi–Nen
=

= 2.089 Å). This nickel(II) ion is paramagnetic.
For these paramagnetic ions, the intrachain Ni–Ni
distance is 9.94 Å, whereas the shortest interchain
Ni–Ni distance is 7.104 Å (along the a axis). The
chain is therefore made of paramagnetic S = 1 octa-
hedral nickel(II) ions linked by diamagnetic square
planar NC–Ni(CN)2–CN units. The chains are well
insulated from each other with no chemical bond-
ing between them. Consequently, NENC presents

all the structural features required for a good
quasi-1d system.

NBYC crystallizes in the orthorhombic space
group Pbcn with cell parameters a = 14.067(1) Å,
b = 10.1759(7) Å, and c = 15.755(1) Å. The struc-
ture consists of infinite zigzag chains containing
two kinds of nickel(II) ions. The nickel(II) ion in
the [Ni(CN)4]

2– anion is square planar coordinated
and thus diamagnetic. The nickel(II) ion in the
[Ni(C10H8N2)2]

2+ cation is paramagnetic and is lo-
cated at the center of the distorted octahedron.
Since the distance between the magnetic nickel(II)
ions is about 10 Å, the direct exchange interaction
will be of minor importance. Although the separa-
tion between the chains is comparable to the dis-
tances between the paramagnetic ions within the
chain, more complicated interchain superexchange
paths are expected to allow the formation of well-
isolated magnetic linear chains in this compound. A
detailed structure has been published in [12].

The detailed crystal structure of NDPK has not
been determinated yet, but from infrared spectrum
of the compound we can deduce the main struc-
tural features. Similarly as for NENC and NBYC,
two kinds of nickel(II) ions are considered in the
structure. More specifically, the nickel(II) ion sur-
rounded by four CN groups is diamagnetic and the
nickel(II) ion placed at the center of a distorted ni-
trogen octahedron is paramagnetic.

3.2. Specific heat

The specific heat measurements of powdered
samples were performed in two experimental de-
vices. For 50 mK < T < 2.5 K, the dual-slope
method was applied, using an Oxford Instruments
dilution refrigerator. A RuO2 thermometer (Dale
RC 550 with nominal room-temperature value of
1 k�) was calibrated against a commercial Lake
Shore thermometer (model GR 200A-30), which
served as the main thermometer. A silver wire
(50 µm in diameter and 7 cm long) was used as a
thermal link between the cold thermal reservoir
and the platform containing the sample, the RuO2
thermometer, and a manganin heater. The resis-
tance of the thermometer was measured by an ac
(72 Hz ) resistance bridge. The experimental data
were corrected for the contribution of the ther-
mometer, the manganin heater, and the varnish
(GE 7031) used to anchor the powdered
coin-shaped sample to the measuring platform. This
additional contribution was measured in a separate
run and was found to be maximum 10% of the total
heat capacity.
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At higher temperatures, 2 K < T < 10 K, stan-
dard adiabatic calorimetry was used in a 4He
cryostat equipped with a mechanical heat switch. A
220 � and 1 k� nominal value Allen Bradley ther-
mometer was calibrated against the Lake Shore
thermometer (GR-200A-1000CD) and served as the
main thermometer in this arrangement. The weights
of the samples used for the heat capacity measure-
ments were: NENC — 800 mg, NBYC — 345 mg
and 1050 mg, and NDPK — 97 mg. The overall ac-
curacy of the dual-slope data is better than 5%,
while a 3% accuracy was achieved with the
quasi-adiabatic technique.

