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In order to predict optical properties of insulating materials under intensive laser excitation, we generalized 
methods of quantum electrodynamics, allowing us to simulate excitation of electrons and holes, interacting with 
each other and acoustic phonons. The prototypical model considers a two-band dielectric material characterized 
by the dispersion relations for electron and hole states. We developed a universal description of excited elec-
trons, holes and acoustic phonons within joint quantum kinetics formalism. Illustrative solutions for the 
quasiparticle birth-annihilation operators, applicable at short laser pulses at 0 K, are obtained by the transition 
from the macroscopic description to the quantum field formalism. 

PACS: 79.20.Ds Laser-beam impact phenomena. 
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1. Introduction 

Theoretical prediction of optical and transport properties 
of semiconductors and insulators under strong electromag-
netic excitation, e.g. laser pulses, is quite chalenging prob-
lem. In these strongly correlated materials interactions be-
tween the charged particles play a major role in determi-
ning optical and transport properties: each single particle 
has a complex influence on its neighbors and interacts with 
both antiparticles (electrons–holes) as well as with crystal-
line phonons. The elaborated models based on the density 
functional theory (DFT) and the dynamical mean-field 
theory of strongly correlated fermion systems (DMFT) 
which now became the standard for fermionic correlation 
problems [1–3]. Nevertheless, the uncertainty in the choice 
of model parameters prevent the DFT+DMFT approaches 
from being flexible enough to capture entirely the quantum 
many-body problem of realistic complexity. Thus, new 
mathematical techniques are required for physical systems 
where perturbation techniques are not applicable. 

A complementary alternative approach is the quantum 
electrodynamics (QED) as derived from the simplest ap-
proaches of quantum field theory based on the Dirac sea 
for electrons and holes and the Hilbert spaces. Applications 
of QED to analysis of light-matter interaction to a large ex-
tent are based on fundamentals developed by Schwinger [4], 
Schmidt [5] and the mathematical techniques [6–8], where 
the model system is characterized by macroscopic disper-

sion relations for noninteracting electrons and holes (how-
ever, correlated in momentum and energy) [9–11]. 

The QED based mathematical framework includes con-
struction of the joint wave function of conduction and va-
lence states, harmonized with the macroscopic dispersion 
relations and the restrictions of special relativity, canonical 
quantization, the minimum action approach and, finally, 
the nonequilibrium distribution functions of electrons and 
holes excited as a result of interaction with electromagnetic 
radiation. This framework could be applied to the non-
Markovian quantum kinetics driven by appropriate short 
laser pulses. 

The rationale of this QED framework is that it gives 
clues to actual problems in low-temperature physics asso-
ciated, for example, with magnetization dynamics induced 
by femtosecond light pulses [12], electronic spectra [13] 
and the limitations of application of conventional models 
of strongly correlated electron systems [14]. 

A step beyond this nondissipative prototypical approach 
is interaction with acoustic phonons. In this manuscript the 
canonical quantization of electron–hole pairs is paralleled 
with a description of acoustic phonons based on well-known 
stationary solutions for displacement vector field [15,16] 
and decomposed within the framework of joint quantum 
kinetics framework. 

A systematic step-by-step quantum kinetic calculations 
are addressed to a typical two-band model of insulator and 
a model of linear elasticity, both fitting in the framework [10] 
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for nonequilibrium distribution functions, as a basis for 
further advancements and improvements. 

The manuscript is organized as follows: 
In Sec. 2 the basic definitions and denominations are 

presented with a special emphasis on the time evolution of 
quasiparticle observables and their quantum kinetics. 

Section 3 is addressed to the effect of electromagnetic 
field on the ensemble of electrons and holes, formalized in 
terms of gauge invariant minimal substitution [17] and 
complete relativistic quantum field approach [18] is pro-
vided for covariance under the full Poincaré group. The 
conditions of its use are large number of identical copies of 
the charged matter and the wavelength of optical radiation 
exceeding considerably the lattice constant. 

In Sec. 4 the quantum field approach for electrons and 
holes is extended to the quantum kinetics of acoustic pho-
nons, on the equal oscillatory equation basis as precondi-
tion to embody both the excitation and the relaxation of the 
quasiparticles. 

In Sec. 5 the canonical quantization of electronic sub-
system is extended to acoustic phonons on equal Klein–
Gordon basis and consequences for the systems with weak 
and strong interaction outlined. 

Conclusions are given in Sec. 6. 

