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The line-shape and broadening of coupled phonon-ripplon resonances of Wigner-solid conduc-
tivity are studied using the memory function formalism. The analytic properties of the memory
function permit coordinating the approximations of the secular equation for the coupled
phonon-ripplon modes and the line-broadening of these resonances. Special attention is paid to the
description of the strong-coupling regime realized for surface electrons on superfluid helium. For
this case it is shown that the line-broadening is much smaller than and the line-shape is different
from those found previously using the weak-coupling theory. Different theoretical approaches are
compared with available experimental data.

PACS: 67.40.Db, 73.20.–r

1. Introduction

A Wigner solid (WS) is usually associated with the
insulator state of an electron system. In such highly
correlated state the electrons are assumed to be pinned
by static media defects or boundary-shape distortions.
A remarkable exception is the two-dimensional (2D)
WS formed on the free surface of liquid helium. In
this case there are no static media defects and the
edges of the electron sheet are formed by the external
electric fields of the guard electrodes. In the presence
of an ac driving electric field such WS can move along
the helium surface, interacting with media excita-
tions.

At typical temperatures T ˆ 0.5 K, which can be as-
sociated with the WS state for areal electron densities
n s � 108–109 2cm� , electrons interact predominantly

with capillary wave quanta (ripplons). Because each
electron is localized near its lattice site, the elec-
tron-ripplon interaction induces a sublattice of surface
dimples [1]: a static surface displacement �( )r �
� ��gg

gr( ) exp ( )0 i , where g is the reciprocal lattice vec-

tor. Thus, the electrons become self-pinned to the sur-
face dimples, which can move and follow slow elec-
trons. In other words phonons of the WS formed on
the surface of liquid helium are strongly coupled to
the media (surface) excitations. Therefore, the low-

frequency excitation spectrum of the WS interacting
with ripplons differs significantly from that estab-
lished for a 2D electron solid without interactions [2].

The observation of the coupled phonon-ripplon
modes with � � � �	 �g

// g
1 1

3 2 (here � and � are the
surface tension and mass density of liquid helium, re-
spectively, and g1 is the smallest reciprocal lattice
vector) and electron-ripplon resonances at higher fre-
quencies � �� g , with larger g, have served as unique
proof of the ordered state of the electron system [3].
Considerable research has been performed on the the-
ory describing these coupled modes and the positions
of the electron-ripplon resonances [4–6]. At the same
time, there is a lack of theoretical research on the
line-broadening and line-shape of the electron-ripplon
resonances in the strong-coupling regime which can be
used for the analysis of the large body of data that is
now available [7–9].

Another important issue related to the electron
self-pinning to the sublattice of surface dimples is a re-
markable nonlinear conductivity of the WS reported
for surface electrons on liquid helium [10,11]. Possi-
ble explanations of this phenomenon also involve the
concept of strong coupling of the Wigner lattice to
surface excitations of liquid helium. Therefore, an ac-
curate description of the conductivity of the electron
crystal interacting strongly with media excitations is
very important for understanding the unusual proper-
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ties of «solid» currents observed for surface electrons
on liquid helium.

The real part of the conductivity of a highly corre-
lated electron system in a nonuniform electric field Ek
with a small excitation wave-vector k directed along
the electric field can be quite generally written in the
form [12]

Re 
 �
� �

� � � � �
k

s

l

e n

m w k
( )

( )

[ ( ) ( ) / ] ( )
�

� � �

2

2 2 2

,

(1)

where me is the free electron mass and 
 
l l kk( ) ,� is
the plasmon spectrum or the spectrum of longitudinal
phonons of the WS established for the flat surface.
The auxiliary functions � �( ) and w( )� make up
the conductivity relaxation kernel M w( ) ( )� �� �
� i� �( ), usually called the memory function. The
imaginary part of the relaxation kernel � �( ) can be
called the effective collision frequency because it de-
termines the kinetic friction acting on the electron
system because of the interaction with scatterers.

