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Persistent scaling behavior of magnetization in layered high T superconductors with short-range

columnar defects is explained within the Ginzburg—Landau theory. In the weak field region, the scaling

function differs from that of a clean sample and the critical temperature is renormalized due to defects.

In the strong field region, defects are effectively suppressed and the scaling function, as well as the

critical temperature are the same as in a clean superconductor. This picture is consistent with recent

experimental results.
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1. Introduction

Layered  high-temperature  superconducting
(HTSC) materials, such as Bi,Sr,CaCu,Og,5 and
Bi,Sr,Ca,Cu;0,, , are known to exhibit experi-
mentally 2D scaling magnetic properties [1,2]
around the mean field transition line H (7). It is
manifested by inspecting the magnetization M, as a
function of temperature T and the (external) mag-
netic field H:

SGJO

WMO(T’H):_ZVO(X)’ (1)

where s is an effective interlayer spacing, @ is the
flux quantum, x=AH),[ T - T (H)]|/VkgTH is
the scaling variable, 2y,(x) is so called scaling
function, H/, = —dHCQ(Y)/dT|T=TCO , and T is the

zero field critical temperature. For a superconductor
with Ginzburg-Landau (GL) parameter K and
Abrikosov geometric factor [3] [, the constant

The scaling function y,(x) was firstly evaluated
in the perturbative regime [4,5] for x << 1. Non-
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perturbative result for it was obtained later using
the following arguments. The compounds men-
tioned above are strongly type II superconductors
with large GL parameter k = 100. Their effective
interlayer separation s = 1.5 nm is larger than the
effective superconducting coherence length &(H, T)
(if the magnetic field is not extremely close to the
mean field transition field H(T)), but is much
smaller than the magnetic penetration depth. Hence
the problem of fluctuations near H_,(T) becomes
effectively two dimensional and can be represented
theoretically in terms of the 2D GL mean-field
theory projected onto the lowest Landau level
(LLL) [6]. Such an approximation remains valid at
least for H > H ,(T)/3 when higher Landau levels
are obviously irrelevant. Moreover, recent results
[7] show that LLL projection is valid even for
H > H_T)/13. Tesanovic [6] emphasized the cru-
cial role played by the total amplitude of the order
parameter in the critical region. Integration of the
partition function over this amplitude, assuming
that the Abrikosov factor B, depends weakly on the
vortex configuration, leads [8] to the scaling law
(1). Moreover, putting this factor equal to constant
from the very beginning, Tesanovic et. al. obtained
an explicit form of the scaling function [9]
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which agrees, to a good accuracy, with the experi-
mental magnetization data for Bi,Sr,Ca,Cuj0O, .
Such form of the scaling function (2) implies the
existence of a crossing point: at some temperature
Tg': T,,(1+ kB/(2A2HC'2 )~!, the sample magne-
tization is independent on H, MDEMO(TE, H) =
=- kBTE/ (s®,). Later on, Tesanovic and Andreev
[10] took the fluctuations of B, into account and
generalized the approach developed in [9] to arbit-
rary type Il superconductors.

Recently, the influence of columnar defects on
the magnetic properties of superconductors has been
studied experimentally [11,12] and theoretically
[13—17]. Columnar defects emerge after heavy ion
irradiation of the superconducting sample [11].
They serve as strong pinning centers, each one is
able to pin a single vortex. The radius of a columnar
defect can be larger or smaller than the coherence
length (long-range or short-range defects, respec-
tively). Strong columnar defects lead to the forma-
tion of multiquantum vortices in high temperature
superconductors [ 13,14] and in conventional ones as
well [16]. They also lead to additional magnetiza-
tion jumps in mesoscopic samples [17]. Therefore it
is interesting to understand how such defects influ-
ence both the scaling behavior and the existence of
the crossing point.

