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The dc-biased annular array of three-junction asymmetric superconducting quantum interference devices 
(SQUIDs) is investigated. The existence of embedded solitons (solitons that exist despite the resonance with the 
linear waves) is demonstrated both in the unbiased Hamiltonian limit and in the dc-biased and damped case on 
the current-voltage characteristics (CVCs) of the array. The existence diagram on the parameter plane is con-
structed. The signatures of the embedded solitons manifest themselves as inaccessible voltage intervals on the 
CVCs. The upper boundary of these intervals is proportional to the embedded soliton velocity. 

PACS: 05.45.Yv Solitons; 
63.20.Ry Anharmonic lattice modes; 
05.45.–a Nonlinear dynamics and chaos; 
03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vor-
tices, and topological excitations. 
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1. Introduction

Nonlinear wave phenomena are ubiquitous in the Jo-
sephson junctions (JJs) [1,2]. It is a well established fact 
that such excitations as breathers [3] and topological 
solitons [4] can occur in systems that are based on the Jo-
sephson effect. This article will be focused on topological 
solitons or, as they are known in physics of JJs, fluxons. 
The origin of the term comes from the fact that a topologi-
cal soliton in the spatially extended Josephson system (ei-
ther a long Josephson junction or an array of small Joseph-
son junctions) carries the magnetic flux quantum, 

0 = ( / ).e±Φ ± π  Due to their remarkable structural and 
dynamical stability, fluxons are widely discussed as qubits 
[5] or as elements in the read-out process from qubits [6]. 
Relativistic time dilation in the array of three-junction 
SQUIDs has been studied in Ref. 7. 

In JJ arrays the soliton (fluxon) mobility is generally 
obstructed due to the discreteness of the media [8,9]. As a 
result, a fluxon couples with the small-amplitude wave. If 
the inductive coupling between the junctions is small, the 
free fluxon motion becomes impossible. However, the pos-
sibility of radiationless propagation of solitary waves in 
discrete media for selected values of velocity has been re-
ported in the number of papers [10–20]. Also, free propa-
gation of the bound states of several discrete topological 

solitons has been reported by Peyrard and Kruskal more 
than 30 years ago [8]. This unexpected soliton mobility is a 
part of the wider nonlinear phenomenon, known as embed-
ded solitons. Embedded solitons are spatially localized 
solitary waves that exist for isolated parameter values (this 
parameter can be the soliton velocity) despite the apparent 
resonance with the linear waves of the system [21]. Apart 
from the discrete media, they also exist in various continu-
ous systems like the sine-Gordon [22] and the double sine-
Gordon equations [23]. 

The array of three-junction SQUIDs, introduced in [7] 
is governed by the discrete double sine-Gordon equation. 
In this article we demonstrate the existence of embedded 
solitons in this equation, study their properties in detail and 
show how they manifest themselves in the current-voltage 
characteristics of the array. 

2. Main results

In this Section we present the model and report the 
main results. 

2.1. Model and equations of motion 

We investigate the array of JJs, arranged in such a way 
that the arms with one and two junctions alternate. The part 
of this array is shown schematically in Fig. 1.  
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Thus, the elementary cell of such an array is an asymmetric 
SQUID with two junctions in its left arm and one junction in 
its right arm. The elementary cell of the array is obviously 
asymmetric, but the whole array is not. The dynamics of 
each junction is described by the Josephson phases, ( , ) ( )l r

n tϕ . 
They are the phase difference between the phases of the 
wave-functions of the superconductors on the different sides 
of the junction. The superscripts l  and r  stand for the left 
and right arms of the SQUID, respectively. The array is 
studied under the resistively and capacitively shunted junc-
tion-model (RCSJ-model) [1]. Based on this model and with 
the help of the Kirchhoff laws and the Josephson equations 
the equations of motion of such an array have been derived 
in Ref. 7. Under the assumption of the small loop size and 
the single phase difference ( ) ( )= =l r

n n nϕ ϕ ϕ  the final dimen-
sionless equations of motion read  

 1 1( 2 )n n n n+ −ϕ − κ ϕ − ϕ + ϕ +   

2 sin sin = ,
1 2 2

n
n n

ϕ + η ϕ + +αϕ γ + η  
  

   = 1,2, ,  .n N  (1) 