The real part w( )� describes the non-dissipative
force acting on electrons because of the induced media
polarization cloud. This force is proportional to the
average electron displacement u induced by an ac driv-
ing electric field. If w( )� can be disregarded, Eq. (1)
describes the power absorption because of the resonant
excitation of 2D plasmons. For the WS state of the
electron system realized on liquid helium, w( )� deter-
mines the secular equation for the coupled phonon-
ripplon modes:

� � �� � �w p k( ) / ,,
2 0 (2)

where the subscript p denotes the polarization:
p l t� ( , ). At frequencies satisfying this equation with
p l� , the power absorption proportional to
Re [ ( )]
 �k increases in a resonance manner. In the
theory of the coupled phonon-ripplon modes the func-
tion w( )� has singularities at typical ripplon frequen-
cies (� �� g) [2,4]:

� �
�

� �
w

g

( ) �
�

2

2 2
.

Therefore �g1
is the upper bound for the slow coupled

phonon-ripplon modes 
 p k
s

g,
( ) 	 �

1
, as shown in Fig. 1.

This figure shows only a very small part of the first
Brillouin zone with � �k g� 		k . The lowest dotted
horizontal line indicates the ripplon spectrum at
much larger wave-numbers q � �| |g k1 � g1 repre-

sented in the first Brillouin zone. There are also cou-
pled modes below each of the higher ripplon frequen-

cies � � �g g1
which are not shown in Fig. 1. The fast

modes 
 p k
f
,

( ) are determined as the phonon modes af-

fected by the field of static surface dimples:


 
p k
f

f p k,
( )

,� ��2 2 , where �f is the frequency of sin-

gle electron oscillations in a dimple.
In the strong coupling regime � �f g��

1
usually re-

alized for the surface electrons on liquid helium, the
secular equation and the positions of the resonances
are well described by the self-consistent approach pro-
posed in Refs. 5, 6. The characteristic frequencies �g1
and �f introduce a natural separation of electron dis-
placements u l from the lattice sites into the slow and
fast parts (u u ul l l� �s f, , ), as follows from Fig. 1.
Therefore, the equation of motion for the slow modes

 p k

s
,

( ) (or equivalently the interaction Hamiltonian)
can be averaged over the fast vibrations, which intro-
duces the high-frequency Debye-Waller factor
(DWF) exp ( )� � �q u /f

2 2 4 . Owing to the limiting fre-
quency �f , the mean-square displacement of the fast
mode � �uf

2 does not exhibit the logarithmic depend-
ence on the linear dimensions of the sample that is
typical for 2D solids. The quantities � �uf

2 and �f are
found by a self-consistent procedure. Good agreement
between the theory and experiment has been reported
for the slow modes in the temperature range
0 2 0 6. .K K� �T [8].

The ultra-low temperature measurements of the
high-frequency DWF conducted in Ref. 13 also agree
well with the self-consistent theory in the entire tem-
perature range. This means that the real part of the
conductivity relaxation kernel w( )� has been well es-
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Fig. 1. View of the spectrum of the WS phonon modes cou-
pled to media vibrations (ripplons) for ns � 9.5 � �108 2cm .



tablished. In contrast, the imaginary part � �( ) has
been analyzed only for the weak coupling regime [14]
or high-frequency conditions � � �� ��f g [15]. In
this paper we use the memory function formulation of
the electron conductivity [16] to describe the elec-
tron-ripplon resonances and the dc mobility of the WS
in the regime of strong coupling with media excita-
tions.

It should be emphasized that in the memory func-
tion approach � �( ) and w( )� are not entirely inde-
pendent because they are the imaginary and real parts
of the memory function which possesses certain ana-
lytical properties [16]. They must obey the Kramers-
Kronig relations. Both parts can be expressed in terms
of the electron dynamical structure factor (DSF)
S( , )q � . Therefore, the approximations for S( , )q � and
� �( ) must be consistent with w( )� and with the
well-established secular equation for the coupled pho-
non-ripplon modes. In this paper we show that some
important conductivity results from the weak-coup-
ling theory, formally extended to the strong-coupling
regime, do not satisfy this consistency requirement
and overestimate � �( ) significantly.

We have analyzed the properties of S( , )q � and � �( )
in the strong-coupling regime and found that the dis-
crepancy primarily originates from the fact that a sig-
nificant part of the electron-ripplon interaction Ha-
miltonian

H
S
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(3)

(here R l is the lattice-site vector, Vq is the elec-
tron-ripplon coupling, and SA is the surface area) is
included in the Hamiltonian of the new slow modes
causing the strong renormalization of the WS phonon
spectrum 
 p k

s
,

( ) . This concerns the second term of the
expansion enclosed in the square brackets [...], and
even the next term ( ),i /squ l

2 2 when � q � � q
( )0 .