4. Results and discussion

4.1. NENC

Heat-capacity measurements were performed in
the temperature region from 50 mK to 10 K. Since
NENC is a magnetic insulator, only lattice and
magnetic contributions to the total specific heat are
assumed for the present discussion. The lattice con-
tribution was subtracted by finding the tempera-
ture region where the data may be satisfactorily de-
scribed by the equation

C T T aTT ( ) 3 2� � �� , (5)

where �T3 represents the low-temperature lattice
contribution in the 3d Debye approximation, while
the �T–2 contribution describes the high-tempera-
ture behavior of the magnetic heat capacity. For
temperature region 5 K < T < 9 K, a least-squares
fit yielded � = (69 � 3.5) J � K/mol and � =
= (3.55 � 0.15)�10–3 J/(K4� mol). The magnetic
specific heat CM is characterised by a round peak
with a maximum value of Cmax =
= (5.85 � 0.05) J/K � mol at Tmax = (2.4 � 0.1) K
(Fig. 2). The magnetic entropy was calculated nu-
merically in the measured temperature region, and
standard approximations were used for high and
low temperatures to cover the whole temperature
interval. The calculation yielded 8.68 J/K � mol,
which is close to the theoretical value
R ln (2S+1) = 9.13 J/K � mol for an S = 1 system.
This broad maximum, together with the absence of
a �-type anomaly at least down to 50 mK, indicates
the presence of short-range correlations in the stud-
ied system. In the first approximation, if in-plane
anisotropy is neglected (E = 0), our system can be
described by Hamiltonian (1). The specific heat of
a system represented by this Hamiltonian for � = 1
was calculated numerically by Blöte [9]. The best
agreement between the numerical predictions and

the experimental data was obtained for D/kB= 6 K
and D/	J
= 10–20. The resultant D/	J
 ratio in-
dicates that NENC can be considered a quantum
S = 1 system with strong planar anisotropy.

The sudden drop of CM, observed below 1 K,
suggests the existence of a gap in the energy spec-
trum of the spin system, and this effect is most
likely associated with magnetic anisotropy. The
comparison of the low-temperature specific-heat
data with the theoretical prediction for DEA
(taking into account a small in-plane anisotropy),
using D/kB = 6.15 K, J/kB = – 0.65 K and
E/kB = 0.7 K is shown in the inset in Fig. 2.
Clearly, the trend from T < 0.8 K is not followed
at higher temperatures, since the DEA begins to
fail due to exciton interactions. The temperature
at which the excitonic interactions are significant
in NENC (T � 1 K) coincides with the value
0.15D/kB = 0.9 K estimated for a system with
D/	J
= 5 in the theoretical work [8]. The experi-
mental specific-heat data above 1 K can be well de-
scribed by the ESCA using the same set of parame-
ters D, J, and E (see Fig. 2). We can conclude
that the magnetic specific-heat of NENC can be as-
cribed to the presence of low-lying elementary exci-
tations, i.e., excitons predicted for large-D systems
in the framework of the strong-coupling theory.

4.2. NDPK

The experimental study of the specific heat of
NDPK has been carried out with the aim of investi-
gating a system located possibly close to the phase
boundary between the Haldane phase and large-D
phase (Fig. 1) and to check the validity of the
strong-coupling model for this system. Since the
group C11H8N2O is characterised by a different
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type of delocalization of charge density than
C2H8N2 in NENC, we have tried to change the sur-
roundings of the paramagnetic nickel(II) ion with
the expectation of obtaining a system with different
anisotropy in comparison with NENC.

The specific heat of NDPK was measured in the
temperature range from 100 mK to 2.5 K. A com-
parison of our results on the magnetic part of the
specific heat with the numerical prediction of Blöte
[9] gives D/kB = 8.7 K and D/	J
=5 (Fig. 3).
This result suggests that although the value of
D/	J
 for NDPK is two times smaller than that for
NENC, the system is still located in the large-D
phase rather than near the phase boundary. The
specific heat data were analyzed using ESCA [8]
with the aim of studying the influence of in-plane
anisotropy E as a potential source of the discre-
pancy between our results and Blöte’s numerical
predictions. Above temperature 1.2 K we found
good quantitative agreement with the experimental
data for D/kB = 5 K, 	J
/kB = 0.94 K and
E/kB = 2.8 K. Note that the value of E (� = 0.56)
indicates a large in-plane anisotropy in comparison
with NENC. As was already mentioned in Sec. 2,
the validity of the ESCA (for E = 0) is limited to

�
cr > 2.5 and T > 0.15D/kB . The appearance of
the kinklike anomaly of the artificial origin on the
ascending side of the theoretical curve suggests a
significant increase of 
�
cr for large in-plane aniso-
tropy.