Specifically we refer to experiments perfor-
med by van der Beek et al. [12] who studied the
thermodynamic properties of single crystals of
Bi,Sr,CaCu,Og, 5 . The samples were irradiated with
5.8-GeV ions that produced columnar defects with
radius L = 3.5 nm and 2D density n, = 5001° ¢m™,
Such density is small in the sense that the matching
field Hy=n,®, , at which the number of vortices
becomes equal to the number of defects, is much
smaller than H_,(T). Magnetization was measured
in the region of magnetic fields 0.2—-5 T (which are
also smaller than H (7)) and temperatures 72-86 K.
Within this interval of fields the defect radius is the
smallest length scale in the problem and the defects
can be treated as short-range ones. Measurements
showed that columnar defects drastically change the
reversible magnetization of the sample: there are
now two scaling regimes pertaining to relatively
weak (H < Hg) and strong (H > Hg) magnetic
fields. These two regimes are described by the same
form (2) of the scaling function as for clean sample
but they correspond to two different zero field
critical temperatures (used in Ref. 12 as fitting
parameters) and two crossing points.
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In this paper we propose an explanation of these
results. Our arguments are based on the observation
that the magnetic field serves as a control parameter
for tuning an effective concentration ¢ = Hy/H of
defects (the number of defects divided by the num-
ber of vortices). In the weak field region, concen-
tration is large (¢ =5 for pyH = 0.2 T and 7, from
[12]), each vortex is affected by a force emanating
from many defects. On the average, this force leads
to renormalization of the critical temperature T, .
Short-range defects are effectively weak and can be
taken into account perturbatively. In first order
they retain the same form of scaling function (2) as
that of a clean sample, up to renormalization of the
critical temperature mentioned above. Second order
corrections indeed destroy the scaling behavior but
in the vicinity of the crossing temperature scaling is
approximately maintained. In the strong field re-
gion, concentration is small (¢ =0.2 for yyH=5T
and n, from [12]), the renormalization is not ne-
eded and the standard concentration expansion [18]
can be used. Here, strictly speaking, even the first
order correction (with respect to small concentra-
tion) destroys the scaling behavior. However, a
strong field effectively suppresses the defects, thus
restoring the scaling behavior of a clean supercon-
ductor with the initial critical temperature T, .
Identifying the two fitting temperatures of Ref. 12
with the renormalized critical temperature T, and
the initial one T, respectively, one finds for the
dimensionless defect strength 6, = 0.49, well inside
its allowed range 0 <6, < 1. This indicates a full
consistence between the description constructed be-
low and the experimental results of Ref. 12.

Our quantitative approach follows the one pro-
posed and successfully used within the critical re-
gion in clean superconductors [8—10] and at low
fields in disordered superconductors [15]. This ap-
proach is based on the LLL projection and on an
assumption that the Abrikosov factor almost does
not depend on the magnetic field. The latter as-
sumption is evidently not valid in the vicinity of the
matching field, but for fields much smaller or much
larger than H j, it is valid. Indeed, columnar defects
are strong pinning centers. Then, if the number of
vortices is much less or much more than the number
of defects, configurations close to the triangular
Abrikosov lattice are always simultaneously com-
patible with any typical configuration of defects,
and with the condition of complete (as possible)
pinning. It is supported by noticing a remarkable
difference between the number of vortices and the
number of defects in both regions of fields. This
enables us to take into account only such (Abri-
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kosov-like) vortex configurations and fluctuations
around them [19]. But for these configurations the
Abrikosov factor almost coincides with its «triangu-
lar» value B, = 1.16.

The next Sec. 2 contains the main body of the
paper. Firstly we formulate the model (subsec-
tion 2.1) and then obtain the magnetization in the
weak field region (subsection 2.2) and in the strong
field region (subsection 2.3). Relation of our calcu-
lations to the experiment [12] is discussed in the
Sec. 3. The last Sec. 4 summarizes the results
obtained in this work.

2. Scaling behavior of the irradiated
superconductor

2.1. The model

Consider an irradiated thin superconducting film
(or one layer in a layered superconductor) with area
S subject to perpendicular magnetic field (thus
parallel to the defects). Columnar defects can be
described as a local reduction of the critical
temperature &7 (r) =T,, 5 t]. exp (=(r - r.)%/2L?).
Here r is a two dimensional vector in the fifm plane,
L is the defect radius, and the positions r; of defects
are uniformly and independently distri{auted over
the film plane with density n, . The value of n, is
assumed to be moderate so that for the pertinent
region of temperature the matching field Hg is
always much smaller than H_,(T). The dimension-
less amplitudes of defects 0 <¢.<1 are also inde-
pendent random quantities dis{ributed with some
probability density p(f) whose first two moments
8, and 6, satisfy 0 < 8;,=1. On the average, the
defects lead to renormalization of the critical tem-
perature

T =T

4 c0

- 37, 3)
where
— — 2
6Tc = [6Tc(r)D— 2TlndL 91Tc0 )
The fluctuation of the shift of the critical tempera-
ture has zero mean value and variance

21— 2 2
[T (r) - 8T )*0=Tue, L7612, .