These terms play an essential role in the secular equa-
tion for the slow modes.

In the weak-coupling theory the interaction pro-
portional to V iq s� q lqu , describes scattering events
involving one slow phonon (
 p k,

( )s ). Therefore, any ap-
proximation for the electron DSF in the strong-cou-
pling regime should exclude these scattering events in
order to avoid double counting the contribution due to
the term i squ l, . This reduces significantly the effec-
tive collision frequency � �( ) as compared to the result
found by formal extension of the weak coupling the-
ory, and affects the line-shape of the electron-ripplon
resonances.

The discussion above is not applicable to the fast
phonon modes because they represent electron oscilla-
tions in the presence of the field due to static dimples
� g

( )0 . Anyway, at low frequencies one-phonon pro-
cesses involving 
 p k

f
,

( ) and �g are forbidden because
�f >> �g . In this paper we shall also analyze
multi-phonon processes for slow and fast modes. This
analysis can be used to describe the conductivity of
the WS in the strong-coupling regime. The results are
compared with available experimental data.

2. Basic relations

Götze and Wölfle [16] proposed the following ap-
proximation for the conductivity relaxation kernel

M
m N

G G
e e

F F
R

F F
R

x x x x
( ) [ ( ) ( )]( ) ( )�

�
�� �

1
0 , (4)

where N n Se s A� is the number of electrons,
F r� � �� �

e
H / eint is the force owing to the interaction

with scatterers, GAB
R( )( )� is the conventional retarded

Green’s function for two operators A and B

G A B
i

A t B dtAB
R i t( )( ) ; [ ( ), ( )] ,� �

�� �� �� � �
�

��
e

0

0
(5)

and � � means averaging over equilibrium distribu-
tions. Even though for the main interactions Eqs. (1)
and (4) reproduce the well-known results of the ki-
netic equation method in the entire frequency range,
in general Eq. (4) is a high-frequency approximation
(� ��� ). Therefore at low frequencies, for certain
coupling potentials Vq, it may give a wrong numeri-
cal proportionality factor of the order of 2. A remark-
able exception is a highly correlated electron liquid,
where the electron-electron collision rate � �ee �� . In
this case the approximation Eq. (4) is proven to be
valid at all relevant frequencies [12]. The Wigner
solid certainly satisfies this requirement.

The real and imaginary parts of the memory func-
tion are related with one another because of the
well-known representation

G F t F
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(6)

where � � � is the Fourier transform of the correlation
function. For the interaction Hamiltonian Hint given
in Eq. (3), the above introduced force operator F can
be written in the form

F q
q

q q� � � �
i

S
V n

A
q� , (7)
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where n i� � �q l
l

qrexp ( ) is the electron density fluc-

tuation operator. Straightforward evaluation of the

force-force correlation function yields

� � � ��F t F n q V Qx x s x q q( ) ( )0 2 2 2
�

q

� � � � �[( ) ( , ) ( , )]N S N Sq q q q1 q q� � � � , (8)

where Q q/q q� � 2�� , and Nq is the equilibrium
ripplon distribution function. The electron DSF
S( , )q � is defined in the usual way

S N n t n dte
i t( , ) ( ) ( )q q q� �� � ��

��

�

��1 0e . (9)

Thus, Eqs. (4), (6) and (8) make it possible to ex-
press the real and imaginary parts of the conductivity
relaxation kernel in terms of the electron DSF.

Under the usual experimental conditions Nq �
� T/ q�� . Therefore the effective collision frequency
can be written in the very simple form
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At the same time, the real part of the conductivity re-
laxation kernel w( )� contains additional integration
over the frequency argument �� with the factor
( )� �� � �1 according to Eq. (6).

Let us ignore, at first, the separation of electron
displacements into slow and fast modes and consider
possible approaches to evaluating the electron DSF.
The conventional procedure is to rewrite Eq. (9) in
the following form employing the Bloch identity and
the algebra of noncommuting operators:
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np k, is the WS phonon distribution function and Ep
q
,

( )
k

is the projection of the phonon polarization vector
E kp, onto the direction of q.

