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Observation of dynamic maximum in a turbulent cascade 
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We report on the experimental observation of energy accumulation near the high frequency boundary of the 
inertial range in the spectrum of turbulence in a system of capillary waves on the surface of liquid hydrogen 
driven by a harmonic force. The effect is manifested as a local maximum in the spectrum of pair correlation 
function of the surface elevation. This phenomenon is dynamical and can be seen only during reconfiguration of 
the turbulent cascade caused by waves generation of below the driving frequency. 

PACS: 47.27.Gs Isotropic turbulence; homogeneous turbulence. 
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1. Introduction

A wide set of nonlinear wave systems can be described 
in the frame of the theory of weak wave turbulence [1]. 
Among them are capillary and gravity waves on the sur-
face of water, Rossby waves in the atmosphere and oceans 
of planets, Langmuir waves in plasma, and spin waves in 
magnetics. A relatively low viscosity of liquid hydrogen 
and the possibility to excite waves on the charged surface 
of cryogenic liquids by electrical force offer a unique op-
portunity for experimental studies of wave turbulence. The 
use of liquid hydrogen for experiments on wave turbulence 
has already allowed us to study phenomena predicted by 
the theory, e.g., Kolmogorov–Zakharov steady state spec-
tra of capillary turbulence in a wide range of frequencies, 
as well to observe new ones which have been explained 
successfully in the framework of the weak turbulence ap-
proximation: quasi-adiabatic decay of capillary turbulence 
and suppression of high-frequency turbulent oscillations by 
additional low-frequency driving force [2].  

The dispersion of waves on the surface of liquid is giv-
en by: 

2 3( ) ( / )k gk kω = + σ ρ , (1) 

where ω and k are the frequency and the wave vector of a 
surface wave, correspondingly, σ and ρ are the surface 
tension and the density of liquid, and g is the free-fall ac-
celeration. The first term in (1) prevails in the long wave 

region and describes gravity waves, the second one corre-
sponds to capillary waves (ripples). 

The main processes of the nonlinear interaction for ca-
pillary waves are three-wave processes of decay and merg-
ing that satisfy the conservation laws of frequency and 
wave vector: 

1 2 3 1 2 3,  ω = ω + ω = +k k k . (2) 

Due to discreteness of the eigenmodes of the surface 
oscillation of liquid in a finite basin these relations cannot 
be always satisfied, e.g. for capillary waves in a square 
basin three-wave processes are prohibited: the set of equa-
tions has no mathematical solution [3]. In real systems 
these resonant conditions are softened due to the viscous 
and nonlinear broadening of the resonances. 

Neglecting viscous and nonlinear effects a radially 
symmetric surface wave in a cylindrical basin is described 
by the Bessel function. The boundary conditions on the 
resonator wall define the eigenvalues of wavenumber k: 
J1(kD/2) = 0, where D is the resonator diameter, J1(x) is 
the Bessel function of the first order. Using the asymptotic 
form of the Bessel function for large k we can find that the 
resonance wavenumbers are approximately equidistant 
with spacing ∆k ∼ 2π/D. 

The pair correlation function of the surface deviation from 
an equilibrium state in the Fourier representation Iω  in the 
inertial range is described by the power function of frequency 

~ .I −β
ω ω  For the case of broadband high-frequency excita-

tion of the surface with spectrum (1) the value of the index β  
equals 17/6 [1], and narrowband excitation β equals 23/6 [4]. 
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A nonlinear wave interaction leads to energy redistribu-
tion from a low frequency domain, where the energy is 
injected by an external force, to higher frequencies, where 
the energy is dissipated due to viscous losses. The position 
of high-frequency boundary of the inertial range bω  can be 
found assuming that a nonlinear energy flux is comparable 
with the amount of energy leaving the cascade because of 
viscous damping. In the case of continuous spectrum [5]: 

 ( )6/52 17/6
0 0 / ,bω ∼ η ω ν   

where 0η  is the wave amplitude at the pumping frequency 
0.ω  The estimation shows that the high-frequency bounda-

ry ωb for liquid hydrogen at 15 K and water at normal con-
ditions are related as 5:1 under the same condition of exci-
tation. From this point of view liquid hydrogen is a 
preferable fluid to study the capillary turbulence. 