The thermodynamic properties of a type II super-
conductor are described by its partition function

G

[
DI
kT E

ZDI@{W} exp 4)

ooO
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where W is the order parameter and G is the
standard GL functional

G= j w2 + Byt +
0 2

1
+ylo_ WP+ — B - HPHdr (5)
8m 0
/] 2
9 =20+ A, B=0OxA,
1 C

with the first GL coefficient a(r) depending on
coordinate through a local change of the critical
temperature.

Further simplifications will be done for the case
of weak fields (in the case of strong fields slightly
different simplifications are required — see subsec-
tion 2.3 below). Let us take into account large
value of the GL parameter, project the system on
the LLL corresponding to the external field, intro-
duce scaling variable x as mentioned above, a scaled
order parameter ¢ 0 W, and dimensionless tempera-
ture fluctuations

1/2
BGJOD/ H 2(T) or (r) - oT
) =6—0 —o ¢ ¢
Dp N \/kBTH TC -T

(We emphasize that for the case of weak fields it
is the renormalized critical temperature which en-
ters the expression for the upper critical field as
well as the definition of the scaling variable x.)
This results in the following expression for the
partition function

— 1 — —_—
20 [ D@y exp FN, G + o + 0007,
0 0 4 N
©®

where N, is the total number of vortices (i.e., the
total number of flux quanta through the sample
area S) and the bar denotes averaging over the
sample area. The expression for the magnetization
has the form

s® dln 2
M= D
AV, TH N, o

These two formulas (6), (7) form the basis for the
further calculation and analysis.
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2.2. Magnetization: weak fields

The assumption that the Abrikosov factor is a
constant enables us, following [15], to replace in
Eq. (6) [¢@)* by BA(|¢(r)|2)2. This replacement,
together with the simplest version of the Hubbard—
Stratonovich transformation (introduction of an ad-
ditional integration over some auxiliary field y)
turns the problem to be an exactly solvable one
[15]. Indeed, expand the order parameter on the
LLL subspace,

N

00 =3 C,L(0), (8)

m=0

where L (r) are normalized LLL eigenfunctions
with orbital momentum . Then after integration
over the expansion coefficients C, , the partition
function (6) reads,

ZDJ.eXp =N Ly, x) dy, 9
r

where

L, =-V+N trln[x+y)l+1  (10)

and % is a random matrix with elements:
T :J.L"fl(r)t(r)Ln(r)er . (11)
S

The contour I in Eq. (9) is parallel to the imagi-
nary axis and stretches from y7— ico to Y7+ ico. To
assure convergence of the integrals over the coeffi-
cients {C,} the real constant y should satisfy the
inequality y-'+ x + min T, > 0, where 1, is the nth
eigenvalue of the matrix T, .

In the thermodynamic limit S - e with n, and
N_/S fixed, the partition function (9) could be
calculated in a saddle point approximation. This
results in the following form for the magnetization

SGJO

AVHT

M(T, H) = -2y(x) , (12)

where y(x) is the solution of the saddle point equa-
tion

0Ly, x)/0y=0. (13)

In the case T = 0 the two possible saddle points
satisfy the equation
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but only one of them
1 _—
Vo) = 527 + 2 - (14)

can be reached by an allowed deformation of the
contour I'. Substitution of Eq. (14) into (12) yields
the magnetization M (T, H) of a clean sample (up
to renormalization of the critical temperature (1),
(2)) obtained in Ref. 9. The saddle point y,(x)
serves as the scaling function.

Returning to the disordered case we note that in
the thermodynamic limit, the last term on the rhs of
Eq. (10) has an explicit self-averaged structure
N;1 tr (...) and therefore can be replaced by its
average. This procedure modifies the saddle point
equation

_ 1 D)
M T E {15

and results in a magnetization

2y,(@) H
M@, H)=M(T, H) i +e) ——— (16)
x2_+2|]
[l
where
S QmH' T )’sL?
&(T) = EFLD:—QndLQCZ—CO. (17)
NU p kBT

Note that the parameter &(T") is proportional to the
fourth power of the defect radius L thus justifying
the perturbation approach for short-range defects.

