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The possibility of realization of a metallic ferromagnetic state in a generalized Hubbard
model with correlated hopping and exchange interaction integrals is investigated. The
single-electron energy spectrum recently obtained by means of the mean-field approximation
is applied for the description of ground-state and finite-temperature properties of the system.
An expression for the Curie temperature is found, and the behavior of the temperature
dependences of the magnetization and paramagnetic susceptibility is analyzed. Taking into
account the correlated hopping allows to explain certain peculiarities of the ferromagnetic
behavior of transition metals and their compounds.

PACS: 75.10.—b, 75.20.En, 75.30.Cr, 75.50.Bb, 75.50.Cc

1. Introduction

An important problem in the explanation of
ferromagnetism in a single band of electrons is that
of correctly taking into account the Coulomb corre-
lations between electrons. The Hubbard model
[1,2,3], which describes a single nondegenerate
electron band with local Coulomb interaction, is
oversimplified and requires generalization. It is
natural to generalize the Hubbard Hamiltonian by
taking into account other matrix elements of elec-
tron-electron interaction (in addition to the intra-
atomic Coulomb repulsion) and to consider the
ferromagnetism in the generalized Hubbard model
(for review on this problem see Refs. 4-6).

Note that the problem of metallic ferromagne-
tism in the single-band Hubbard model and its
generalizations has attracted much attention in a
series of papers employing the dynamical mean-field
theory [7,8], the Gutzwilier variational wave func-
tion approximation [9,10], the spectral density ap-
proximation [11,12], the exact diagonalization me-
thod [13], and mean-field theory [14—16]. In the
papers of Hirsch [14—-16] a generalization of
Stoner—Wolfarth theory [17,18] was carried out.
The Stoner—Wolfarth theory has been used for the
description of itinerant electron magnetism (note in
this connection that the calculations in this theory
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essentially depend on the shape and peculiarities of
the density of states; in particular, it is known that
the incomplete ferromagnetism in this model is
absent if the density of states is rectangular [18]).
This generalization [14—16] has shown that the
inter-atomic exchange interaction plays an impor-
tant role for obtaining a ferromagnetic state with
partial polarization. Using the mean-field theory,
Hirsch has obtained the condition of ferromagnetic
state realization, nonmonotonic behavior of the con-
centration dependence of the magnetization, an ex-
pression for the Curie temperature, and the tem-
perature dependences of the magnetization and
magnetic susceptibility. Using a local approxima-
tion developed from the Gutzviller wave function
method, the authors of Ref. 10 suggest also (in
agreement with [14]) the importance of the inter-
atomic exchange interaction for stabilization of the
ferromagnetic state with partial spin polarization.
In Ref. 19 the case of strong correlation was studied
and the criterion of ferromagnetism and magnetiza-
tion of the system in the ground state was derived;
in this paper the importance of inter-atomic ex-
change interaction is also emphasized.

At the same time, from our point of view it is in
principle necessary to consider (in addition to the
inter-atomic exchange interaction) the matrix ele-
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ments which describe the correlated hopping of
electrons [20] for the explanation of ferromagne-
tism in a single-band model. In this model an
electron hopping from one site to another is corre-
lated both by the occupation of the sites involved in
the hopping process and the occupation of the
nearest-neighbor sites. Taking into account the cor-
related hopping allows to obtain an additional
mechanism [21,22] for the stabilization of ferromag-
netic ordering.

The importance of correlated hopping for under-
standing of metallic ferromagnetism was discussed
in [13], where the results obtained by means of
exact diagonalization for small one-dimensional
chains were compared with mean-field theory re-
sults. It has been shown that in the strong-coupling
regime, correlated hopping favors ferromagnetism
stronger for electron concentration n > 1 than for
n < 1 (the reverse situation occurs for weak interac-
tions [13]); this result agrees with conclusions of
[23]. Using the Gutzviller approach the authors
of [9] have shown that the correlated hopping
strongly favors the ferromagnetic ordering close to
the point of half filling.

The magnetic properties of the system at nonzero
temperature were analyzed in a series of papers
[7,8, 11,12]. However, the important question con-
cerning the influence of correlated hopping on the
Curie temperature and on the behavior of the mag-
netization and magnetic susceptibility at nonzero
temperature has not yet been considered.