2. Basic definitions and denominations 

This section is addressed to the transition from a macro-
scopic Hamiltonian system to its quantum field counterpart 
with a special emphasis on a system that is made up of two 
subsystems. In essence, a larger Hilbert space is constructed 
from the tensor product of the smaller sub-Hilbert spaces. 
It is the case of a compound system of conduction and va-
lence states in two-band dielectric build up by tensor product 
of two-wave functions 1 2= ⊗H H H  [19]. 

The free field electron–hole theory starts with classical 
Hamiltonian for single particle 

 ( )2 / 2H m V= +p , (1) 

where p is the quasi-momentum and the nonvanishing term V 
is potential energy. Free field description of the system is 
given by the solutions of the equation [ ] 0H E− Ψ =  ap-
plied to e–h pair in the conduction ( )c  and valence ( )v  
bands 

 ( ), ( )
2 2c c v vE E∆ ∆

= + ε = − − εp p , (2) 

where the dispersion laws of the kinetic energy ( )cε p  and 
( )vε p  are determined by methods of nonrelativistic quan-

tum mechanics. The general dispersion law is defined as [10] 

( )( ) ( ) ( ) 0.
2 2c v c vE E E E E E∆  ∆    − − = − − ε + + ε =       

p p   

  (3) 

For quadratic dispersion and in the effective mass ap-
proximation, the general dispersion (3) becomes 

( )( )
2 2

0.
2 2 2 2c v

e h
E E E E E E

m m

      ∆ ∆       − − = − − + + =              

p p
 

  (4) 

Here the band gap ∆ and the band boundaries represented 
by dispersion laws , ( )c vε p  remain invariable. Quantized 
free-field equation of motion (4) is given by the nonrela-
tivistic energy relation in operator form 

 ( ) ( )ˆ ˆˆ ˆ ( , ) 0
2 2c vE E t∆  ∆    − − ε + + ε Ψ =       

p p x , (5) 

where ( , )tΨ x  is the joint wave function of the two-particle 
states constituting a compound system equivalent to the 
two-particle Hilbert space 1 2= ⊗H H H  [19] and ˆ( )cε p  and 

ˆ( )vε p  are gradient operators ˆ i→ − ∇p   applied to un-
known yet joint wave function. Replacement ˆ /E i t⇒ ∂ ∂  
in (5) results in kinetic equation transformed into uniform 
differential form of Klein–Gordon type with respect to 
time for the auxiliary operator function ( , )tΦ p  [20]: 

 ( ) ( ) ( )2 ˆ, , 0t tΦ +Ω Φ =x p x  (6) 

with the effective frequency 

 
ˆ ˆ( ) ( )ˆ( )
2

v c∆ + ε + ε
Ω =

p p
p



. (7) 

The corresponding Lagrangian density for the auxiliary 
operator function ( , )tΦ x  reads as 

 ( ) ( ) ( ) ( ) ( )* 2 *ˆ, , , ,t t t t
t t
∂ ∂

= Φ Φ −Ω Φ Φ
∂ ∂

x x x p xL . (8) 

Going back to the total wave function (field function)
( , )tΨ x  the Lagrangian density L  reads as [20] 

* *( , ; , )Ψ Ψ Ψ Ψ = L  

( ) ( )( ) ( ) ( )( )2
* *

2

ˆ ˆ ˆ ˆ

24
c v c vi ε − ε ε − ε= α ΨΨ + ΨΨ −

p p p p






 

 
( ) ( )( ) ( )2ˆ ˆ

ˆ .
2

c vi ∗ ∗ ∗
ε − ε − Ψ Ψ +ΨΨ −Ω Ψ Ψ  

p p
p  



 (9) 

The prefactor 1/α = ∆ in Lagrangian density is based on a 
correspondence principle: at the band gap ∆ →∞  the 
Lagrangian density turns to zero [11]. Higher order terms 
in (9) are discarded. Derived quantities of the Lagrangian 
density are canonical momentum 

( ) ( ) ( )* *ˆ ˆ( ) ( )1( , ) , ,
2

c vi
t t t

 ε − ε∂
π = = − Ψ +Ψ  ∆∂Ψ  

p p
x x x





L   

  (10) 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 7 727 



E. Klotins 

and its complex conjugate (c.c). The free field Hamiltonian 
density (Hamiltonian function) reads as 

 **= πΨ + π Ψ − H L. (11) 

Relations (10), (11) constitute the basis for a subsequent 
kinetic description of electron–hole pairs. 