At high temperatures, the exponent h tq( , )l is large
and it is reasonable to use the short-time approxima-
tion, expanding h tq( , )l in powers of 
 p kt, up to sec-
ond-order terms near its minimum. In this limit the
DSF of the electron solid coincides with the DSF of a
nondegenerate electron gas. This conclusion has an
analogy in the theory of neutron scattering by crys-
tals, where the solid target can be approximated by a
nuclear gas.

At low temperatures in ordinary solids the conven-
tional approach is to expand the exponential in
Eq. (11) in powers of 2 2q W t( , )l . This gives zero-
(elastic), one-, two- and other multi-phonon terms.
This is called the phonon expansion. For example, the
first two terms of this expansion can be written as
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where nB( )�� is the Bose distribution function,
W q Wq � 2 0 0( , ), and we have taken into account the
fact that the main contribution to S( )1�ph comes from
transverse phonons. In conventional systems
| tE k, |2 1� . We shall retain this factor in Eq. (14), so
that it is applicable to the slow phonon modes of the
strongly coupled system, where | |,E kt

2 1- . The factor
% q g k, � taken out of the brackets {..} indicates that in
one-phonon processes a WS phonon interacts with a
ripplon of the wave-vector q g k� � . In most cases,
typical phonon wave-vectors k g		 and % q g k, � can be
replaced by % q g, .

In the elastic approximation [ ( , )S q � �S( )( , )elas q � ]
the conductivity relaxation kernel can be evaluated
employing Eqs. (6) and (13):
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The real part w( )� of Eq. (15) gives the proper secu-
lar equation for the slow coupled phonon modes, if
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2 22 2W g u /g f. � � . It is important that the effective
collision frequency of electrons forming the 2D
Wigner solid has a resonance structure itself, which
agrees with the hydrodynamic model [17,18]. Equa-
tions (15) and (16) with the self-consistent DWF can
be also found directly by evaluating the force acting
on the Wigner lattice induced by slow uniform dis-
placements ( esu ( )t i t� � � ),

F
u

( )
[ ( ) ( )] ( )

t
N

m w i t
e

e� �� � � � s , (17)

when the surface displacements � q( )t are described
by the usual capillary wave equations. In the latter
treatment the averaging over the fast modes is an ac-
curate procedure which results in the appearance of
the self-consistent DWF exp ( )� � �g u /f

2 2 2 .
For 2D solids the conventional low-temperature

phonon expansion is problematic becauseW( , )0 0 �
� � �u /2 4 diverges as the linear dimension L . �. The
correct treatment has been proposed in Refs. 19, 20. It
represents hq as a logarithmic function of Rl . For sur-
face electrons on liquid helium a similar approxima-
tion was used in Refs. 14, 21:

h t T t bR /c q u /q q m t( , ) ( )lnl l/ �0
1
2 3

4
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2 2 ,

(18)

where
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q
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T
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2

24
(19)

� �u0
2 is the zero-point mean-square displacement, b is a

number of the order of 1, �m t mT/ c k� min ( , )� , and
k nm s� 4� . At low temperatures �m T/� �, because
the logarithmic increase of � �u2 at large wavenumbers
is cut off by the Bose distribution function.

According to Refs. 14, 21 the time dependence of
the approximation for h tq( , )l given above smears the
% - shaped spikes in the frictional force and the effec-
tive collision frequency in Eq. (16). The final results
can be expressed as a long-time approximation for the
effective WS dynamical structure factor
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where

6
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2

2 1sin ( ) ( )7 , (21)

and 7( )x is the gamma function. Then the WS colli-
sion frequency can be written in the form
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The conductivity obtained in Ref. 14 can be found
employing this expression and the general relation
Eq. (1). The nonresonant term in the square brackets
in Eq. (22) was previously disregarded. If � g << 1,
the dimensionless factor 6 �g g T T. �( ) . The im-
portant points are that Eq. (22) does not transform
into Eq. (16) at T . 0 and the resonance structure of
the effective collision frequency has unusual tails: the
frictional force increases as a power law of the recip-
rocal detuning | |� �� �

g
1 with a temperature-depend-

ent exponent 1 � � g T( ). The line-shape of the elec-
tron-ripplon resonances which follows from the
conductivity equation given in Ref. 14 has a tail that
decays much more weakly than in the usual Lorent-
zian form. These results have also been used to de-
scribe of the Bragg—Cherenkov scattering and the
nonlinear conductivity of the WS [21].