This is the discrete double sine-Gordon equation (DDbSG). 
The current model, according to [24], takes into account 
only the self-inductance, while the mutual inductances of 
the SQUIDs are neglected. The dimensionless parameters 
are defined as follows  
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Here = 2 /( )J ceI Cω   is the Josephson plasma frequency 
and the dimensionless time in Eq. (1) is normalized in the 
units of 1

J
−ω , α is the dissipation parameter, 0Φ  is the 

magnetic flux quantum, JL  is the elementary cell induct-

ance and γ  is the dimensionless external bias current, nor-
malized to cI . Next, ,r lR , ,r lC  and ( , )r l

cI  are, respectively, 
the resistance, capacitance and critical current of the right 
or the left junction (marked by the sub(super)script «r» or 
«l»). The parameter η measures the asymmetry of the 
SQUID and is the ratio of the critical currents of the right 
and left junctions of the SQUID. The discreteness param-
eter κ  is responsible for the inductive coupling between 
the cells. 

The circular array is to be considered, thus, the boundary 
conditions read = 4n n N Q+ϕ ϕ + π , where Q  is the total topo-
logical charge, i.e., the total number of fluxons and anti-
fluxons trapped in the ring. In this article we restrict ourselves 
only to the case of one fluxon in the array, hence = 1Q . 

2.2. Soliton mobility in the hamiltonian limit 

It is instructive to consider the DDbSG equation in the 
Hamiltonian (dissipationless) limit = 0α  and in the ab-
sence of the dc bias = 0γ . In this case Eq. (1) takes the 
following form:  

 1 1( 2 ) = ( ),n n n n nV+ − ′ϕ − κ ϕ − ϕ + ϕ − ϕ  (3) 

 2( ) = (1 cos ) 2 1 cos  .
1 2 2

V  ϕ  ϕ η − ϕ + −  + η   
 (4) 

The periodic on-site potential ( ) = ( 4 )V Vϕ ϕ+ π  has one 
minimum within the interval [0, 4 ]ϕ∈ π  if 0 < 1/2≤ η . The 
height of the potential barrier that separates two minima at 

= 0ϕ  and = 4ϕ π is maximal if = 0η  and decreases if η is 
increased. An additional local minimum appears at = 2ϕ π 
if > 1/2η . It remains local for any 1/2 <≤ η ∞, i.e., 

(2 ) > (0) = 0V Vπ . 
The continuum version of Eq. (3) can be achieved when 

κ →∞. The continuous double sine-Gordon equation has a 
large number of applications [25], including the long Jo-
sephson junctions with the second harmonic in the current-
phase relation [26]. 

In this subsection we focus on the existence of the trav-
elling-wave topological solitons that propagate with the 
constant shape and velocity. They must satisfy the follow-
ing condition: ( ) = ( ) ( )n t n t zϕ ϕ − ≡ ϕv . Thus, for these 
solutions Eq. (3) can be rewritten as  

[ ]2 ( ) ( 1) ( 1) 2 ( ) [ ( )] = 0 .z z z z V z′′ ′ϕ − κ ϕ + + ϕ − − ϕ + ϕv  (5) 

This is a differential-difference ODE with the delay and 
advance terms. Analytical solution of such equations is not 
possible. In some special cases it is possible to find its iso-
lated travelling-wave solutions [10,11]. Therefore we em-
ploy the numerical technique, developed in Refs. 27–29. 
The solution is assumed to be periodic with rather large pe-
riod L  that exceeds significantly all characteristic sizes of 
the system and is sought in the form of the Fourier series  

Fig. 1. (Color online) Schematic view of the SQUID array. Gray 
colour stands for the superconducting electrodes and the insulat-
ing barriers are marked by red. Details of the full equivalent 
scheme can be found in Ref. 7. 
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 0
=0

2( ) ( ) sin  ,
k

n
n

nzu z u z c
L
π +  

 
∑  (6) 

where the initial approximation 0 ( )u z  is used in order to 
enhance the initial guess and to enforce the appropriate 
boundary conditions. It should be noted that the elementary 
topological soliton in the DDbSG equation connects the 
ground states = 0ϕ  and = 4ϕ π. Coefficients nc  are to be 
determined. The integer part of L  will effectively play the 
role of the chain length in the original system (1). After 
substituting the ansatz (6) into Eq. (5) and breaking the 
interval [0, /2]z L∈  into k  collocation points we obtain k  
nonlinear algebraic equations for the coefficients =1{ }k

n nc . 
These equations can be solved with the Newton–Raphson 
method or any other appropriate scheme. 