In zeroth order approximation with respect to
&(T) the magnetization has exactly the same form as
for a clean sample, thus retaining both the scaling
property and the existence of a crossing point.
However, due to renormalization of the critical
temperature, the crossing temperature 75 = Tg' -3rv
differs from its value Tg' a clean sample without
defects: dT"= or,(1+ (ZAZHC'2 YD1 In the next
order, scaling is virtually destroyed since the cor-
rection term (within the parenthesis in Eq. (16))
depends not only on the scaling variable x but also
on temperature. But at the crossing temperature 75
the magnetization reads

0 00
M@T" H) = MO(T% f +eTH LDD, (18)
0 H+H 0
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where HI= (T':) k TD/ (242%). Therefore if the
field is weak enough H << HY, then the crossing
point is restored, T serves as a true crossing tem-
perature and the magnetization at the crossing tem-
perature differs from its unperturbed form -2y, (x)
merely by a multiplicative constant 1 + 2g(1'59.

2.3. Magnetization: strong fields

When the magnetic field increases, the approach
used above becomes inapplicable. Firstly, it fails in
the vicinity of the matching field where the Abriko-
sov factor becomes very sensitive to the details of
defect configuration. Secondly, higher order terms
in the perturbation expansion for the saddle point
equation (which were omitted in the Eq. (16)),
grow with magnetic field. Fortunately, we have
here a new small parameter because the dimension-
less concentration ¢ of defects in the strong field
region is small. Therefore there is no sense in
renormalizing the critical temperature and it is
natural to use the concentration expansion [18].
Then in this region, the dimensionless temperature
fluctuation T(r) is now defined as

1/2
so,0" H (1) o (1)
() =0—0 —— . (19)
np o VkgTH T, -T

As mentioned above, the second term in the rhs
of Eq. (10) is self-averaging and can be calculated
using the limiting form of the density of states p(t)
of the matrix (11). For short-range defects in linear
approximation with respect to ¢, this density of
states reads

o™ = (1 - 3(1) + < p B8, (20)
Y

where A = 21TL2T00AHC'2 VH (®, W@ET)_1 and p(t) is
probability distribution of the dimensionless tem-
perature ¢; . Indeed, the matrix T, = is nothing but
the Hamiftonian of a particle with charge 2e in a
2D system subject to a perpendicular magnetic field
and containing short-range defects (projected on
the LLL). The first and second terms in Eq. (20)
correspond, respectively, to those states whose en-
ergy is stuck to the LLL (despite the presence of
zero-range defects (see, e.g., [20])) and those states
whose energies are lifted from the LLL by these
defects. For sufficiently narrow distribution p(¢),
the corresponding saddle-point equation leads to
the magnetization

1016

O c)\B1 E
M:MOE— —H, @D

(1 +2)8,y,(x)) Va7 +2 0

were M (T, H) is given by Eq. (1) with an initial
critical temperature T,

Rigorously speaking, scaling is destroyed since
both the concentration ¢ and the shifted eigenvalue
A8, depend explicitly on H and T. However, at
strong field the correction term in Eq. (21) becomes
negligibly small. This implies a restoration of the
crossing point. Indeed, at temperature T':I the mag-
netization MY = M(T" H) assumes the form

1 H,

HDD ’

0

0_ 0
M= MU -
0 1+n H+

(22)

with ™! = 21TL2H T, ,0,/®, . Therefore in the en-
tire strong field reglon H << H << H"the cross-
ing temperature commdes with its initial value TIj
and the magnetization in the crossing point practl—
cally coincides with its value M E in a clean super-
conductor.

3. Discussion

According to the results obtained above, within
the main approximation, the magnetization indeed
manifests two separate scaling regimes in the re-
gions of weak and strong magnetic fields. These
regimes are described by the same scaling function
that characterizes a clean sample, but with renor-
malized critical temperature in the weak region and
initial critical temperature at high fields. These
results are in complete qualitative correspondence
with the experimental observations of van der Beek
et al. Without pretending to account for a complete
quantitative description of the above mentioned
experiments, we nevertheless will show that some
quantitative agreement can also be achieved.