In this paper the theory of metallic ferromagne-
tism in a model which includes the intra-atomic
Coulomb interaction, the interatomic exchange in-
teraction of electrons, and the electron—electron
interaction due to electron hopping (correlated hop-
ping) is formulated. The application of the mean-
field approximation to this generalized Hubbard
model with correlated hopping leads to a correct
description of ferromagnetism for zero temperature
(in this case our results agree with the results
obtained by Hirsch in [14,15]) and also can elimi-
nate the problem of overestimation of the Curie
temperature (in consequence of taking into account
the correlated hopping). Besides, the mean-field
analysis of this model, in spite of its limitations,
allows one to reproduce the behavior of the mag-
netic moment and Curie temperature with changing
electron concentration and obtain the correct tem-
perature dependence of the magnetic moment of the
system. Note that the mean-field treatment of mod-
els which include only the band part of the Hamil-
tonian and intra-atomic Coulomb interaction (or
exchange interaction) predicts values for the Curie
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temperature which are larger than those observed in
transition metals by an order of magnitude.

The paper is organized as follows. In Sec. 2 the
Hamiltonian of the generalized Hubbard model
with correlated hopping and inter-atomic exchange
interaction is written, and the single-electron en-
ergy spectrum obtained by means of the Green
function technique is analyzed. In Sec. 3 the gro-
und-state properties of the system are considered,
the equation for the system critical parameters and
the expression for the magnetization are derived. In
Sec. 4 the finite-temperature properties of the sys-
tem are considered, and expression for the Curie
temperature and the temperature dependences of
the magnetization and magnetic susceptibility are
obtained. Sec. 5 is devoted to the conclusions.

2. The model Hamiltonian and single-electron
energy spectrum

Consider the Hamiltonian proposed in [24], ge-
neralized by taking into account a weak magnetic
field:
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where czz'o, a,; are the creation and annihilation
. n
operators of electron on site i, 0 = 1,1, n,; = @, 4,

is the operator of number of electrons with spin o
onsite i, n = [, +n; DUis the chemical potential,
t;(n) = t;;+nT (i) is the effective integral of an
el]ectron ﬁopping from site j to site i, ti]’ is the band
hopping integral of an electron from site j to site ¢,
T,(ij) and T,(ij) are the parameters of correlated
hopping of electrons, U is the intra-atomic Cou-
lomb repulsion, J is the exchange integral for the
nearest neighbors, and /% is the external magnetic
field (the units of % are such that the magnetic
moment per electron is unity). The prime on the
sums in Eq. (1) signifies that ¢ # j. The concentra-
tion dependence of the effective hopping integral
t;n) is caused by the correlated hopping [24] of
el]ectrons.

The peculiarities of the model described by
Hamiltonian (1) are the taking into account of the
influence of site occupation on hopping process
(correlated hopping) and the direct exchange inter-
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action between electrons on the neighboring sites.
To characterize the value of correlated hopping we
introduce dimensionless parameters T, = T (i) /t; ].|,
T, = T2(ij)/|ti]-| which are independent on the num-
ber of site.

Using the mean-field approximation in the Green
function method, we have recently obtained [22]
the single-electron energy spectrum. In an external
magnetic field it has the form

E (k) =+ B+ nsU = znJ = hn  + {(no)yk) ;
(2)
here the spin-dependent shift of the band centers is

_2 N
B, = N z T,(if)d; 5 a, 50, (6))
ij
z is the number of nearest neighbors to a site, for
the spin o=1(1) we have ng=1(-1), yk) =
= ZeikR (the sum goes over the nearest neighbors
R

to a site), and the spin- and concentration-depen-
dent hopping integral is

- 2 O, _
t(no) = % Stn - 2= S ALt agt, (4)
U a U
where w = z|f] is half of bandwidth, ¢ is the hopping
integral between nearest-neighbour sites, and

1 O ti]' + 0
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Energy spectrum (2) will be used in the next
Sections for the description of the model properties
in the ground state and at finite temperature.