Turbulent distribution may deviate from the power de-
pendence. One of the possible reasons for the deviation can 
be associated with a discrete spectrum of surface excita-
tions instead of continuous spectrum (1) [6], which leads to 
the energy accumulation on several resonance modes near 
the edge of the inertial interval [7]. 

The frequency distance between the nearest resonant 
modes for capillary waves in a cylindrical basin at high 
frequencies is given by: 

 ( ) ( )1/3 1/33 / /D∆Ω = π ⋅ σ ρ ω . (3) 

Strictly speaking, in the ideal system of capillary waves the 
laws of energy and momentum conservation cannot be 
satisfied simultaneously. This restriction is removed taking 
into account the broadening of the resonance peaks due to 
viscous losses and non-linear interaction of waves. At high 
frequencies the broadening due to viscosity becomes com-
parable with the distance between the resonance modes 
∆Ω at the frequency 

 (3 /4 )( / ).c Dω ∼ π σ νρ   

For example, in our experiments D = 60 mm, the value 
/2cω π  for liquid hydrogen at the temperature of 15 K, and 

for water under normal conditions equals 4 kHz, and 
3 kHz, respectively.  

Another reason for deviation of the turbulent distribu-
tion Iω  from the power function may be connected with an 
insufficiently effective absorption of energy within the 
dissipation domain due to viscosity. This leads to an in-
crease of the harmonic amplitudes (accumulation of ener-
gy) near the high-frequency edge of the inertial interval to 
keep an energy flux propagated on turbulent cascade con-
stant [8].  

In the experiments presented here we were able to ob-
serve the accumulation of energy near the high-frequency 
edge of the inertial interval in the time-dependent (dynam-
ic) conditions.  

2. Experimental technique 

The experimental method of wave registration on the 
surface of a cryogenic liquid was described in [9]. The 
investigations were carried out at the liquid hydrogen tem-
perature T = 15 K. Hydrogen gas was condensed into cop-
per cup of the inner diameter 60 mm and 4 mm deep. The 
cup and a copper plate which was fixed 4 mm above the 
cup form a flat capacitor. The liquid was ionized with a 
source of charges placed on the bottom of the cup. The 
liquid surface is charged with positive ions extracted from 
the bulk of liquid. dc voltage of about 1 kV is applied be-
tween the capacitor plates. 

A low-frequency ac voltage applied in addition to the 
dc voltage excites waves on the charged liquid surface. 
Waves are detected by means of a laser beam reflected 
from the liquid surface and then focused into a 
photodetector. Variation of the angle between the laser 
beam and the oscillating surface leads to the modulation of 
the reflected light power. The ac signal from the 
photodetector is amplified and digitized by a 24-bit analog-
to-digital converter with a sampling frequency of 
102.4 kHz. The digitized signal ( )P t  is proportional to the 
variation of power of the reflected laser beam. As we 
showed earlier [9] the power spectrum 2Pω  is proportional 
to the spectrum of the pair correlation function of the sur-
face elevation 2 .ω< η >   

3. Results 

Oscillations on the surface of liquid hydrogen were ex-
cited at the frequency of the fifteenth resonance in the ex-
perimental cylindrical cell, 0    ω =  58.6 Hz. Figure 1 exhibits 
the power spectrum 2Pω , obtained by processing ( )P t  rec-
orded in a time window of ∆t = 0.3 s. duration in two se-
conds after switching on the driving force. A subharmonic 
at half frequency of the driving force can be seen apart 
from the main peak at the driving frequency and a turbu-
lent cascade, which extents to 10 kHz. At frequencies 

Fig. 1. Spectrum in two seconds after switching on the driving 
voltage at frequency of 58.6 Hz. Straight line corresponds to the 
power-law dependence 2.5.−ω  
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above 200 Hz the distribution 2Pω   displays the power-law 
dependence with the index β ≈ 2.5, which is close to the 
theoretical prediction for the case of broadband pumping. 
The time of the subharmonic appearance in the distribu-
tion 2Pω  depends on the driving force amplitude and var-
ies from a few seconds to several minutes after switching 
on the excitation. 