3. Lagrange–Hamilton approach for electron–hole pair 

The effect of electromagnetic field on the conduction 
and valence states is incorporated into classical Hamilto-
nian (1), through a gauge invariant minimal substitution 

q→ −p p A  [17,21] 

 [ ]21 ( , )
2

H q t V
m

= − +p A x , (12) 

where q is charge of the particle and the term 2 /2mp  is 
equal to the energy of a free particle. For an electron the 
charge eq e= −  and for a hole hq e= +  and V  is the po-
tential energy associated with the band width. A restrictive 
presumption is the wavelength much larger than the lattice 
constant at which the nonstationary electric field E = −A  
is regarded as spatially homogeneous and the terms 

2 2 /2q mA  quadratic in {0,0, ( )}A t=A  are canceled. The 
Lagrangian density (9) now reads as 

* *( , ; , )Ψ Ψ Ψ Ψ = L  

( ) ( )( ) ( ) ( )( )2

* **
2

ˆ ˆ ˆ ˆ

24

c v c vi
 ε −ε ε −ε −

=α ΨΨ + ΨΨ −



P P P P






 

( ) ( )( ) ( )* 2 *
ˆ ˆ

ˆ ,
2

c vi
ε − ε − 

− Ψ Ψ +ΨΨ −Ω Ψ Ψ


 

P P
P  



 (13) 

where the kinetic dispersions in operator representation are 
given by 

 
2ˆ ˆˆ( )

2 2c
e e

q
m m

⋅
ε = +

p A pP , (14) 

 
2ˆ ˆˆ( )

2 2v
h h

q
m m

⋅
ε − = −

p A pP . (15) 

Here q e≡  and we are working in the Coulomb gauge
0∇⋅ =A . 

The Lorentz invariance of field functions implemented 
by four-Fourier transform with ( )exp /±px  -type coordi-
nate depending terms that leads to the correspondence 
ˆ →p p and 2 2ˆ →p p  and allows to simplify the gradient 
operators in (14), (15) as follows: 

 ( )ˆ( ) ( )
2c c

e

q t
m
⋅

ε = ε +
A pP p , (16) 

 
2

( )
2 2v

h h

q
m m

⋅
ε − = −

p A pP . (17) 

In view of (16), (17) the free field Lagrangian density (9) 
becomes time-dependent: 

* *( , ; , )Ψ Ψ Ψ Ψ = L  

 
( ) ( )( ) ( ) ( )( )2

* *
2

1
24

c v c vi ε −ε ε −ε −= ΨΨ + ΨΨ −∆ 

P P P P






  

( ) ( )( ) ( )* * 2 *
2

c vi ε − ε − − Ψ Ψ +ΨΨ −Ω Ψ Ψ  

P P
P  



. (18) 

Similarly, the free field canonical momenta (10) trans-
forms in 

( ) ( ) ( ) ( ) ( )* *1, , ,
2

c vt i t t
ε − ε − ∂

π = = − Ψ +Ψ ∆∂Ψ  

P P
x x x





L   

  (19) 

and the c.c. of (19). 

4. Quantum field functions for electron–hole pair 

In this section the Lorentz invariant quantum field func-
tion in (18) is obtained by four-Fourier transform related to 
electron 

 
( )

4

4( ) ( ) exp
2

d p pxx p i Ψ = Ψ − 
 π

∫ 



 (20) 

and the c.c. (20) related to holes [18]. Properties of the 
system are implemented in the momentum space field 

( )pΨ  and Etpx ⋅
= −

p x
 

 is four-vector scalar product in 

{ , , , }+ − − −  metric signature. 
Decomposition of the field functions is case specific 

and is determined by the condition of decomposition. For 
the electron–hole problem the momentum space field in (35) 
and c.c. of (20) yield 

( )( , ) ( ) ( ) ,
2 2c vE E E E∆ ∆   Ψ = δ − − ε + + ε − ψ =      

p P P p  

 ( ) ( )( , ) ,g E E= δ ψp p  (21) 

and the c.c. of (21). The field functions are obtained by im-
plementing relations (21) into the four-Fourier transforms 

( )
( )1 2 3

3( , ) ( , ) ( , ) e
22

idp dp dp dEt g E f E Ψ = δ π π
∫ ∫

px

x p p   (22) 

and the c.c. of (22). 
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The f-functions read as 

 ( , ) ( , )e
Eti

f E E
−

= ψp p   (23) 

and c.c. of (23). As a result, the problem of finding the 
field functions (22) is reduced in two integrals over mo-
mentum 0p  with integrands comprising delta functions obey-
ing the integral forms of the generalized scaling property 