Currently it is a well-established fact [10–14,18–20] that 
for the discrete Klein–Gordon equations of the type (3), the 
continuous family of moving solitons turns into the discrete 
finite set of monotonic | | const)(lim nn→∞ϕ →  travelling kink 
solutions with the velocities 0 1 2= { 0, , , }k≡ v v v v v . 
Further on, all velocities that satisfy 0n ≠v  will be called 
sliding velocities since the kink slides along the lattice with 
these velocities without any radiation. In the DSG equation 
there are only non-mobile ( 0 = 0v ) monotonic solitons and 
there is no sliding velocities for solitons with topological 
charges = 1Q ± . There exist embedded solitons for higher 
topological charges, = 2, 3,Q ± ± , which are, in fact, 
bound states of several solitons or «soliton complexes» 
[8,23] that appear due to destructive interference between 
the elementary solitons. In general, everywhere away from 
the sliding velocities, i.e., if n≠v v , the moving kinks are 
non-monotonic, have oscillating asymptotic tails and are 
often referred to as nanopterons. 

Appearance of nanopterons is natural and its origin is 
the resonance that happens due to the fact [8,30] that any 
soliton which moves in the lattice governed by Eq. (3) with 
velocity | | < 1v  will always excite a small-amplitude wave 
that moves with the same phase velocity. In other words, 
the equation  

 2= ( ) = 1 4 sin ,
2L
qq qω + κv  (7) 

where ( )L qω  is the spectrum of the small-amplitude waves 
of Eq. (3), always has at least one real root if | |< 1v . 

These solutions can be called discrete embedded 
solitons, similarly to their continuous counterparts [21,22] 
because they exist despite the resonance with the small-
amplitude waves and are «embedded» in the continuous 
family of nanopterons. The spatial monotonicity of these 
solutions, their localized nature, and, as a result their finite 
energy also contribute to their importance. 

Our numerical investigation of the DDbSG equation has 
shown that embedded solitons can exist there as well. In 
Fig. 2 we plot the dependence of the nanopteron amplitude 
tail as a function of the velocity. We have fixed the cou-

pling constant to = 0.4κ  and varied the asymmetry param-
eter η. One can observe that a slight change of η from 

= 0.26η  (red curve) to = 0.27η  (blue curve) can bring a 
significant change, namely a selected value of velocity for 
which 0A →  in an extremely sharp fashion (note the loga-
rithmic scale). 

This is the sliding velocity mentioned above. The solu-
tion that corresponds to this velocity is spatially localized 
embedded soliton with the monotonic asymptotical behavior 
(see inset of Fig. 2). Away from this velocity we find 
nanopterons or bound states of solitons and plane waves. 
An example of a nanopteron is also plotted in the inset of 
Fig. 2. For the sake of clarity only a small segment of ve-
locities was considered on this figure. No other sliding 
velocities have been found outside of this segment. 

From Fig. 2 one can notice that the dependences ( )A v  
have sharp maxima. In fact, they are not maxima but sin-
gularities that appear because the numerical scheme is not 
able to find a solution with the appropriate wavelength. 
This is a consequence of the boundary conditions and these 
singularities depend on the length L . For the velocity that 
lies between the two adjacent singularities the nanopteron 
solution has a certain fixed number of small-amplitude 
wavelength that fit into the interval [ /2, /2]L L− . The 
wavelength equals 2 /qπ  where the wavenumber q is the 
root of Eq. (7). In the case of several roots there exist sev-
eral nanopteron solutions with different wavelengths. As 
one changes v , passes the singularity and enters the next 
interval the number of fitted wavelengths changes. 

