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The influence of single magnetic impurities on the
conductance of quantum microconstrictions
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The nonlinear ballistic conductance of three-dimensional quantum microconstrictions, which contain

a magnetic impurities, is investigated. The nonlinear part of the conductance, which is due to the

interaction of electrons with magnetic impurities, is obtained. The analytical results have been analyzed

numerically. Tt is shown that the intensity of the Kondo anomaly in the conductance as a function of the

applied voltage depends on the diameter of the constriction and the positions of the impurities.
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The impurity-electron interaction in Kondo sys-
tems can be effectively studied by using point
contacts (PCs). In the first measurements of the
differential PC resistance R(V) in metals with mag-
netic impurities the zero-bias Kondo anomaly was
observed [1-3]. These experiments were ex-
plained by quasiclassical theory of Kondo effect in
PCs [4]. It was shown that in the second-order
Born approximation the magnetic impurity contri-
bution to the PC resistance includes the logarithmic
dependence R(V) Uln (V) for eV >> T, and satu-
ration for eV << T (T is the Kondo temperature,
V is the voltage applied to the PC). In accordance
with the theory [4], the nonlinear correction to the
ballistic PC resistance is proportional to the contact
diameter. But in the experiments [1-3] the size
dependence of the PC current was not investigated
due to the limited range of contact diameters acces-
sible.

The development of the technique of mecha-
nically controllable break junctions (MCBJ) has
made it possible to create stable PCs with the
diameter adjustable over a broad range, down to a
single atom [5,6]. In the MCBJ experiments [7,8]
the authors had studied the resistance of ultrasmall
contacts with magnetic impurities as a function of
the PC diameter d. In contrast to the prediction of
the quasiclassical theory [4], Yanson at el. [7,8]
observed that the Kondo scattering contribution to
the contact resistance is nearly independent of the

contact diameter d for small d. This behavior was
explained by the authors [7,8] as being due to an
increase of the Kondo impurity scattering cross
section with decreasing contact size.

It has been shown in theoretical works [9] that
in very small contacts the discreteness of impurity
positions must be taken into account, and the ex-
periments [7,8] may be explained by the «classical»
mesoscopic effect of the dependence of the point
contact conductance on the spatial distribution of
impurities. This effect is essential in «short» con-
tacts, and in the quasiclassical approximation it
disappears with increasing contact length. Zarand
and Udvardi [10] considered a contact in the form
of a long channel and suggested that the Kondo
temperature Ty is changed due to the strong fluc-
tuations of the local density of states generated by
the reflections of conduction electrons at the surface
of the contact. As a result of that, the effective cross
section of electrons has a maximum if the position
of the impurity inside the contact corresponds to the
maximum in the local electron density of states. But
the mesoscopic effect of the spatial distribution of
impurities in quantum contacts was not analyzed in
that paper [10].

In ultrasmall contacts the quantum phenomena
known as the quantum size effect occur. The effect
of the 2¢?/h conductance quantization has been
observed in experiments on contacts in the two-di-
mensional electron gas [11,12] and in ultrasmall
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three-dimensional constrictions, which are created
by using scanning tunneling microscopy [13,14]
and mechanically controllable break junctions [15].
Defects produce backscattering of electrons and
thus break the quantization of the conductance. On
the other hand, the impurities situated inside the
quantum microconstriction produce a nonlinear de-
pendence of the conductance on the applied vol-
tage [16]. This dependence is the result of the
interference of electron waves reflected by these
defects [17,18].

In this paper we present a theoretical solution of
this problem for the conductance of a quantum
microconstriction in the form of a long ballistic
channel containing single magnetic impurities. We
study the first- and second-order corrections to the
conductance of the ballistic microconstriction in the
Born approximation. The effect of impurity posi-
tions is taken into account. Within the framework
of the long-channel model the quantum formula for
the conductance G is obtained. By using the model
of a cylindrical microconstriction, the nonlinear
conductance as a function of voltage V and the
width of constriction d is analyzed numerically for
different positions of a single impurity.

Let us consider a quantum microconstriction in
the form of a long and perfectly clean channel with
smooth boundaries and a diameter d comparable to
the Fermi wavelength A, = h/V2me, , where € is
the Fermi energy. We assume that this channel is
smoothly (over the Fermi length scale) connected
with bulk metal «banks». As was shown in [19,20],
in such a constriction an accurate quantization can
be obtained in the zeroth approximation in the
adiabatic parameter |Jd| << 1. The corrections to
the tunneling and reflection coefficients of electrons
due to deviation from the adiabatic constriction are
exponentially small, except near the points where
the modes are switched on and off [21].