3. The ground-state properties of the model

The concentration of electrons with spin O is

w

ng = J’ PE(E S(€))de , (6)

where p(g) is the density of states, and f(E(€)) is
the Fermi distribution function. Thus the occupa-
tion number and the magnetization are expressed,
respectively, as
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n=n +n, =J'p(e) [AE,(©) + fE,e)lde ;  (7)

w

m=n -n = I pE) [AE, () - fE,(€D1de . (8)

Let us assume the unperturbed rectangular den-
sity of states p(g) = ©(e? - w?)/2w. In the case of
zero temperature one can obtain for the correlation
function A; and the shift B of the center of the o
subband

Ay=n 1 -ny, 9)
By = 2wt A =2wtyn (1 - ny), (10)
where the concentration of electrons with spin @

€ tw
n =9 (1
Y 2w

here €; = /a, is the solution of the equation
Ey(e) =0, where p;=p-B;+zn,J —ngU + hng
and 05 =1-1n - 2t,n5 - 2J/w z Ay

mT

On basis of expressions (7)—(8) using (9)—(10),
one can obtain the equation for the system critical
parameters:

%[1+n(2—n)—m2]=

=1—nT1—T2(2—n)—%—%. (12)
Expression (12), which determines the stability
condition for ferromagnetism, agrees with the ex-
presion obtained from an analysis of the ground-
state energy [22]. The condition for onset of fero-
magnetic ordering is obtained (replacing the equals
sign by an inequality sign) when m =0, and the
condition for the ferromagnetic state with full spin
polarization is derived by putting m = n in expres-
sion (12). The peculiar distinction of our expression
from the similar condition obtained in [10,14—16]
for the various generalizations of the Hubbard mo-
del is the presence of correlated hopping, which can
substantially modify the properties of the model.
Taking into account correlated hopping leads to the
appearance of a peculiar kinetic mechanism of ferro-
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magnetic ordering stabilization. This mechanism is
caused by the presence of the spin-dependent shift
of the spin subband centers, which is a consequence
of correlated hopping (it is analogous to the shift of
subband centers in consequence of the interatomic
direct exchange interaction).

The spontaneous ground-state magnetization (in
the absence of magnetic field) of the system is
found from Eq. (12) as

1-U/ 2w -1 n-1,2 - n)d/?
zJ/ 2w g
(13)

which is valid in the case J > 0 (when J =0 only
the transition from the paramagnetic to the fully
polarized ferromagnetic state with m, = n occurs).
If the calculated magnetization my > n, then it is
necesarry to put m; = n.

The influence of correlated hopping on the prop-
erties of the system is illustrated in Figs. 1 and 2.
In Fig. 1 the dependence of the critical value of the
exchange integral at which the ferromagnetic order-
ing occurs is plotted (in the absence of magnetic
field) as a function of band filling for various values
of correlated hopping parameters T, , T, and intra-
atomic Coulomb interaction U /w. The solid curves
correspond to the onset of spin polarization and the
dashed curves to the fully polarized ferromagnetic
state (the area below the solid line is paramagnetic,
above the dashed line — fully polarized ferromag-
netic, between these lines — partially polarized
ferromagnetic). Similar phase diagrams have been
obtained in [14,16], but in those works the corre-

o
m0=gl+n(2—n)—
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Fig. 1. Critical values of zJ/w as a function of n at
fixed value of U/w. U/w=1, 1,=1,=0 (1); U/w =
=12, 1,20, ,=015 (2); U/w=13, 1, =0.15,
T, =0.1 (3.
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Fig. 2. Ground-state magnetization m, as a function of n
for U/w=12 and z2J/w=01. 1y=1,=0 (1); 1, =0,
T, =0.05(2); 1, =0.05, T, =0 (3); T, =1, = 0.05 (4).

lated hopping was not considered. Note that the
presence of correlated hopping (curves 2, 3 in
Fig. 1) leads to a substantial change of the phase
boundary of the paramagnet—ferromagnet transi-
tion; in particular, to a shift of the minimum point,
namely to the inequivalence of the cases n <1 and
n>1.

In Fig. 2 the dependence of the ground-state
magnetization m; on the electron concentration n
for fixed values of exchange and Coulomb interac-
tions, as well as for different values of correlated
hopping parameters, is plotted. In Refs. 14, 16 the
concentration dependences of the magnetization
were obtained in the framework of the Hubbard
model with interatomic exchange, but they are
symmetric with respect to half-filling. In Ref. 19 a
similar m(n) dependence was obtained.