If one of the pair of parameters, κ  or η is fixed and an-
other one is varied, the critical parameter value of the vari-
able parameter can be found, below which there is no slid-
ing velocities. This is demonstrated in Fig. 3(a), where the 

Fig. 2. (Color online) Dependence of the tail amplitude A  on the 
moving soliton velocity for = 30L , = 0.4κ , = 0.26η  (curve 1, 
red), = 0.27η  (curve 2, blue) and = 0.28η  (curve 3, black). The 
inset shows the soliton profile for = 0.192302v  (red) and 

= 0.1992v  (black). Respective position of these solutions on the 
( )A s  curve are marked by (). 
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dependence of the sliding velocity 1v  is plotted as a function 
of the asymmetry parameter η for the different values of κ . 
Interestingly, the embedded solitons can exist for the strong-
ly discrete arrays. The existence diagram on the plane ( , )κ η , 
presented in Fig. 3(b), generalizes the above result.  

It is possible to draw a line on this plane that separates 
the area without sliding velocities (and, consequently, with 
no embedded solitons) from the area where one sliding 
velocity exists. For the DDbSG equation we were able to 
find only one sliding velocity. In some models there can be 
more of them [12,13]. 

2.3. Current-voltage characteristics 

Now we focus on the more realistic situation when the 
array is dissipative ( > 0α ) and dc-biased ( 0γ ≠ ). The cur-
rent-voltage characteristics (CVCs) provide the necessary 
information about the JJ array dynamics and can be meas-
ured experimentally. We have varied the bias and comput-
ed the average voltage drop  

 
=1 0

1 1= ( )  .lim
tN

n
tn

V t dt
N t→∞

′ ′ϕ∑ ∫   (8) 

If there is a fluxon in the array that moves with the constant 
velocity v, the average voltage drop will be = 4 /V Nπv . 

The numerically obtained CVCs are given in Fig. 4. 
The coupling constant and the array size were fixed to 

= 0.5κ  and = 30N , respectively, while we have changed 
the asymmetry parameter η and the damping constant α. It 
appears that there exists a significant difference between 
the CVCs if the system supports embedded soliton and 
when it does not. The numerically computed CVCs are 
shown by the different markers while the solid line corre-
sponds to the CVC that was obtained from the continuum 
approximation [36]:  

 

1/22
24 4 4= = 1 ( )  ,cV

N N

−

∞
 π  π α κ κ +Φ η  πγ   

v  (9) 

 1 2( ) = 1  arctanh  .
1 22 (2 1)

η
Φ η +

+ ηη η+
  

This formula is very similar to the well-known McLaugh-
lin–Scott result for the fluxon motion in the ordinary long 
JJ [4]. It is reduced to the McLaughlin–Scott formula in the 
both limits: 0η→  and η→∞. The continuum version is 
plotted here mainly as a reference point, but appears to 
work surprisingly well even in this strongly discrete case. 

First of all we focus on the principal differences between 
fluxon mobility in discrete and continuous media. The 
fluxon velocity in the continuous JJ is defined uniquely by 
the ratio /γ α  and, as one can see in the CVCs in Fig. 4, the 
respective characteristics are continuous functions that pass 
through the origin. There are two main differences in the dis-
crete case: (i) the CVC does not pass through the origin; 
(ii) one continuous branch is replaced by the set of roughly 
parallel branches. The first difference is the natural conse-
quence of the discreteness, because some finite bias is always 
needed to overcome the lattice pinning. The second difference 
is caused by the boundary conditions and by the fluxon cou-
pling with the linear modes [30–34]. While moving along the 
array, the fluxon excites the linear modes and forms a bound 
state that propagates with the same velocity. The wavelength 
of the linear mode is given by Eq. (7). Because of the periodic 
boundary conditions the phase locking in the array would 
occur if the finite number of the Josephson phase oscillations 
fits into one cycle of the fluxon journey along the array. The 
phase locking means that the system settles on the periodic 
attractor that corresponds to the fluxon restoring its shape 
and position completely after circumventing the array. In 
other words, a certain number of the linear modes wave-
length should be fitted in the array and the different branches 
of the CVC in Fig. 4 correspond to the different number of 
these wavelengths.  

