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The Shubnikov—de Haas (SdH) oscillations of the in-plane conductivity of layered 2D electron gas
is calculated. It is shown that layer stacking faults, magnetoimpurity bound states, and electron

scattering modulate the SdH oscillations via the specific factors which bear the structural information.

At zero temperature the 2D SdH oscillations are strongly nonsinusoidal in shape and related by simple
equation to the derivative of the de Haas—van Alphen magnetization oscillations with respect to the

magnetic field.

PACS: 71.10.Ca, 72.10.Fk, 73.61.—-r

Introduction

The discovery of the high-T, superconductivity
in layered cuprates as well as unconventional elec-
tronic properties of layered organic superconductors
makes structural studies of these layered conductors
of great interest. In particular, much of recent
experimental effort has been devoted to the de Haas—
van Alphen (dHvA) and the Shubnikov—de Haas
(SdH) studies in organic superconductors [1-7].
Both the dHvA and SdH measurements in these
quasi-two-dimensional (Q2D) materials displayed
numerous deviations from the conventional three-
dimensional (3D) theory of Lifshits and Kosevich
(LK) [8] many of which are remained yet not
understood. For example, a sawtooth profile of the
dHvA signal was predicted at zero temperature
T =0 for purely 2D electron gas in the canonical
ensemble (i.e., for the fixed number of electrons in
the sample) [9] and an inverse sawtooth was found
within the grand canonical ensemble (i.e., for the
fixed chemical potential in the sample) [10]. In the
first case the dHvA oscillations are due to the
oscillations of the chemical potential pu. The recent
analysis of this matter given in the work [11] shows
that only for low electron concentration when it is
possible to realize experimentally a regime 7Q =
(Q =eH/mc is the cyclotron frequency), oscilla-
tions of P with inverse magnetic field 1/H are
important. In the case g >> IQ the oscillations of
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the chemical potential are small and one can use the
grand canonical ensemble as it holds in the standard
3D LK theory.

Real layered conductors are far from being an
ideal 2D electron gas. As a rule they consist of a
stack of 2D conducting planes with anisotropic 2D
Fermi surface within them and may contain impuri-
ties as well as some amount of stacking faults
appearing as a result of the intercalation. The im-
pact of the stacking faults on the dHvA oscillations
in a layered conductors was studied in the work of
the author [12]. It was shown that amplitudes of
the dHvA harmonics are modulated by the layer-
factor
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which is a Fourier-transform of the one-dimensional
density of states (DOS) N(g) related to the electron
hopping across the layers (p is the number of
harmonic).

The delta peak in the N(g) 0 & (€ - g) at some
energy €, makes | P to be an oscillatory function in
the inverse field
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with the frequency determined by €, . Another
modulation factors appear in the case of the mag-
netic field parallel to the layers [13] and under the
conditions of the coherent magnetic breakdown
[14].

Impurities play a significant role. In the theory
of the dHvA oscillations they smear the Landau
levels and thereby decrease the harmonic ampli-
tudes via the Dingle factor [10], or they may create
a bound electronic states which manifests them-
selves through beats of the dHvA oscillations [15]
which are more prominent in the 2D case [16].

Contrary to the dHvA effect the SdH oscillations
appear as a result of the electron life-time oscilla-
tions due to the scattering on impurities in external
magnetic field [17]. Theoretically it is a much more
difficult problem than the study of the thermody-
namic oscillations and, consequently, the number of
publications on the SdH effect in layered conduc-
tors is much less than on the dHvA effect in Q2D
systems. The SdH effect in a 2D electron gas case
was considered in a few works reviewed in the
paper [18]. The anisotropy in a 2D model was
considered numerically in the paper [19] in the
context of the SdH studies of the organic supercon-
ductors. Longitudinal magnetoresistance quantum
oscillations due to the coherent hopping across the
layers has been numerically studied in Refs. 20 and
21 for the incoherent case, i.e., when T > /¢ (T is
the electron life-time, ¢ stands for the hopping
integral between the neighboring layers).

In this paper we calculate T in a layered 2D
electron gas containing small amount of stacking
faults in the perpendicular to layers external quan-
tizing magnetic field and then apply the results of
these calculations to the theoretical consideration of
the SdH oscillations in this system.