As mentioned above, asymmetry of the cases
n <1 and n>1 is obsereved; in particular, an
increase of parameter T, leads to a shift of the
ferromagnetic area to a region of larger electron
concentration n, while an increase of parameter T,
gives a shift to smaller n. Note also that taking into
account the correlated hopping enriches consider-
ably the set of curves m(n). The obtained concen-
tration dependences of the magnetization allow one
to describe qualitatively the experimental curves for
the binary ferromagnetic alloys of transition metals
Fe, Co, Ni (Slater—Pouling’s curves [26]).
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4. The properties of the model at nonzero
temperature

For nonzero temperature and unperturbed rec-
tangular density of states the concentration of elec-
trons with spin 0 is expressed from (6) as

0 E ()00
o . Bl+ewBE 00
n0=1——1nD 0 Om. (14)
2wa, O (E_(~w)(H
[]1 + exp EITED
O

Using expression (8) one can obtain the equation
for the magnetization

[{(1 - n)a wl (h o wD

o mJ g Sinh F——— [Osinh B-——0
exp B efsz 0 C] 0 0 © D
0 © QO E(1—n)0(wD D@GwD

sinh O———* [sinh B———]
o © 0 0O© o
15)

where J ¢=2J + U +2t,w(1 —n). To obtain the
temperature dependence of the magnetization it is
necessary to apply numerical methods inasmuch as
the last equation can not be solved analytically. The
numerical calculations show that the results could
be approximately expressed using the approach pro-
posed in [15]. The Curie temperature can be ob-
tained by expanding (8) to lowest order in m — 0:

wo(D
1 U+zJ - 2wt (n - 6 _
=L 2 f(x u%m g
@ a” D ox O
—2000
wal
T
-2 I o Ofte - Eijdx, (16)
w((x[)2 ox
_qu

here x = a%, al= a0|m:O and pH= ”c'm:O )
At low temperature one can approximately write

U 2w+ z] 2w - 2wT2(n -1)
1 - )
- (1, + ) - 2490 )2/ /v

(17)

where AEtGC) :Ao(e)|m=() , ©=kgT, kg is the
Boltzmann constant. In the case of zero temperature
the last expression reproduces the criterion of the
paramagnetic—ferromagnetic transition obtained in
a recent paper [22].

To find AyO), as in the paper [15], one can
apply the Sommerfeld expansion [25]
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[1-1n - 2tn=~(4,(©) + A (©)z] /w]?

In the Curie point (when the magnetic moment
m - 0 and n; = n/2) the last equation is written as

n2-n) n) Tl2 EB D
Ao ==~ 5 %
1
(19)
- (1, +1,) 2AD(6C)zj/w]

Solving the system of equations (17) and (19), we
can express the Curie temperature as a function of
the model parameters as

1,2
o, O 1- U/2w—r1n—r2(2—n)D/
< —n) - O
2w Ei tn2-n 2]/ 2w 0
1/
U z]

Taking into account expression (13), we finally
obtain for the Curie temperature

©c 03 g /2 DU z]

2w gm
In the absence of correlated hopping, formula (21)
reproduces the result of Ref. 15. Note that the Curie
temperature is closely related (in the approximation
used) to the ground state magnetization of the
ferromagnet. The peculiarity of formula (21) is the
presence of the term containing the correlated hop-
ping parameter T, (m, is also dependent on this
parameter), which in the case n > 1 is negative and
therefore lowers the Curie temperature. The consid-
eration of correlated hopping allows one to avoid
(for some values of the correlated hopping para-
meters) overestimation of the Curie temperature
and to obtain values which are close to the expe-
rimentally observed ones (in this connection see
also [15], where the correlated hopping is not taken
into account). Let us assume (as in the Ref. 15)

-2t (n - )Em, . (21
0
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Fig. 3. Curie temperature as a function of n for
U/w=1 and 11=0.05, 1,=0.1. zJ/w=04 (1);
z2J/w=0.52), zJ/w==0.6 (3).

that the bandwidth of the €  states in 3d ferromag-
netic transition metals is approximately 2 eV. In
our work the band filling n = 1.2 corresponds to Fe
and for the values of correlated hopping 1, =0.15,
T, =0.2 our theory would predict values of the
Curie temperature between 1000 and 1600 K, de-
pending on the values of the intra-atomic Coulomb
repulsion and exchange interaction (these parame-
ters are varied in the ranges from 0 to 0.4 and from
0.14 to 0.37, respectively; the larger the value of
the parameter U/ /w, the smaller the value of pa-
rameter zJ/w that is needed). The value of the
Curie temperature for some fixed values of the
intra-atomic Coulomb interaction and interatomic
exchange interaction agrees with the experimental
data even quantitatively.