A peak at the frequency of 0 /2ω  on the turbulent cas-
cade after 5 seconds of evolution from the moment of 
switching on the pumping is clearly visible in Fig. 2. The 
wave amplitude at the frequency 0 /2ω  has not reached 
its maximum value yet, but it has already started affecting 
the turbulent distribution: peaks which are multiples of 
the half-harmonic frequency 0 /2ω  start to emerge in the 
frequency range from 100 to 1000 Hz. The height of the 
peaks in this frequency range can be described by the 
power function mω  with an exponent close to – 4.1. 
Above 1 kHz the height of the peaks in the spectrum 2Pω  
decreases more slowly, in the frequency range from 1  to 
10 kHz it is described well by the power function with an 
exponent of – 2.5. 

A local maximum on the distribution 2Pω  is clearly seen 
in the frequency domain from 10  to 20 kHz. Its amplitude 
is several times larger than the height of neighboring har-
monics. At frequencies above 14 kHz the turbulent cascade 
decays due to viscous losses. Note that during the evolu-
tion of the turbulent cascade the local maximum remains at 
the same position on the frequency scale. 

Figure 3 presents the distribution 2Pω  formed on the sur-
face in 30 seconds after switching on the excitation. Three 
peaks at frequencies 0 /2ω , ω0 and 0 0    /2,ω + ω  which dom-
inate in the low-frequency domain play the role of pump-
ing range, although the surface excitation by the electric 
force still goes on at a single frequency 0ω . The turbulent 
distribution over the frequency range from 100 Hz to 
20 kHz can be described by the power law function with an 
exponent close to – 2.8. It is seen that at high frequencies 
the local extremum disappears, and the inertial interval 

spreads to 20 kHz. The dissipative domain on the turbulent 
distribution is not seen.  

The time evolution of the peaks at the driving force fre-
quency ω0, at the frequency 0 /2ω  and at frequency 

0 0    /2ω + ω  is presented in Fig. 4. The wave amplitude at 
the pumping frequency decreases by three times within the 
first 9 seconds after switching on the excitation. However, 
after 15 seconds of evolution its amplitude exceeds initial 
magnitude almost by 1.5 times. 

The same time intervals can be distinguished for the 
subharmonic at 0 /2ω . While its amplitude increases in 
both intervals, it grows much faster during the second time 
interval. The wave at frequency 0 0    /2,ω + ω  appears simul-
taneously with the subharmonic and its amplitude gradual-
ly increases all 15 s from the beginning, and then remains 
almost constant. The vertical lines in Fig. 4 denote the time 
domain during which the local maximum on the turbulent 
distribution at high frequencies is observed. It can be em-
phasised that the local maximum exists during the first 
time interval when the harmonic amplitude at the driving 
frequency decreases, while the amplitude of the 
subharmonic increases. 

Fig. 2. Spectrum 2Pω  in five seconds after switching on the driv-
ing voltage. The solid lines corresponds to power-law functions 

4.1−ω  and 2.5.−ω  

Fig. 3. Spectrum 2Pω  in thirty seconds after switching on the 
excitation. The solid line corresponds to power-law function 

2.8.−ω  

Fig. 4. Time dependence of amplitudes of the first three harmon-
ics in the distribution of 2Pω : 0 /2ω  (curve 1), 0ω  (curve 2), 

0 0    /2,ω + ω  (curve 3), 0 /2ω π  = 58.6 Hz. Vertical lines mark the 
time interval when the local maximum on the turbulent cascade 
can be identified. 
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Figure 5 shows two cases of time dependence of the peak 
amplitude at frequencies 15 and 23 kHz after switching on 
pumping. The peak at 15 kHz is in the middle of the dissipa-
tion domain and the peak at the frequency of 23 kHz — be-
yond the dissipation area. It is seen that the peak amplitude 
at the frequency of 15 kHz after switching on the excita-
tion increases almost by three times for the first 5 seconds, 
then decreases and reaches a steady state level at the 10th 
second. The amplitude of the peak at the frequency of 23 kHz 
is practically independent of time, that is, the amplitude is 
not sensitive to switching on the excitation force. 