When a voltage V is applied to the constriction,
a net current I start to flow. In the limit V - 0,
the ballistic conductance of the quantum microcon-
striction is given by the formula

dI
G:W:GOZ}[F(SB)’ (1)
B

where [}, is the Fermi function, &; is the minimal
energy of the transverse electron mode, and [ is the
full set of transverse discrete quantum numbers.
The ballistic quantum PC displays the specific non-
linear properties, such as the conductance jumps
e2/h. For the two-dimensional PC these effects
were considered in the papers [22,23]. The aim of
this study is to analyze the zero-bias Kondo mini-
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mum in the PC conductance. We assume that the
bias eV is much smaller than not only the Fermi
energy €, but also the distances between the ener-
gies €, of quantum modes. In this case the influence
of the applied bias on the transmission is negligibly
small.

Impurities and defects scatter the electrons, de-
creasing the transmission probability. In accordance
with the standard procedure [24,25], the decrease
of the electrical current Al due to the electron-im-
purity interaction is connected with the rate of
dissipation of the energy E by the relation:

dE dHJ1D
dt ~ dt )
The Hamiltonian H of the electrons contains the
following terms:

VAI =

H=H0+H1+Hint’ 3
where
— +
Hy=% & 6 Cho (4)
k,0

is the Hamiltonian of free electrons, and

H, = % z sign (v,) czo Ch5 (5)
kR,O
describes the interaction of electrons with electric
field. The Hamiltonian of the interaction of elec-
trons with magnetic impurities H, , can be written
as

_ + o+
H =3 Jipw 15.Cpy €y — 0 0)) F
Jk.E

-+ +
+S ey Cp F S0 0 (6)

Here the operator c; (c,;) creates (annihilates)
a conduction electron with spin 0, wave function
¢, , and energy €,; S denotes the spin of the
impurity; o, is the electron velocity along the chan-
nel; J Iy is the matrix element of the exchange
interaction of an electron with an impurity at the
point r; ; ko is the full set of quantum numbers;
and,

Y, =J'dr TE o000 . @D

The electron wave functions and eigenvalues in the
long channel in the adiabatic approximation are
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0,(1) = Wy(R) exp % p, 20 (8)
O

(9

where k= (B, p,), p, is the momentum of an elec-
tron along the contact axis; m . is the electron mass;
r = (R, z), with R the coordinate in the plane per-
pendicular to the z axis.

Differentiating [H Oover the time ¢, we obtain
the equation for the change Al of the current as a
result of the interaction of electrons with magnetic
impurities:

VAI = — IIBH (1), H.

"1, (10)

int

where

0.0=Tr (p(®)...) . (11)

All operators are in the interaction repre-
sentation.
The density matrix p(¢) satisfies the equation

it P = 1,0, pO)] (12)

which can be solved using perturbation theory:
t
1 ! I
PO =Py + I dt[H_(t), p,] +

—00

t t

I dt J’ d" [H, (), [H, ("), p,] -
T (13)

By means of Eq. (13) the change in the electric
current due to magnetic impurities can be deter-
mined as

(172 2

A[:I1+I2+,,,:
t

X

1 1
P I dt' Tr (pylLH,  Hyy (1, Hip (0D = 5

—00

t t

x I dt"[dt Tr (o [[[H,, H (O, H_(¢)1, H_(t")]) +

+ ... (14)
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After simple but cumbersome calculations, we
find the first- and second-order corrections to the
PC current

7s(s+1)z Z(Slgnv - sign v ) x

nm 1i,f

X (fm B fn)a(an B am) Jj,n,m Ji,m,n : (15)
— s(s +1) z (signo,, —signo, ) x
n,mk i,j,1

1 1
+8(, —€,) Pr Oy

- & €

m k n

X %(an —¢g,) Pr .

[J LR tmn‘]lkm J

Jikn J;

i,n,m

Jl,m,k] X

x(f, ~ )0 -2f), (16)

where f, = fgle, + (eV/2)signo,]. The first addi-
tion I, to the PC current descrlbes a small spin-de-
pendent correction (of order (J /aF)z) to the change
of the current due to the usual scattering. The
second addition I, is also small too, but contains
the Kondo logarithmic dependence on the voltage,
and it is the most important for the analysis of the
nonlinear conductance of constrictions with mag-
netic impurities.

The expressions (15) and (16) can be further
simplified in the case of a &function potential of
the impurities

10="a0,

e

(17)

where n, is the electron density. In this case the
addition I, to the ballistic current has the form:

2ne’ o/ (]
I, = 7 0, O s(s+ 1) z z (sign o, —sign o, ) X
Oed n,mk ij,l
1 1 0
x B(e, — €,) Pr +8(e, ~€) Pr———x
E —¢€ € —&
O m k n k[

x(f,, — 1) =2f) %

x Re [0,(r)0,(r)0, ()0, )0, (r)o, ()] . (18)

It follows from Egs. (16), (18) that the current
I, depends on the positions of the impurities. Two
effects influence the value of I, : the effect of
quantum interference of scattered electron waves,
which depends on the distances between impurities,
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and effect of the electron density of states at the
points where the impurities are situated. The non-
linear part of the conductance can be easy obtained
after differentiation of Eq. (18) with respect to the

o
W

Q

I

|

<,
I:II:II:Iw

@

a,By K=t

ELO(K) (%) _

voltage G, = dI,/dV. In the case of a single impu-
rity and at zero temperature T = 0 this equation can
be integrated analytically over the momentum p, ,
and the conductance G, takes the form

1) Y S W RPWRP RPN x

( K) (K)D %P(K)) (P( K)) (19

l3

BEBEB L]

where

1,2
P =B b+ LV
% %F 2 Q%
and the transverse parts of the wave function
P, (R) and the electron energy €, are given by Egs.
(8), (9.