In Fig. 3 the concentration dependence of the
Curie temperature is plotted for various values of
the exchange interaction. The peculiarity of this
dependence is the lowering of the Curie temperature
with increasing carrier concentration. Besides, tak-
ing into account the correlated hopping causes
asymmetry of the curve with respect to half-filling,
which allows one to explain qualitatively the larger
Curie temperature in Co as compared to Fe. Note
that this fact could not be explained in Ref. 15
without further comments (in particular, taking
into account peculiarities of the density of states).
On the basis of the expression obtained for the
Curie temperature one can explain the peculiarities
of the Curie temperature behavior in binary alloys
of transition metals [26]. It is reasonable to inter-
pret in the framework of our theory to the paramag-
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Fig. 4. Dependences of the magnetization (solid curve)
and Curie temperature (dashed curve) on electron con-
centration n for U/w =15, 1,=0, 1,=0.8 and

zJ/w =10.2.

net—ferromagnet transition in metallic phase with
increasing temperature for the nonstoichiometric
chalcogenide chrome spinel Cr, -Fe, <S (where the
Curie temperature is of the order of 1000 K) [27].

In principle, our theory allows one to obtain the
concentration dependences of the magnetization and
Curie temperature, which are similar those observed
experimentally in the compounds Fe;_ Co,S, and
Co,_Ni S, with a change of electron concentration
in the 3d band [28]. In these crystals the same
subsystem of electrons is responsible both for con-
ductivity and for the formation of localized mag-
netic moments. Although these compounds should
be described in the framework of a doubly orbitally
degenerate model, nevertheless for some values of
the model parameters it is also possible to obtain in
terms of a single-band model the concentration
dependences of the Curie temperature and magnetic
moment of the system (see Fig. 4) in qualitative
agreement with the experimentally observed ones
[28]. The plotted curves show that for the choosen
model parameters the values of the above mentioned
quantities are reproduced accurately.

The influence of the model parameters on the
critical temperature is illustrated in the next fig-
ures. In Figs. 5 and 6 the dependences of the Curie
temperature on the intra-atomic Coulomb interac-
tion parameter are plotted at half-filling (Fig. 5)
and various values of the band filling (Fig. 6); the
values of exchange integral and correlated hopping
are fixed. The plotted curves have a peculiarity: one
can distinquish an area of sharp increase of the
Curie temperature with increase of the parameter

a7



L. Didukh and O. Kramar
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Fig. 5. Curie temperature as a function of U/w at half-
filling. zJ/w =04, Ty=1,=0 (1); zJ/w =04, T, =
=1,=01();2//w=08,1,=1,=0(3); 2J/w=0.8,
1,=1,=0.1 (4).

U/w (these values of the model parameters corre-
spond to partial spin polarization of the system) and
an area where the Curie temperature changes in
proportion to U /w (these values correspond to full
spin polarization of the system). Note that increase
of the interatomic exchange interaction leads to
extension of the partially polarized ferromagnetic
area and also to a decrease of the critical value of
U required for the development of saturated ferro-
magnetism. The peculiarity of the dependence of the
Curie temperature on U/ /w is the increase of the

m 0.20
0.8
0.15
0.6 -
010 2
0.4 =
0.05
0.2
0
0 15

®/0Oc¢

Fig. 7. Dependences of the magnetization and inverse mag-
netic susceptibility on reduced temperature for U, /w = 1,
zJ/w=0.5, 1,=0.05 and T, =0.1; the upper, middle
and lower curves correspond to the case n =1, n =0.5
and n = 0.2, respectively.
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Fig. 6. Curie temperature as a function of U/w at
zJ/w =04, 1,=0.05, 1,=0.2 and various band fil-
lings. 71, 2, 3, 4 and 5 — n=0.5, 0.75, 1, 1.25 and 1.5,
respectively.

critical value of U/w with increasing n. Note also
that the change of this critical value (for chosen
values of correlated hopping) in the case n > 1 and
with increasing electron concentration is more pro-
nounced than in the case n < 1. It is also interesting
that, depending on the magnitude of U/ /w, the
system with electron concentration n < 1 can have
a larger value of the Curie temperature than the
system with n > 1. However, starting from the
critical point for the intra-atomic Coulomb interac-
tion the situation becomes the opposite: the Curie
temperature is larger for the system with n > 1.