 ( ) ( , )
( , ) ( , )

( )
i

ii

f E
f E g E dE

g E

∞

−∞

δ =
′∑∫

p
p p , (24) 

where the condition of decomposition is determined by the 
g-function (3) 

 ( , , ) ( , ) ( , )
2 2c vg E t E t E t∆ ∆   = − − ε + + ε −      

p p p . (25) 

By simple algebra [11,20] the direct and complex conju-
gate quantum field functions acquire integral representa-
tion with parameters of the macroscopic dispersion rela-
tions maintained: 

 ( , )tΨ =x   

( )
( )

/2 ( )

3
1 /2 ( ) e

2 ( )2

ci t
c

d
∆ +ε −  

 
 
 = ψ ∆ + ε + Ωπ  

∫
P

p P
P





 

 ( )
/2 ( )

/2 ( ) e e
vi t i

v

∆ +ε − 
 
 


+ ψ −∆ − ε − 

  

P px

P 

  (26) 

and the c.c. of (26). 
In (26) the effective frequency contributes to the rela-

tivistic invariant integration measure [17] as 

 
( ) ( )3

1
2 ( )2

d
Ωπ

p
P

. (27) 

In the relations above the time varying optical radiation 
is formally implemented as ( ( , )) ( , )c ct tε ⇒ εP p p , 

( ( , )) ( , )v vt tε − ⇒ ε −P p p  (16). Complete relativistic quan-
tum field approach [19] is provided for covariance under 
the full Poincaré group. To this end the relativistic invari-
ant integration measure (27) is added with invariant nor-

malization for states given by factor ( )3/22 2 ( )π Ω P . 
Another item is transition from the infinite-volume li-
mit (26) to the Big Box representation of field functions. 

With periodic boundary conditions in the box of volume 3L  
the momentum =p k  is given by 2 /j jp n L= π , 

0, 1, 2...,jn = ± ± ±∞ , , ,j x y z=  and the quantization volume 

is given by ( )32 /d L= πp  . Finally, the factor to normalize 

field amplitudes is given by redefinition ( )3/2( ) / 2 .a L a= π pp  

These ingredients, put together, turns to the prefactor to 

field functions as 1
2 ( )V

∆
Ω P

. The renormalized field 

functions (26) read as 

( )
/2 ( )

1( , ) / 2 ( ) e
2 ( )

ci t
ct

V

∆ +ε −  
 


∆ Ψ = ψ ∆ +ε +Ω 


∑

p

p
x p

P




 

 ( )
/2 ( )

/2 ( ) e e
vi t i

v

∆ +ε − 
 
 


+ψ −∆ − ε − 



p px

p 

  (28) 

and the c.c. of (28); the impact of radiation is maintained 
exclusively in the effective frequency. 

The quasiparticle representation is based on action inte-
gral S dx= ∫ L where the Lagrangian density is connected 
with Hamiltonian density by relation (11): 

 **{ }S dx= πΨ + π Ψ −∫   H . (29) 

The necessary operator representation of field functions (28) 
is obtained by replacements 

( ) ˆ/2 ( ) ( )c eaψ ∆ + ε ⇒p p , ( ) ˆ/2 ( ) ( )v haψ −∆ − ε − ⇒ −p p , 

( )* ˆ/2 ( ) ( )c ea+ψ ∆ + ε ⇒p p , ( )* ˆ/2 ( ) ( )v ha+ψ −∆ − ε − ⇒ −p p , 

where the sub-indices for conduction and valence states in 
the dispersions , ( , )c v tε p  are exchanged by quasielectrons 
and holes in the field amplitudes , ( , )e ha tp . The corre-
sponding field operators read as 

 
/2 ( )

1ˆ ˆ( , ) ( )e
2 ( , )

ci t
et a

V t

∆ +ε −  
 


∆ Ψ = +Ω 


∑

p

p
x p

p




  

 
/2 ( )

ˆ ( )e e
vi t i

ha
∆ +ε − 

 
 


+ − 



p px

p 

  (30) 

and the Hermitian conjugate of (30). The time derivatives 
of the field operators read as 

 ˆ ( , )
2 ( , )

it
V t

∆
Ψ = ×

Ω
∑
p

x
p





  

 
/2 ( )

/ 2 ( ) ˆ ( )e
ci t

c
ea

∆ +ε −  
 


∆ + ε × − +   



p
p

p 



  

 
/2 ( )