Let us discuss the limits of applicability of our
results and their relation to the experiment of
Ref. 12.

1. In the weak field region, the important small
parameters are €(T") (which enters the magnetization
(18)) and &(T) /(x + yo(x))2 (which enters the saddle
point equation). Using the parameters which
were employed in the experimental work [12]
(kghoH /), =1.15 TEK™, TH=78.9 K, and the rest of
parameters which were already mentioned in Sec-
tion 1) we find from Eq. (17) &T5 =0.5 8, and
&(TD,/(x+ Yo (x9)? = 0.25 (the latter figure is ob-
tained for pu,H = 0.2 T). For quite plausible value
8, = 0.5 one then finds (79 = 0.5 8, =0.25.
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2. The condition of convergence of the integral
over the expansion coefficients {C,} can be written
as H>0.25 H(DB%/B2 and even in the worst case
G% =8, it reads yyH = 0.25 T.

3. Then, one has pOHD= 6.4 T and applicability
of the LLL projection requires WyH > 0.5 T. The
weak field region of Ref. 12 corresponds to
HoH =0.2-0.02 T. Thus, in the weak field region,
only the condition for applicability of the LLL
projection is slightly violated, but the deviation is
not dramatic.

4. In the strong field region we find N =2.9
and therefore the correction term in parenthesis of
Eq. (22) is less than three percents so that in this
region our assumptions are fully satisfied.

Hence, up to non significant mismatch for the
very weak fields our theoretical assumptions and
simplifications are completely consistent with the
experimental parameters of Ref. 12. Using the same
set of parameters we display in Fig. 1 the quantity
M/NTH as a function of the scaling variable for
weak field (inset) and strong field (main part). We
used here the maximal value 8, = 1. In the strong
field region, the deviation form clean sample scaling
behavior is negligibly small for all three values of
the strong magnetic field, in complete agreement
with our results. In the weak field region, the
scaling functions for three different fields can
hardly be distinguished. This means that scaling is
undoubtedly valid in a vicinity of the crossing
temperature. At the same time the scaling function
differs from its form in a clean sample (1) by a
multiplicative constant (see the parenthesis in
Eq. (16)). Note that scaling in the weak field
region (which was experimentally established) is
less pronounced than that in the strong field region.

x
(&)
o -1t
R I
(O
v
L I
_ -3t
E
—
- -4
>~ -1.64 s .
= -0.045 -0.035

°3 2 1 0 1 2 3 a

Fig. 1. The quantity M/VHT as a function of scaling variable
x. Dashed, dotted and dot-dashed lines correspond to p,H =3,
4 and 5 T (main figure) and correspond to p,H =0.02, 0.1 and
0.2 T (insetion). The solid line corresponds to the clean-sample
scaling function (strong field region only).
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Apparently, the reason is that the experimental data
are fitted to account for the clean sample scaling
function. Nevertheless if we identify the fitted tem-
perature 82.6 K (found in Ref. 12 in the weak field
region) with the renormalized critical temperature
T ,=T, —08l, , and the fitted critical temperature
84.2 K in the strong field region [12] with T,
then, even within such a rough approximation, we
obtain 8; = 0.5. Recalling that 8, should be positive
and less than unity, the above result strongly sup-
ports the applicability of our theory to the pertinent
experiment [12].

4. Summary

In summary, we calculated the magnetization of
an irradiated superconductor below the meanfield
transition line H ,(T), using the approach deve-
loped in Refs. 8—10, 15. It was shown that, from a
rigorous point of view, disordered short-range de-
fects are expected to destroy the scaling behavior
and prevent the existence of crossing point in both
regions of weak and strong magnetic fields (with
respect to matching field Hg). And yet, within the
framework of the parameters which were employed
in the experimental work [12] the deviation from
scaling behavior appears to be negligibly small and
crossing points exist in both field regions, in com-
plete agreement with the experimental findings.
The two fitting critical temperatures introduced in
Ref. 12 for the strong and weak field regions corre-
spond, in our formalism, to the initial and renor-
malized critical temperatures.

This paper is devoted to the memory of Lev
Shubnikov, whose outstanding contributions to
many branches of low temperature physics have
shaped its development ever since.
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