Fig. 3. (Color online) (a) The value of the sliding velocity 1v  as a 
function of the asymmetry parameter η  for different values of 
the coupling constant: = 1κ  (curve 1), = 0.5κ  (curve 2) and 

= 0.25κ  (curve 3). (b) The existence diagram on the parameter 
plane ( , )κ η . One sliding velocity exists in the green area while 
there is no sliding velocities in the white area. All results were 
obtained for = 30L .  
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Now we discuss the signatures of the embedded 
solitons on the CVCs. In Fig. 4(a) the case of = 0.1η  is 
considered, and, according to the previous subsection, 
there is no embedded solitons in the hamiltonian limit for 
this value of the asymmetry parameter. On contrary, for 

= 0.6η  (Fig. 4(b)) and for = 1.5η  (Fig. 4(c)) there exist one 
embedded soliton with the sliding velocity 1 = 0.399493v  
and 1 = 0.469944v , respectively. For details see Fig. 3. In 
the first case the CVC branches are distributed almost uni-
formly. In the second and third cases one can easily spot 
the significant gap IVI IVIV V V− +≤ ≤  which will be called 
inaccessible voltage interval (IVI). This IVI appears more 
pronounced as η increases or when α is decreased. More-
over, if α is decreased significantly, its lower boundary, 
equals zero. The upper boundary, IVIV +  tends to the value 

14 /Nπv , which is the voltage drop produced by the em-
bedded soliton (marked by the red vertical line). We have 
reduced α and computed the detuning 1= | 4 / | .IVIv N V +ν π −  
For the lowest value of dissipation which we have used in 
our numerical analysis, = 0.005α , the detuning value 
reached 310 .−ν   

 

From these data one can make the following conclu-
sion. If in the hamiltonian limit the JJ array supports the 
embedded soliton that moves with velocity v, in the weak-
ly driven and weakly dissipative array this will be the dom-
inant attractor of the system. Thus, the average voltage drop 
in this limit is defined by the sliding velocity and is far from 
zero. If the system does not support embedded solitons, its 
behavior in the limit 0α → , 0γ →  is different: the CVC 
ends up close to the origin, as shown in Fig. 4(a). However, 
it does not pass the origin due to discreteness. 

The small-wave radiation intensity  

 
2

/2( ) = ( )e  ,i t
NI t dt

+∞
− Ω

−∞

Ω ϕ∫   (10) 

that appears during the fluxon motion around the array is 
shown in Fig. 5. Here the fast Fourier transform (FFT) is 
taken for the /2N th junction of the array. The time interval 

0 fin[ , ]t t  for FFT was chosen in such a way that the fluxon 
motion did not contribute to the power spectrum. We have 
focused on the array parameters that correspond to Fig. 4(c) 
and for the dissipation value = 0.02α . Three points on the 
CVC branch that ends at 0.2IVIV +

  were chosen for the 
power spectrum analysis. Since the fluxon velocity is close 
to the sliding velocity 1 = 0.469944v , the time for the 
fluxon to travel around the array is 1/ 60N v . Therefore, 
we have taken fin 0 = 50t t− .  

We take the CVC branch that is adjacent to the upper 
bond of the IVI. If the bias is decreased we move down the 
branch, and the amount of the radiated energy decreases 
significantly (note the log scale). The peak of the emitted 
waves lies within the linear band (7). 

Fig. 4. (Colour online) Current-voltage curves for = 0.5κ , = 30N , 
= 0.05α  (black ), = 0.02α  (red ), = 0.01α  (blue ) and 
= 0.1η  (a), = 0.6η  (b) and = 1.5η  (c). The blue solid lines corre-

spond to the respective CVC in the continuum limit. The red verti-
cal lines in (b), (c) are given by 14 /Nπv , where 1v  is the sliding 
velocity for the respective value of η. The inset in the panel (c) 
shows the details of CVCs in the neighbourhood of the sliding 
velocity for = 0.02α  (), = 0.01α  () and = 0.005α  (). 

Fig. 5. (Сolor online) Radiation intensity of the plane waves in the 
JJ array with the parameters that correspond to Fig. 4(c) and with 

= 0.02α . The respective values of the dc bias and voltage are: 
= 0.05γ , 0.205V   (curve 1, black), = 0.044γ , 0.201V   

(curve 2, blue) and = 0.0423γ , 0.199V   (curve 3, red). 
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3. Conclusions 

In this paper we have demonstrated that the array of 
asymmetric three-junction SQUIDs, which is described 
by the discrete double sine-Gordon equation, supports 
embedded solitons. This equation is also used to describe 
the parallel array of the superconductor–ferromagnet–super-
conductor (SFS) or superconductor–ferromagnet–insulator–
superconductor (SFIS) junctions, that are governed by the 
biharmonic current-phase relation 