Next consider the behavior of the magnetization
of the system with change of temperature. To obtain
the temperature dependence of the magnetization
m let us use the assumption (as in Ref. 15), that
Eq. (17) is also valid for nonzero magnetization and
for temperatures lower than the critical ©. . Then,
using (18) one can obtain the equation

2

2
om B}ch I _toeo,
m=— —_——
7 fron @7 2 Gt
1,2
1 1 O
x J + 0 (22)

O
0 2 0 2000
ga +1,m)” (a7 = Tym) o

The results of numerical calculations for m are
plotted in Fig. 7. It should be noted that if the
correlated hopping is not taken into account, the
expression (22) gives the analytical result of [15].
In the band limit the last expression reproduces the

Fizika Nizkikh Temperatur, 2002, v. 28, No. 1



Metallic ferromagnetism in a genervalized Hubbard model

result of [29], where a similar treatment is applied
to the completely itinerant carriers.

To find the magnetic susceptibility let us take
the derivative of the magnetization (8) with respect
to the magnetic field,

am(h)0
X(©) = a—hD =
Dl — O,WI -0

- L ! (23)

2w a - UNRw - z] 2w + 21(n — 1)

Using (17) for temperatures which are close to
O one can obtain

6w [U/2w + 2] /2w = 2t,(n = 1)]?

X(©) = (24)

2170 (0 - 02/ /©

In Fig. 7 the temperature dependences of the
magnetization and inverse magnetic susceptibility
are plotted. A similar plot was obtained for the
transition metals in Ref. 30 using the dynamical
mean-field theory combined with the local density
approximation. For temperatures higher than the
Curie temperature the magnetic susceptibility de-
monstrates Curie—Weiss-like behavior.

3. Conclusions

In this paper the ferromagnetic solution in a
single-band generalized Hubbard model is derived.
The peculiarity of the model is the inclusion in the
Hubbard Hamiltonian the interatomic exchange in-
teraction and electron—electron interactions which
describe the influence of occupancy of sites on the
hopping process. The physical mechanism which
leads to realization of the ferromagnetic state is a
shift of the electron subband centers caused by the
exchange interaction and correlated hopping; in
addition, the band narrowing due to correlated
hopping is also important.

Taking the correlated hopping into account leads
to asymmetry of the cases n < 1 and n > 1 for the
consideration of ferromagnetism in this model. An
increase of the correlated hopping parameter T,
leads to a shift of the ferromagnetic area to a region
of larger electron concentration n, while an increase
of the correlated hopping parameter T, causes a shift
to smaller electron concentration n. An important
consequence of this study is the conclusion that, for
the realization of ferromagnetism the case of a more
than half-filled band is more favorable (this is the
case of transition metals and their alloys) than the
case of n < 1.
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The concentration dependence of the ground-
state magnetization m, qualitatively agrees with the
experimental data for the 3d transition metals and
their alloys; in particular, our results can explain
Slater-Pouling’s curves [26] for the binary ferro-
magnetic alloys of the transition metals Fe, Co, and
Ni with other 3d metals.

Taking into account the correlated hopping in
the calculation of the Curie temperature allows one
to obtain values which agree with the experimen-
tally observed ones. The calculated Curie tempera-
ture is characterized by peculiarities of the concen-
tration dependence; in particular, asymmetry (in
consequence of taking correlated hopping into ac-
count) with respect to band half-filling. This result
agrees with the experimentally observed values of
the critical temperature in the ferromagnetic transi-
tion metals. Besides, our results qualitatively repro-
duce the a typical concentration dependence of the
Curie temperature in the systems Fe,_ Co,S, and
Co,_Ni,S, [28].

In conclusion, the correct taking into account of
the above-mentioned matrix elements of electron—
electron interactions allows one to explain some
peculiarities of the ferromagnetic properties for
transition metal and their alloys and compounds
both in the case of the ground state and at nonzero
temperatures.
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