3. Weak-coupling treatment

The approximation of Eq. (18) and the result of
Eq. (22) were found neglecting the changes induced
in the WS phonon spectrum by the phonon-ripplon in-
teraction. This means that strictly speaking they cor-
respond to the weak coupling regime. The important
question is why S( , )q � and � �( ) do not transform into
the result given by the elastic approximation if T . 0.
A related important point is that the approximation of
Eq. (20) for the electron DSF is not consistent with
the secular equation for the coupled phonon-ripplon
modes because it cannot reproduce Eq. (15) for the
real part of the conductivity relaxation kernel.

The answer can be anticipated, if we note that � in

Eq. (22) is proportional to � g T( ) when � g T( ) << 1.

It is clear that it relates somehow to the one-phonon

term [Eq. (14)] of the conventional low-temperature

expansion. Indeed, the main contribution to the sums

k
� containing the delta-functions is due to quite large

wavenumbers k /ct t� � (much larger than k /L0 1� ).

Then, for phonons with k ‰ kt only, we can separate

W( , )0 0 andW t( , )l in h tq( , )l and expand the exponen-

tial function in Eq. (11) in powers of 2 2q W t( , )l , as-

suming that the rest of h tq( , )l is small at low enough

temperatures. Comparing with the result given in

Eq. (22) for arbitrary � g T( ) < 1 will show if the lat-
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ter assumption is true. For example, if it is not true

and the rest of h tq( , )l is important at � g T( ) << 1, we

will arrive at a different asymptotic behavior as

T . 0.
Assuming that 
 t k tc k, � is not affected by rip-

plons, | |,E kt
2 1� , and � ��� << T Eq. (14) can be trans-

formed into the form
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where the factor T/�| |� originates from the phonon
distribution function nB( | | )�� � T/�| |�. This factor is
responsible for the unusual resonance structure of the
effective collision frequency which can be evaluated
employing the general relation Eq. (10)
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The resonance structure of the effective collision fre-
quency as � �. g is described by the first term in pa-
rentheses. Comparing Eq. (24) with the previously
found result [Eq. (22)] shows that these equations
are equivalent in the limiting case � g T( ) << 1. The
comparison also shows the effect of long-wavelength
fluctuations in the 2D electron crystal on the conven-
tional one-phonon term. The long-wavelength fluctu-
ations just change the exponent of the resonant term
(| | | |� � � �

�
� . �� � �

g g
g1 1
) and restrict the propor-

tionality factor � g T( ) when it becomes of the order
of 1. Both these effects just reduce the result of the
conventional one-phonon term [Eq. (24)]. Therefore,
we see that in the limiting case � g T( ) << 1 Eq. (22)
transforms into the one-phonon term of the conven-
tional phonon expansion rather then into the elastic
term.

Thus the approximations for S( , )q � and � �( ) given
in Eqs. (20) and (22) at low temperatures should not
be treated as substitutes for the zero-temperature
forms of Eqs. (13) and (16), but rather as the forms
that should be added to them. This can be verified in
terms of the approximation given in Eq. (18) by ex-
panding formally the proper time integral in powers of
the small parameter � q. In order to guarantee the con-
vergence of the time integral we can introduce an ad-
ditional infinitesimal parameter and set it to zero in

the final result. This gives the following transforma-
tion of the conventional %-spikes:

� �
% � % �

�

�
( ) ( )

( )
,. � q T

2
(25)

if � q << 1. This agrees with the elastic and one-
phonon terms in the conventional phonon expansion.
The important point is that in this case we regain the
proper form for the real part of the memory function
and the secular equation for the coupled modes, at
least for � q << 1.

Comparing Eqs. (22) and (24) one can conclude
that the long-wavelength fluctuations can be disre-
garded when � g T( ) << 1. For the first reciprocal lat-
tice vector, at the WS melting temperature the param-
eter � g mT /( ) � 1 3. It increases rapidly with g because
� g T g( ) � 2. This affects electron-ripplon resonances
with higher frequencies �g . For steady motion of the
WS with a constant velocity v we can formally make
the substitution � . gv. Then both terms in parenthe-
ses contribute equally in Eq. (24), because one can set
g g. � in the second term. This increases the resonant
term of �( )v for Bragg—Cherenkov scattering by a
factor of 2 as compared to the ac resonant term, and it
agrees accurately with the result found for the nonlin-
ear conductivity [21] when � g T( ) << 1. The one-pho-
non origin of the result given by Eq. (22) is very im-
portant for the strong-coupling treatment.