The life-time calculation

A theory for the single-electron life-time T(E) in
a 2D electron gas due to the impurity scattering in
an external quantizing magnetic field was deve-
loped by Ando and Uemura [22]. This theory pro-
vided a basis for further studies of different proper-
ties of a 2D electron gas in magnetic fields [18].
Maniv and Vagner [23] have generalize the ap-
proach by Ando and Uemura to the case of layered
electron gas. These authors have shown that in
layered conductors the interplane tunneling of elec-
trons can significantly reduces the 2D scattering
rate due to the possibility of escaping the impurity
by hopping to the neighboring conducting planes.
They calculated the magnetic field dependence of 1
assuming the kinetic energy across the layers
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e(k,) = kg/ 2m to be limited within the band
0 <g(k,) <A, . Here we generalize their approach
to the case when the interlayer hopping energy is an
arbitrary quantity distributed within the DOS
N(g). Then the equation for the single electron self
energy o(w) yields [23]:

o6 = by + ¢, zo [* oo ynéz)(;l o @
where
V(@) =w-7Q (m+1,/2) + 1, (3)
Usn,
by=Ugn,, c,= 4"2112q : (4

U, is the impurity potential amplitude V(r) =
= Uy (r —r,), n, is the impurity concentration, and
Ly = (hc/ eH)'/? is the magnetic length.

Separating the real and imaginary parts in Eq.
(2) for the self-energy o(w) = Re o(w) + i Im o(w),
we have
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Since we are interested in quantum oscillations
which holds in the long life-time regime,
I/1(w) = Im o(w) << %Q, one can neglect the quan-
tity Re o(w) QUOni << U as a small correction to
the chemical potential L.

Applying then a standard summation proce-
dure [10,17] to Eq. (5) we can recast it into a form
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where a = nE /2T with E, = mU(2)/2ﬁ2 being the
resonance energy for the &-potential scattering and
O0=A[1/H]/RFQ is a small phase shift 0 <
<A[1/H] <1/2 arising due to that the ratio
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L/7Q is not exactly the integer: W /72Q =N +
+A[1/H] ( N stands for integer). The factor Ip
here is given by Eq. (1). This factor was studied in
detail in the paper [12] devoted to the dHvA effect
in layered conductors. For periodic layered system

with the nearest layer hopping N(g) = Y(4t? - g2)1/2
and
CirupO
L,=J, EIE—QPD: (7)
0 0

where J(x) is the Bessel function, ¢ is the interlayer
hopping integral.

In case when there is a small concentration
¢ << 1 of the layer stacking faults the factor I was
calculated in [12] to yield
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The stacking fault means that the local hopping
integral ¢, relevant to the electron transition from
the «defect layers» to the nearest neighbor layers is
less than ¢. Physically this kind of stacking faults
may appear as a result of the intercalation of the
layer conductor.

Shubnikov—de Haas oscillations

Consider now the SdH oscillations in a stack of
2D isotropic conductors with impurities in the per-
pendicular magnetic field. We do not assume peri-
odicity in the layer stacking. The in-plane conduc-
tivity tensor diagonal elements, therefore, are given
by [18]

[BfDT (E) , (10)

where N, is the 2D density of conducting electrons
within the layer and f(E) is the Fermi function.
The energy-dependent life-time t(E) = 72/Im o(E)
can be found from Eq. (6) in the first approxima-
tion on the parameter a/%Q << 1 which yields
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Substituting Eq. (11) into Eq. (10) and completing
the standard integration, we have

o =0 +(~)', (12)

where 0, =N e To/m is the smooth part of the
conductivity Wlth y=h/a= ATen3 / mU

The oscillating part of the Conduct1V1ty o is
given by

- p

o 20 Z( 1) eXpU- QDRP ]p cos ?pg,
p=1

(13)

where

V4
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is the standard temperature factor with Z p =
= 218Tp,/HQ. We also have neglected the small
phase shift & since energies of the order of E Elp are
essential in the integral of Eq. (10).