4. Discussion 

All spectra of capillary turbulence presented in this pa-
per were obtained under excitation of the surface oscilla-
tions by an external harmonic force. Although the spec-
trum of the eigenfrequencies of the surface oscillations in a 
finite basin is of discrete nature, it can be considered quasi-
continuous above several kilohertz due to viscous broaden-
ing of the eigenmodes. When the surface oscillation is ex-
cited by a monochromatic pumping, a turbulent cascade is 
formed which consists of a multiple harmonic of a pump-
ing frequency and extends for more than two decades. The 
appearance of the first subharmonic mode at half the driv-
ing frequency leads to a reconstruction of the cascade and 
is accompanied by the formation of a local maximum in 
the power spectrum near the high frequency boundary of 
the inertial range. However, the maximum manifests itself 
for a period of several seconds, and disappears completely 
before the turbulent cascade reaches its new steady state 
distribution. The time of local maximum existence coin-
cides with the time of the decrease of the main harmonic 
amplitude at the driving frequency and growth of the 
subharmonic and combination harmonics (Fig. 4).  

The observed phenomenon cannot be explained as re-
lated to the formation of a bottleneck preventing the energy 
transfer towards high frequencies due to the detuning ef-
fect in discrete systems as in the case of liquid helium ex-
periment [7], because the eigenmode spectrum of the sur-
face oscillations is quasi-continuous above 4 kHz. The 

influence of discreetness on the turbulent distribution in 
the system of waves on the liquid hydrogen surface was 
studied before in [10,11]. 

The formation of the local maximum on the turbulent 
cascade near the high frequency boundary may be attribut-
ed to the bottleneck effect caused by the viscous damping 
in a high frequency domain. As was shown in [8] the fi-
niteness of the dissipation scale leads to an increase of the 
wave amplitudes in the inertial range. The energy accumu-
lation near the high frequency edge of the inertial range is 
caused by a reduction of the energy flux due to low occu-
pation numbers (waves amplitudes) in the dissipation do-
main. Though the original bottleneck effect [9] was de-
scribed for steady state spectra of turbulence, the same 
rationale can be extended to our dynamic case. Note that 
the local maximum is observed during an intensive energy 
loss of the main harmonic (Fig. 5), the main harmonic re-
leases about 90% of its initial energy during the first 5 se-
conds. Under a permanent pumping by the external force 
this energy loss cannot be related to the viscous dissipa-
tion, but to the nonlinear energy transfer to the growing 
subharmonic and multiple harmonics. The viscous damp-
ing (Eq. 4) of waves within the inertial range is not suffi-
cient to dissipate the released energy, and the energy is 
transferred to higher frequencies by the nonlinear wave 
interaction towards the dissipation domain, where the 
mechanism of the bottleneck begins to act. The delay be-
tween the growth of the subharmonic at half of the driving 
frequency and the appearance of the local maximum at 
high frequencies enables the estimation of the velocity of 
local disturbance propagation over the turbulent cascade as 

/ ~  / ~ d dt tω ω 104 Hz/s.  

5. Conclusion 

We experimentally observed the accumulation of ener-
gy near the high frequency boundary of the inertial range 
on the spectrum of turbulence because of reduction of en-
ergy flux in dissipation domain — the bottleneck effect.  

Authors are grateful to G.V. Kolmakov and L.P. 
Mezhov-Deglin for useful discussions. This work was sup-
ported in part by the program project of the Presidium of 
the Russian Academy of Sciences «Modern problems of 
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