 ,1 ,2( ) = sin sin 2 .c c cI I Iϕ ϕ+ ϕ   

Embedded solitons are spatially localized excitations 
that exist despite the resonance with the small-amplitude 
waves of the underlying system. They exist for the isolated 
set of velocities. The important parameter of the model is 
the ratio η of the critical currents of the left and right arms 
of the SQUID, which we call the asymmetry parameter. 
These embedded solitons manifest themselves on the cur-
rent-voltage characteristics of the JJ array as inaccessible 
voltage intervals (IVI), i.e., the forbiden values of voltage. 
The upper bound of such an IVI tends to 4 /Nπv  as 0α → , 
where v is the embedded soliton velocity in the hamiltoni-
an limit. The lower bound of the IVI tends to zero if the 
asymmetry parameter is large enough and dissipation is 
small enough. 

This phenomenon should not be confused with the series 
of results on the models with the non-zero Peiers–Nabarro 
barrier [16,39,40]. For the discrete embedded solitons the 
Peierls–Nabarro barrier is non-zero [12,13], however, this 
does not prevent the free soliton propagation. 

The symmetric SQUID array or, equivalently, the array 
of parallel shunted small Josephson junctions [35] is de-
scribed by the DSG equation. It has been demonstrated 
both theoretically [8,12,14,35] and experimentally [37] that 
the radiationless motion of the coupled state of several 
solitons is possible for the selected set of their velocities. 
This phenomenon has been treated analytically in the qua-
si-continuum approximation in Refs. 22, 23, but it takes 
place even in the sufficiently discrete array ( < 1κ ) as well. 
In the limit η→∞ the double SG equation becomes the 
ordinary SG equation with the period 2π, thus, the above-
mentioned result of the bound state of two 2π solitons is 
the special case of the kink mobility of the DDbSG equa-
tion in the limit η→∞. 

Acknowledgements 

The authors acknowledge the financial support from the 
National Academy of Sciences of Ukraine (NAS of 
Ukraine) under the Project No. 0112U000053 and from the 
Project 1/30-2015 “Dynamics and topological structures in 
Bose–Einstein condensates of ultracold gases” of the Kyiv 
National University Branch Target Training Program at the 
NAS of Ukraine. 

1. A. Barone and G. Paterno, Physics and Applications of the 
Josephson Effect, Wiley, New York (1982). 

2. A.V. Ustinov, Physica D 123, 315 (1998). 
3. E. Trías, J.J. Mazo, and T.P. Orlando, Phys. Rev. Lett. 84, 

741 (2000); P. Binder, D. Abraimov, A. V. Ustinov, S. Flach 
and Y. Zolotaryuk, Phys. Rev. Lett. 84, 745 (2000). 

4. D.W. McLaughlin and A.C. Scott, Phys. Rev. A 18, 1652 
(1978). 

5. D.V. Averin, K. Rabenstein, and V.K. Semenov, Phys. Rev. 
B 73, 094504 (2006). 

6. A. Fedorov, A. Shnirman, G. Schon, and A. Kidiyarova-
Shevchenko, Phys. Rev. B 75, 224504 (2007). 

7. M. Nishida, T. Kanayama, T. Nakajo, T. Fujii, and N. 
Hatakenaka, Physica C 470, 832 (2010). 

8. M. Peyrard and M.D. Kruskal, Physica D 14, 88 (1984). 
9. O.M. Braun and Y.S. Kivshar, Phys. Rep. 306, 2 (1998). 

10. S. Flach, Y. Zolotaryuk, and K. Kladko, Phys. Rev. E 59, 
6105 (1999). 

11. V.H. Schmidt, Phys. Rev. B 20, 4397 (1979). 
12. A.V. Savin, Y. Zolotaryuk, and J.C. Eilbeck, Physica D 138, 

265 (2000). 
13. V.M. Karpan, Y. Zolotaryuk, P.L. Christiansen, and A.V. 