/ 2 ( )
( ) e e

vi t iv
ha

∆ +ε − 
 
 


∆ + ε −  + −    



p px
p

p 





 (31) 

and the Hermitian conjugate of (31). 
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The direct and Hermitian conjugate canonical momenta 
in operator representation are found by substituting the 
field operators in (10) [11] 

( ) ( ),
ˆ ,

2
t

t i
V

∆Ω
π = ×

∆∑
p

p
x



 

( )
( )

( )
( )2 2ˆ ˆe e e

c v
i it t i

e ha a
∆ ∆   +ε − +ε − −   + +   

 
 × − −  
 

pxp p
p p 

   

  (32) 

and the Hermitian conjugate of (32) where the relation 
( ) ( ) 2 ( , )c v t∆ + ε + ε − ≡ Ωp p p  and the antisymmetric com-

mutation relations are accounted for. Canonical quantiza-
tion for field operators is obtained by replacements 

ˆ ˆexp ( ) ( ) ( , )
2 c e e

i t a a t ∆  − + ε ⇒    
p p p



 etc. 

Functional derivatives of the Lagrangian density in (27), 
(29) with respect to birth and annihilation operators ˆ ( , ),ea tp  
ˆ ( , )ea t+ p , ˆ ( , )ha t−p . ˆ ( , )ha t+ −p  and the condition 0Sδ =  
yields the set of kinetic equations as follows: 

 
ˆ ( , )ˆ ˆ( , ) ( ) ( , )

2 2 2
h

e c e
a t ia t a t

λ − ∆ = − + ε 
 

p
p p p



, (33) 

 ˆ ˆ ˆ( , ) ( , ) ( ) ( , )
2 2 2e h c e

ia t a t a t+ + +λ ∆ = − + + ε 
 

p p p p



, (34) 

 ˆ ˆ ˆ( , ) ( , ) ( ) ( , )
2 2 2h e v h

ia t a t a t
h

λ ∆ − = + + ε − 
 

p p p p , (35) 

 ˆ ˆ ˆ( , ) ( , ) ( ) ( , )
2 2 2h e v h

ia t a t a t+ + +λ ∆ − = − + ε − 
 

p p p p



, (36) 

where ( , )/ ( , )t tλ = Ω Ωp p  is the amplitude of interband 
transitions [8] and each of equations (33)–(36) describe 
some mixture of positive and negative energy states [22]. 

Furthermore, in accord with the asymptotic condition, 
the optical radiation is switched off in the infinite past 

lim ( ) lim ( )
t t

t t
−>−∞ −>−∞

= −E A , 

but, due the nondissipative nature of the Klein–Gordon 
approach, the final solution may be nonzero [23]. 

5. Canonical quantization of acoustic phonons 

In the previous section, we have emphasized that the 
dynamics of the photooptically excited electron–hole pairs 
can be calculated on the basis of the macroscopic Hamilto-
nian comprising dispersion relations for electrons and holes 
and the lattice field constituted of the ionic subsystem. 
Subsequent canonical quantization yields the set of kinetic 
equations for birth and annihilation operators as well as the 
nonequilibrium distribution functions for (quasi)electrons 

and holes. This approach is regarded as nonperturbative, 
non-Markovian, applicable to variable laser pulses, and 
variable number of emerging optically excited electron–
hole pairs. However these advancements are obtained by 
decoupling of the dynamics of the electrons and ions and 
neglecting electronic excitations induced by the ionic mo-
tion. Deficiencies of this ab initio Hamiltonian approach 
appear especially in treating strongly correlated systems, 
i.e., d- and f-electron systems which have a Coulomb inter-
action comparable to the band width. On the other hand the 
most successful technique based on the DFT+DMFT-type 
model Hamiltonian approach is more general to calculate 
many-electron problems but at the same time is seriously 
restricted in its ability to make quantitative predictions 
since the input parameters are not accurately known and 
must be adjusted. 