Experimental data on the specific heat below
0.15D/kB were analysed in the framework of the
DEA using the same set of values D, 
J
, and E. It
follows from the inset in Fig. 3 that the validity of
the DEA is also restricted in the presence of large
in-plane anisotropy in NDPK.

4.3. NBYC

In addition we have tried to modify the mag-
netic anisotropy by replacing the group C11H8N2O
by C10H8N2 with the aim of testing our conclusions
on the validity of strong-coupling model on a sys-
tem with strong   in-plane anisotropy.

We have studied the heat capacity of NBYC in
the temperature range from 100 mK to 6 K. The re-
sults of experimental studies of the magnetic part
of the specific heat of NBYC are presented in
Fig. 4. The broad maximum, together with the ab-
sence of a �-type anomaly down to 100 mK, indi-
cates a high degree of short-range order in this sys-
tem. The magnetic specific heat was compared with
numerical predictions of Blöte [9], where only D
and J were involved.

The best agreement between the numerical pre-
dictions and the experimental data was obtained
when D/kB=1.45 K and D/
J
=1. More detailed
analysis of CM was carried out using the theoretical
predictions with D, J, and E taken into account in
the ESCA [8]. In the temperature region
T > 0.38 K, the specific heat data can be satisfacto-
rily described using the values D/kB = 2.55 K ,

J
/kB=0.2 K, and E/kB= 1.5 K. As in the case
NDPK, the ESCA fails to describe the specific heat
data below T = 0.15D/kB as can be seen in Fig. 4.
Moreover, we have tried to apply the DEA to de-
scribe the temperature behavior of the magnetic
specific heat below the temperature 0.15D/kB . As
is evident from Fig. 4 (see the inset), the DEA
fails to describe the specific heat data in the tem-
perature range 100 mK < T < 380 mK. This result
confirms that the validity of the DEA is restricted
to low in-plane anisotropy.
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5. Conclusions

Our specific heat studies have confirmed that
NENC, NDPK, and NBYC can be considered as a
quantum S = 1 Heisenberg chain with strong planar
anisotropy and nonzero in-plane anisotropy.

Magnetic specific heat data were analyzed
within the framework of the strong-coupling theory
[8] for both noninteracting excitons
(T < 0.15D/kB) and expanded strong-coupling ap-
proximation (T > 0.15D/kB). The values of the
exchange and magnetic anisotropy constants as
well as their mutual ratios for the systems studied
are summarized in the Table. We found that the re-
gion of the validity of ESCA for 
�
cr > 2.5 is in
agreement with the predictions of Papanicolaou
and Spathis, i.e., for E = 0 it is valid for tempera-
tures larger than 0.15D/kB and below this temper-
ature a kinklike anomaly of artificial origin occurs
on the ascending side of the specific heat curve for
a system with strong in-plane anisotropy. The va-
lidity of the DEA is drastically suppressed with in-
creasing value of in-plane anisotropy. We have ob-
served very good agreement between predictions of
DEA and specific-heat data only for NENC, which
is characterized by a low E/D ratio. In addition,
on the basis of the results obtained we propose that
in-plane anisotropy should be considered in any at-
tempt to find a compound located close to the
boundary between the Haldane and large-D phases.
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Table

Values of the exchange constant and magnetic anisotropy constants

Compound D/k
B

, K 
J
/k
B
, K E/k

B
,K �=D/
J
 E/
J
 � =E/D

Model

(temperature range)

DEA (mK) ESCA (K)

NENC 6.15 0.65 0.7 9.5 1.0 0.16 50–900 0.9–6

NDPK 5 0.96 2.8 5.2 2.9 0.56 100–600 1.2–3

NBYC 2.55 0.2 1.5 12.7 7.5 0.59 — 0.38–6