4. Strong-coupling regime

The WS DSF S t( , )q can be formally evaluated in
terms of the new coupled phonon-ripplon modes. In
the regime �f >> �g1

the fast modes 
 p k
f
,

( ) represent
electron oscillations in the field of steady dimples and
| |,

( )Ep k
f 2 � | |,Ep k

2 1� (here Ep k
f
,

( ) is the polarization
vector of the fast modes) [22]. Because the spectrum
of the fast mode 
 t k

f
,
( ) has a quite high limiting fre-

quency �f , one can use the conventional phonon ex-
pansion to evaluate the contribution of this mode.
This procedure was performed in Ref. 15 for high sig-
nal frequencies � �� f . The important point is that at
low frequencies � �� g under the strong-cou-
pling-condition �f >> �g1

there are no one-phonon
terms involving fast phonons because of the energy
conserving delta function, and the slow modes must be
taken into account in order to find the contribution
due to one-phonon processes.

For slow modes the spectrum of the transverse
phonons can be found in an analytical form [2]


 t k
s
,
( ) �

�

�

g t

f t

c k

c k

1

2 2 2�
(26)
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which is valid near the melting point, where coupling
with ripplons of q � g1 dominates. At lower tempera-
tures this equation can be used as a simple analytical
interpolation. In this approximation the fact that the
polarization vector Et k

s
,
( ) of the slow mode decreases

rapidly when k > �f t/c and this mode transforms
into the pure ripplon mode with q g k� �1 must be
taken into account [22]:

Et k
s
,
( )�

�

� �
g t k

s

f g
t k t k

s
t kM1

1

2 2�
�

( ),
( )

, ,
( )

,



E E ,

(27)

where Et k, is defined for a flat surface. Combining
Eqs. (26) and (27) one can see that M kt k

s
,
( ) � �2 for

k >> �f t/c . For small k << �f t/c the quantity
Mt k

s
,
( )� � �g f/

1
<< 1 reflects the mass increase due to

surface dimples.
Substituting Eqs. (26) and (27) into the expression

for S( )( , )1�ph q � given in Eq. (14) we note that in
one-phonon processes the phonon wavenumber

k k
c

t
f

t g

� �
�

* � �

� �
1

2 2
(28)

is even larger than that of the weak-coupling ap-
proach, where k k /ct t� � � . Remarkably, the in-
crease of the wavenumber k and 1/ / kt k

s| |,
( )� �
 is ex-

actly compensated by a decrease in | | ( ),
( )

,
( )Ep k

f
t k
sM2 2� .

Therefore for g g� 1 we reproduce the one-phonon
contribution to the electron DSF found in the
weak-coupling treatment [Eq. (23)], except that en-
ergy conservation � � �
 t k

s
,
( ) 0 restricts the possible

values of the frequency argument because 
 t k g,
( )s 	 �

1
:

S( )( , )1�ph q � �

�
� �

� �
� �

��

�
9 � � %q q u /

g e
g

f Ne
� � �

�

� �
2 2

1

1

2
( ) ,q g

g

, (29)

where the reciprocal lattice vectors involved have the
smallest absolute value g1. An important consequence
of the restriction | |� �	 g1

is that the ripplon-absorp-
tion term of the effective collision frequency, contain-
ing | |� �� �

g
1, is zero in the strong-coupling treat-

ment.
To understand the behavior of the electron DSF in

the strong-coupling regime for � q T( ) � 1, consider the
contribution of the slow modes only h tq

s( )( , )l . Using
the actual forms for the slow phonon spectrum 
 t k

s
,
( )

and the polarization factor Mt k
s
,
( ) given above we

obtain

h tq
s( )( , )l � �

:
�

�

�

�

q
f

f

T
d dx

x x
( )

2
0

2

0

2

2 2� �
�

�
�

� � �
�

0

1

2
2
2

3

4

5
5
5

�

 

!
!
!