The scientific frontier we are faced in this section is the 
dynamical coupling between the electronic and phonon 
subsystems treated on equal kinetic quantum field basis 
that embody both the excitation and the relaxation of the 
quasiparticles. The corresponding Hamiltonian formalism 
for interacting between electron–hole pairs and the lattice 
subsystem involves equations of elasticity. With the goal 
of developing a kinetic quantum field theory for acoustic 
phonons we first take advantage of the existing free field 
stationary solutions for displacement vector field [15,16] 

based on the classical Lagrangian for elastic isotropic sol-
id. We restrict to a single mode version 

 2 0Ku u + Γ
− ∇ = ρ 
 , (37) 

where ρ is the mass density, K and Γ  are two elastic moduli, 
and ( , )tu r  is the displacement field with normal mode(s) 
of the lattice. The line of approach, which we think is suf-
ficient physical one, starts from the observation that elec-
trons and holes are quantum objects and for the finding 
their interaction the phonons in terms of canonically quan-
tized solution of elasticity is important. To this end, simi-
larly to the electron–hole case (20), the four-Fourier trans-
form related to displacement field is 

 
( )

4

4( ) ( ) exp
2

d p pxu x u p i = − 
 π

∫ 



. (38) 

The decomposition starts with the displacement (20) as 

( )
1 2 3

3( )
2

dp dp dp
u x = ×

π
∫  

( )
2

2
2 ( )exp exp ,

2 i
d K u i t i

   ω +Γ   × δ ω − ω −      π ρ     
∫

p pxp




 

  (39) 

where, similarly to (23) and (25), the g-function and the 
f-function are given by relations 
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 ( )
2

2
2, Kg  + Γ

ω = ω − ρ 

pp


 (40) 

and 

 ( ), u( )ei tf p ωω =p  . (41) 

Only positive root of the g-function is maintained whereas 
the negative root, supporting states with negative energy, 
are discarded as 

 ( ) K + Γ
ω = +

ρ
p

p


. (42) 

Derivative of the function ( , ) 2g ωω = ωp  and the common 
denominator in the generalized scaling property reads as 

 ( )1( ) 2 2Kg + Γ′ ω = ⇒ ω
ρ

p
p



. (43) 

Complete relativistic quantum field approach [19] is pro-
vided equally to this in Sec. 4 and results in sum over mo-
mentum space 

( )1 1 1( ) ( ) exp ( ) exp
2 ( )

u x u i t i
V

 = ω  ωρ  
∑
p

pxp p
p




. 

  (44) 

Positive energy solution [16,24] is supported by re-
placement of (38) to 

( ) ( )1 1 ˆ ˆˆ( ) ( ) e e e e ,
2 ( )

i ii t i tu x b b
V

−ω + − ω
 
 = +
 ω
 

∑
px px

p p
p p

p
p

p
 

  (45) 

where the stationary birth and annihilation operators ˆ ( )b+p p  
and ˆ ( )bp p  follow in conventional way. 

Going to the quantum kinetics in a simplest way, the 
impact of electronic subsystem is accounted for by imple-
menting time dependence in the g-function (43) as a pa-
rameter ( , )tω p  so transforming (37) to the differential 
equation with variable coefficients. In a simpler case, mak-
ing use of the quantum kinetics of electron–hole pairs, the 
kinetic equations for operators ˆ ( , )b t+

p p  and ˆ ( , )b tp p  sup-
port terms ( , )/ ( , )t tω ωp p  as the measure of the interaction. 

At this point there is an immediate obstacle: there is not 
a satisfactory quantum field approach for time-dependent 
operators ˆ ( , )b t+

p p  and ˆ ( , )b tp p  in systems with only posi-
tive energy allowed [16,24] restricted within the scalar 
Klein–Gordon field. 

The generalization to the desired kinetic theory making 
use of the same type of the complex Klein–Gordon field (20) 
is left to a separate publication. 

6. Conclusions 

In this paper, we developed a general theory of photo-
optical properties of semiconductors and dielectrics under 
strong electromagnetic (laser) radiation at low tempera-
tures. The physical model includes spatially periodic struc-
ture of atoms supporting quasiparticles categorized as elec-
trons, holes and acoustic phonons, each having a complex 
influence on its neighbors. 

The approach merges the birth and annihilation of 
the charged quasiparticles (electrons and holes) with the 
acoustic phonons. To solve this chalenging problem, we 
used the methods of quantum electrodynamics which con-
tribute to the consistent relativistic theory of open quantum 
systems. In terms of quantum electrodynamics, we have 
considered both the complex and the scalar Klein–Gordon 
field for the electron–hole pairs and the displacement field 
of phonons. 

The illustrative solutions are obtained by the transition 
from the macroscopic description to the quantum field for-
malism and kinetic equations for the constituting quasi-
particles. Corresponding distribution functions and obser-
vables of interest are beyond scope of this manuscript. The 
insights gained in this study could contribute to fundamen-
tal understanding of the complex joint wave functions and 
the higher order energy derivatives in strongly correlated 
condensed matter systems. 

The partial support by Latvian research program IMIS2 
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