Carrying out the numerical calculations, we use
the free electron model of a point contact consisting
of two infinite half spaces connected by a long
ballistic cylinder of a radius R and length L
(Fig. 1). In the limit L - o the electron wave
functions Y, (R) and eigenstates €, can be written as

(20)

U, (R) = (v,,,0/R) exp (im9) ;
a V-l-[ ij+1( mn) m mn
(21)
ﬁ2
g = Y
o 2 ’
2m, R m
where we have used cylindrical coordinates

r = (p, ¢, 2) with the z axis along the channel axis.
Here y,  are the nth zero of the Bessel function J,,

Because of the degeneracy of the electron energy
with respect to azimuthal quantum number m (as a
result of the symmetry of the model), quantum
modes with +m give the same contribution to the

-/

-V/2

>

Fig. 1. Schematic representation of a ballistic microconstriction

in the form of a long channel, adiabatically connected to large
metallic reservoirs. Magnetic impurities inside the constriction
are shown.
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conductance. In this model the ballistic conduc-
tance (1) has not only steps G, , but also steps
2G, [20,26].

In Fig. 2 the dependence of the nonlinear con-
ductance on the applied bias is shown for different
positions of a single magnetic impurity inside the
channel. The results obtained confirm that the non-
linear effect is strongly dependent on the position of
the impurity. If the impurity is situated near the
surface of the constriction, r = R, where the square
modulus of the electron wave function is small, its
influence on the conductivity is negligible. This
conclusion is confirmed by the calculations of the
dependence G, on the position of the impurity for
different numbers of quantum modes (Fig. 3). The
results indicate that the mesoscopic effect of the
impurity position is more essential for ultrasmall
contacts, which contain only a few conducting

1.2f

-G, , arb. units

| | | | |
0 0.005 0.010 0.015 0.020 0.025
eV, Fermienergy units

Fig. 2. The voltage dependence of the nonlinear part of the
conductance G, (19) for different distances of the impurity
from the contact axis (2R = 5.2)\F ; T=0;1 —2mp= 1.5)\F ;
2 —=2mp=25h;;3 — 2mp=3.0M,; 4 — 2mp = 3.5M, ).
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Fig. 3. The dependence of G, (19) on the position of the impu-
rity for different numbers of quantum modes in the constriction
(V= 0.02e,; T=0; { — one mode (2TMR :3)\F); 2 — three
modes (2TR = 4Ap); 3 — five modes (2MR =5.3\,); 4 — six
modes (21R = 6A,).

modes, and G2 has a maximum. Similar results are
obtained for the dependence of G, on the radius R
of the constriction (Figs. 4, 5). In the single-mode
constriction (Fig. 4) the conductance G, displays a
much stronger dependence on R than in the contact
with five conducting modes (Fig. 5).

Thus we have shown that in long quantum mi-
croconstrictions the spatial distribution of magnetic
impurities influences the nonlinear dependence of
the conductance on the applied voltage. This
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Fig. 4. The dependence of G, (19) on the radius of the con-
striction for a single-mode channel and different positions of
the impurity (V = 0.02e,; T=0; 1 — 21p= 0.5\ 2 —
2Mp = 1.0A,; 3 — 2Mp = 1.5A, ; 4 — 27p = 2.0\, ).
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Fig. 5. The dependence of G, on the radius for a microcons-
triction with five quantum modes and different positions of
the impurity (V =0.02e.; T=0; 1 — 2T[p:0.5)\F; 2 —
2P =1.5A, ;3 — 2Mp =250, ; 4 — 2P = 457, ).

mesoscopic effect is due to the strong dependence
the electron scattering amplitude on the positions of
the impurities. As a result of the reflection from the
boundaries of the constriction, the electron wave
functions corresponding to bounded electron motion
in the direction transverse to the contact axis are
standing waves. If the impurity is situated near a
point at which the electron wave function is equal
to zero (near the surface of the constriction or, for
quantum modes with numbers » > 1, at some points
inside), its scattering of electrons is small. The fact
is that the amplitude of the Kondo minimum of the
conductance of a quantum contact displays the
mesoscopic effect of a dependence on the positions
of single impurities. This effect is most important in
the case when only few quantum modes are respon-
sible for the conductivity of the constriction.

We acknowledge fruitful discussions with M. R.
H. Khajehpour, V. G. Peschansky, and 1. K. Yanson.
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