Zolotaryuk, Phys. Rev. E 66, 066603 (2002). 
14. A. Aigner, A. Champneys, and V. Rothos, Physica D 186, 

148 (2003). 
15. Y. Zolotaryuk, J.C. Eilbeck, and A.V. Savin, Physica D 108, 

81 (1997). 
16. I.V. Barashenkov, O.F. Oxtoby, and D.E. Pelinovsky, Phys. 

Rev. E 72, 035602(R) (2005). 
17. B.A. Malomed, J. Fujioka, A. Espinosa-Cerón, R.F. 

Rodríguez, and S. González, Chaos 16, 013112 (2006). 
18. O. Oxtoby, D.E. Pelinovsky, and I.V. Barashenkov, 

Nonlinearity 19, 217 (2006). 
19. S.V. Dmitriev, A. Khare, P.G. Kevrekidis, A. Saxena, and L. 

Hadzievski, Phys. Rev. E 77, 056603 (2008). 
20. G.L. Alfimov, E.V. Medvedeva, and D.E. Pelinovsky, Phys. 

Rev. Lett. 112, 054103 (2014). 
21. A. Champneys, B. Malomed, J. Yang, and D. Kaup, Physica 

D 152–153, 340 (2001). 
22. A. Champneys and Y.S. Kivshar, Phys. Rev. E 61, 2551 

(2000). 
23. M.M. Bogdan, A. Kosevich, and G.A. Maugin, Wave Motion 

34, 1 (2001). 
24. R.D. Bock, J.R. Phillips, H.S.J. van der Zant, and T.P. 

Orlando, Phys. Rev. B 49, 10009 (1994). 
25. C.A. Condat, R.A. Guyer, and M.D. Miller, Phys. Rev. B 27, 

474 (1983); D.K. Campbell, M. Peyrard, and P. Sodano, 
Physica D 19, 165 (1986). 

26. E. Goldobin, D. Koelle, R. Kleiner, and A. Buzdin, Phys. 
Rev. B 76, 224523 (2007). 

27. D. Hochstrasser, F. Mertens, and H. Büttner, Physica D: 
Nonlinear Phenomena 35, 259 (1989). 

28. J.C. Eilbeck and R. Flesch, Phys. Lett. A 149, 200 (1990). 
29. D. Duncan, J. Eilbeck, H. Feddersen, and J. Wattis, Physica 

D 68, 1 (1993). 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2017, v. 43, No. 6 833 



Ivan О. Starodub and Yaroslav Zolotaryuk 

30. A.V. Ustinov, M. Cirillo, and B.A. Malomed, Phys. Rev. B 
47, 8357 (1993). 

31. S. Watanabe, H.S.J. van der Zant, S.H. Strogatz, and T.P. 
Orlando, Physica D 97, 429 (1996). 

32. O.M. Braun, B. Hu, and A. Zeltser, Phys. Rev. E 62, 4235 
(2000). 

33. A.V. Ustinov, M. Cirillo, and B.A. Malomed, Phys. Lett. A 
183, 383 (1993). 

34. A.V. Ustinov, M. Cirillo, Britt H. Larsen, V.A. Oboznov, 
P. Carelli, and G. Rotoli Phys. Rev. B 51, 3081 (1995). 

35. A.V. Ustinov, B.A. Malomed, and S. Sakai, Phys. Rev. B 57, 
11 691 (1998). 

36. Y. Zolotaryuk and I.O. Starodub, Phys. Rev. E 91, 013202 
(2015). 

37. J. Pfeiffer, M. Schuster, A.A. Abdumalikov, and A.V. 
Ustinov, Phys. Rev. Lett. 96, 034103(4) (2006). 

38. A.A. Golubov, M.Y. Kupriyanov, and E. Ilichev, Rev. Mod. 
Phys. 76, 411 (2004). 

39. M. Speight and Y. Zolotaryuk, Nonlinearity 19, 1365 (2006). 
40. S.V. Dmitriev, P.G. Kevrekidis, N. Yoshikawa, and D.J. 

Frantzeskakis, Phys. Rev. E 74, 056609 (2006).
 

834 Low Temperature Physics/Fizika Nizkikh Temperatur, 2017, v. 43, No. 6 


	1. Introduction
	2. Main results
	2.1. Model and equations of motion
	2.2. Soliton mobility in the hamiltonian limit
	2.3. Current-voltage characteristics

	3. Conclusions
	Acknowledgements