Considering at first the case of a solitary layer
(I, =1) and zero temperature (R’ =1) one can
perform an elementary summation in Eq. (14) to
obtain
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where v = 21/Qr,, .

On the other hand, the oscillating part of the
magnetization of a 2D electron gas at zero tempera-
ture can be written as a sum [10]
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which can be completed to yield
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Here M, is independent of the magnetic field H.
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Comparing Eqgs. (15) and (17) we arrive at the
relation between 0 and M for 2D electron gas with
the &-potential impurities at zero temperature:

9 a2 %E, (18)
0'0 aHD 0

where A = efi/Tuncp. Since AH EIQ,/mu << 1, we
see that relative amplitude of the SdH oscillation
8/00 is much less than the corresponding relative
oscillations of the magnetization M,/M, in the
dHvVA effect. Nonetheless, the first observation in
1930 of the SdH oscillations by Shubnikov and de
Haas preceded the discovery of the dHvA effect
[24].

Recently, Eq. (18) was proved experimentally in
a 2D organic superconductor of ET-family [7]. The
shape of the SdH oscillations observed was non-
sinusoidal and very similar to that given by Eq.
(15) and shown in Fig. 1. What is strange in this
connection that the SdH signal was measured in the
geometry when both the magnetic field and current
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Fig. 1. Field dependence of the conductivity given by Eq. (15)
(in conventional units B = Q) for u = 1000, v = 0.1, 0.151, 0.2
(v =21R/1).
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have been directed perpendicular to layers. The
temperature was nonzero and varied within the
range 0.4—1.27 K. On the other hand, it is easy to
see that, strictly speaking, Eq. (18) does not hold
under this conditions. First of all this is because of
the anisotropy of the conductivity in the direction
perpendicular to layers. Secondly, the layer-factor
I_, as well as the factor RT (as well as some other
factors which we discuss befow) are functions of the
inverse magnetic field 1/H and this must be taken
into account in the derivative M /0H.

An additional degrees of freedom related to the
spin of electron and bound states due to impurities
(the so-called magnetoimpurity levels [15]) can be
easily taken into consideration. In these cases the
energy of an electron gains a shift € - € + {, where
C is an energy variable related to the additional
degree of freedom. If the DOS for  is given by
G(Q), then

I - IR (19)

where

- 02 O (20)
R, = J' diG(Q) exp% 5 p%.

In the case of a spin

GQ) =5 18@ - ) + 5@+ I, D)

where W, = e/2mc is the Bohr magneton. The
corresponding spin-factor R‘; reads

m
R; = cos %[ﬁ pg. 22)
g ¢ d
This is a standard spin-factor, known in magnetoos-
cillations [10]. Another factor appears if impurities
split off bound states from the Landau levels [15].
This magnetoimpurity effect is more strong in 2D
systems than in a 3D case. If we denote this spliting
by A,(H), then the appropriate DOS is again given
by the &-function

GH() = 8(T + A) . (23)

The corresponding damping factor due to the mag-
netoimpurity bound states is

_ m, O
R' =cos B— pO. 24
p = COs r pD (24)
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Signs + in Eq. (23) correspond to attracting and
repulsing impurities. In the case A; << 7Q the split-
ting value does not depend on p [16]. Putting
together all the above discussed damping factors
and taking [ P factor in the form given by Egs.
(7)—-(9), we can write the oscillating part of the
in-plane conductivity in the form

0O=6 +0 25
G=0,+0, (25)
with
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p=1 O 0 O
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T pi s
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Here v, = 2m/7,Q, where

N E— (28)
1 f— —

a + '\/ZZ_— If(2)
is the renormalized due to the stacking faults effec-
tive electron life-time. At zero temperature we have

sinhv1 O

xz D -10.
wnd O
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Despite that 82 is proportional to the stacking fault
concentration ¢ it may be essential for small
V, << 1 since in this case 82 has a sharp &-like
peaks, as it is seen in Fig. 2.