"

#

$
$
$

1 1

2 2
cos cos

xR

c

x t

xt

g

f

l :
�

�
. (30)

As compared to the weak-coupling theory, here the
upper bound for the logarithmically large term is �f
instead of �m . Therefore, the strong-coupling theory
approximation for h tq

s( )( , )l , similar to Eq. (18), can
be written as

h t T t bR / cq
s

q g t
( )( , ) ( ) ( )l l/ �0

1
2 3

4
5� �ln *

1
2 2 2 . (31)

The complete function h tq( , )l also includes the con-
tribution due to the fast modes h tq

f( )( , )l . At low tem-
peratures the latter can be approximated as
h tq

f( )( , )l � q u /f
2 2 2� � . Thus, employing the approxi-

mation Eq. (18), in the strong-coupling regime we
must make the substitutions � �m g.

1
and c ct t. �*

� c /t g f� �
1

.
The analysis given above indicates that strong

phonon-ripplon coupling does not change much the
electron DSF for small values of the frequency argu-
ment | |� �	 g1

, if � q T( ) << 1. As a result, the one-
phonon term in the effective collision frequency re-
sponsible for the unusual resonance shape of � �( ) at
� �� g1

appears to be the same as in the weak-cou-
pling theory. The important question is whether this
form of the DSF can be used in Eqs. (4) and (8) for
the conductivity relaxation kernel M( )� . The electron
DSF appearing in these equations originates from the
total interaction Hamiltonian given in Eq. (3). In the
strong-coupling theory the interaction term propor-
tional to � q lqui s, is included in the Hamiltonian of
the slow phonon modes (see Refs. 2, 22) which is then
transformed to the canonical form of independent os-
cillators by a linear transformation of the normal coor-
dinates. Therefore, if we consider scattering events in
terms of the new (reconstructed) phonon modes, the
term � q lqui s, should be excluded from the scattering
Hamiltonian.

It is clear that the rest of the interaction Hamil-
tonian in Eq. (3) cannot result in one-phonon scatter-
ing events involving slow phonons. Therefore, in the
strong coupling regime it is reasonable to exclude
the one-phonon terms S( )( , )1�ph q � and � �( )( )1�ph

from the conductivity relaxation kernel. This concerns
Eq. (22) also, if we agree that it represents the con-
ventional one-phonon term affected by long-wave-
length fluctuations with k kt	 . The rest of the inter-
action Hamiltonian can result only in multi-phonon
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terms of the electron DSF which we are going to dis-
cuss below.

The electron-ripplon coupling Vq entering the ef-

fective collision frequency is an increasing function of

q or a constant proportional to the holding electric

field E; (Vq � eE; ). This means that the main con-

tribution to the sum
q
� of Eq. (10) is due to large

wavenumbers q. In this case, the multi-phonon terms

can be taken into account by a short-time approxima-

tion expanding hq in powers of t near the minimum

(t � 0). This approximation for h tq( , )l and S( , )q � fa-

vors the contribution due to the fast modes 
 p k
f
,

( ) and

l � 0, which can be written in the following form

well-known in the theory of thermal neutron scatter-

ing by crystals:

S q
K Kq e

q

q e
( , ) exp

( )
�

�
<

< �

<
� �

��

 
!
!

"

#
$
$

�
�

2

4
, (32)

where Ke is the mean kinetic energy per electron

K N n /e e
p

p k p k� �� �( ) ( ).
,

, ,2 1 21
�

k


 (33)

It is clear that at low temperatures the main contribu-
tion to Ke is due to large wavenumbers.

In the Debye approximation

K T
T

c k
x x dxe

t m

c k Tt m

�
0

1
22

3

4
55 ��2
2

0

2

�

�

2 coth

/

( )

�
0

1
2
2

3

4
5
5 �2

2
4

4

0

2

T
T

x x dx
l k

/ T

m

l km

�

�







,

,

( ) ,coth

where k nm s� 4� . For T >> �c kt m this equation
yields K Te . , but for lower T the mean kinetic en-
ergy of electrons in the WS state is larger than T be-
cause of the zero-point term. For a nondegenerate
electron gas the typical wavenumbers q m T/e� 8 �,
which make the main contribution to the effective
collision frequency, decrease strongly with cooling. If
the characteristic wavenumbers q behaved in this
manner in the WS state, the approximation Eq. (32)
would fail rapidly as the temperature decreases. The
important point is that for the WS q m K /e e e� 8 �

remains large because of the zero-point vibrations as
shown in Fig. 2 [at T > 0.1 K it is substantially
smaller than the wavenumbers of thermal ripplons
q T/ /T

/ /� ( ) ( )�
2 3 1 3� � ]. This makes Eq. (32) a rea-

sonable approximation even at quite low tempera-
tures.