Conclusions and discussion

The two major experimental tools of the fermio-
logy, the SdH and the dHvA effects, proved to be
very useful not only for studies of conventional 3D
metals but as well for recent analysis of the new
layered organic conductors and superconductors in-
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Fig. 2. Field dependence of the oscillating part of the conduc-
tivity caused by the stacking faults and given by Eq. (29) (in
conventional wunits B =7%Q) for p=1000, ¢=0.1, t=0.1,
A;=0.5, m/m,=1.5v,=0.1, 0.2, 0.3 (v, = 2/T,).

cluding the high-T, cuprates. Though both effects
are based on the Landau quantization, the SdH
effect, as it is well known from the textbooks on the
fermiology [10,17,25], is much more difficult to
study theoretically since it requires calculations for
the transition probabilities caused by the electron
scattering on impurities in external magnetic field.
This scattering in its turn strongly depends on the
dimensionality of the system in question and mani-
fests itself in different kinetic characteristics of
organic conductors, such as the high frequency
impedance [26], and the SdH in quasi-2D conduc-
tors which is the subject of the present publication.
Contrary to the common-spread opinion, even
among the experts, it is the SdH oscillations, rather
than the dHvA effect, have been observed first in
1930 in Leiden by Shubnikov and de Haas and
thereby laid the foundation to the modern fermio-
logy. This point as well as the dramatic history of
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the discovery of the SdH effect one can find in the
interesting historical essay [24].

In this paper we have calculated the SdH oscilla-
tions within the approach which generalizes the
Green function method developed by Maniv and
Vagner [23] for the electron scattering problem in a
quasi-2D electron gas. The calculated oscillating
part of the in-plane conductivity tensor diagonal
component G, Eq. (13), as well as the electron
life-time T, Eq. (11), turned out to be dependent on
the very same layer factor I, Eq. (1), which
modulates the dHvA oscillations of the layered
conductors [12] and depends on the layer stacking.
At zero temperature and in the 2D limit a simple
relation was established between the relative in-
plane SdH oscillations, 8/00 , and the correspond-
ing relative dHvA oscillations of the magnetization
M/MO . This relation is given by Eq. (18) which
holds only for the 2D electron gas. The anisotropy
of the 2D Fermi surface, as well as nonzero tem-
perature and electron hopping across the layers
bring additional terms to the Eq. (18). Nonetheless,
this equation was experimentally verified by the
simultaneous dHvA and SdH measurements on the
B'-(BEDT-TTF),SFsCH,SO; organic conductor
within the temperature range 0.4—1.27 K for the
interlayercomponent of the conductivity tensor|[7].
The shape of these strongly nonsinusoidal oscilla-
tions is the same as given by Eq. (15) and shown in
Fig. 1. The enhancement of the impurity scattering
potential makes these oscillations less in the ampli-
tude but more sine-like in the form. The spin-split-
ting and magnetoimpurity bound states yield an
additional factors, R“;'] and R! correspondingly,
which modulates the SdH oscillations (see Egs.
(25)=(27)) and result in a big variety of the oscil-
lation patterns as it is displayed in Figs. 2 and 3.

The stacking faults modify the Dingle-like expo-
nent in Eq. (27) through the effective life-time T,
(Eq. (28)). The appropriate correction to the oscil-
lation 82 arises due to the stacking faults and has at
zero temperature a periodic O-like peaks when
v, << 1. It is essential even for low concentration
of the stacking faults, as one can see in Fig. 2.

The oscillation patterns displayed in Figs. 1-3
are very diverse. The peaks in Figs. 2, 3 are splitted
due to the spin and magnetoimpurity factors and
sensitive to variations of the other parameters of the
model. Some additional analysis of the SdH oscilla-
tions within this model will be published elsewhere.
The results and methods of this paper will be also
applied to an anisotropic 2D Fermi surfaces struc-
tures typical for real organic layered (super)conduc-
tors.

Fizika Nizkikh Temperatur, 2001, v. 27, Nos. 9/10

01 02 03 04 05 06 078
t=023

01 02 03 04 05 06 078

a7
W

01 02 03 04 05 06 078

Fig. 3 Field dependence of the oscillating part of the conduc-
tivity given by Eq. (25)—(28) (in conventional units B =7Q)
for p=1000, ¢ =0.2, A, =05, m/m,=1.5, T =0.001, v=0.1,
v, =02, £=0.1,0.3, 0.5 (v = 218/, v, = 218/T,).
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