The electron-ripplon couplingVq consists of the po-
larization term and the holding field term eE; [12].
Therefore the effective collision frequency, which fol-
lows from the short-time approximation of Eq. (32),
can be written as

�
� �

WS
xeE

U x dx� ;
�

��
( )

( ) ,
2

2

0
4

2 2

�
e (34)

where

U x
q

eE
x P

q xe e( ) � �
0

1
2
2

3

4
5
5;

1
2 4

2
2

2 2

2

=

>
, (35)

= �
�
�

e2 1
4 1

( )
( )

º
º

,

q m K /e e e� 8 �, º is the dielectric constant of liquid
helium, and P y( ) is the electron-ripplon coupling
function for the polarization term [at low tempera-
tures P y( ) � 0 5 4 1. ( )ln /y � ]. In the limit of strong
holding fields Vq� eE; (U � 1) the effective colli-
sion frequency �WS is, remarkably, independent of
Ke and is identical to that found for a nondegenerate
electron gas with �ee >> �. The high values of qe
found in the WS state affect only the polarization
term of Eq. (35). In particular, this increases the part
of �WS that is linear in E; . The ratio of �WS to the
result found for the gas state �gas is shown in Fig. 3
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as a function of the holding electric field E; . This in-
dicates that the effective collision frequency of the
WS given in Eq. (34) is relatively larger than �gas
for weaker holding fields E; .

The magnitude of the multi-phonon terms can be
determined by analyzing the two-phonon terms in the
phonon expansion of the WS DSF. Consider, first, the
contribution due to the fast modes whose frequencies
are restricted by the condition 
 p k

f
,

( ) > �f >> �g . Then
energy conservation restricts the analysis to phonon
scattering processes only, where the WS phonon fre-
quencies enter the %-functions with opposite signs. In
the temperature range T > ��f direct evaluation
yields

S( )( , )2- ph q � �
��

�
%q

f

q u /
e

T
Nf

2
2

2

2 2( )
,e

� � � � q g
g

. (36)

The respective contribution to the electron collision
frequency can be written in the form

�
�

� �
�( ) ( ) .2- ph e� � � � �n

m
T Vs

e f
g g

g u /f

8
2 2 22 2

g

(37)

The temperature dependence of this term is deter-
mined by the interplay of two parameters: � g T T( ) �
and � �u Tf

2( ) . As � � . � �u T uf f
2 2 0( ) ( ) we obviously have

�( )2- ph � T2.
For slow modes [
 p k

s
,

( ) < �g1
] the situation is more

difficult. Formal evaluation taking into account the
polarization factors Mt k

s
,
( ) gives

Sslow
2-ph( )( , )q � �

� �

��

�
� %q q u /

e
g

f J N
2

2

2

2 2

1
| |

( ) ,,e
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�
� q g

g

(38)

where

J
dy

y y y yy

y
g

g

m

( )
| | ( | | )

( )(| | / )
,�

� 9 � �

� �
�

�

� � �
�
0

1

1
1 12 2

(39)

y /m g
� �� � �

1

2 2 , the lower limit y ck / f0 0� � , and

k0 is the smallest wavenumber of the finite electron

system (k /L0 1� ). The integral J( )� depends on the

linear size L of the system logarithmically as

J y /ym( ) ln( )� / 0 , which indicates that the conven-

tional phonon expansion of the WS DSF for the slow

modes is asymptotic and the high-order terms cannot

be used carelessly, especially if the parameter � g is

not small enough. Generally, Eq. (38) is similar to

the result found for the fast modes [Eq. (36)]. The

important point is that in the sum
g
� the reciprocal

lattice vectors are now restricted to � �g � g1 because

the phonon frequencies are limited by �g1
. This also

indicates that the ripplon emission term in the effec-

tive collision frequency is zero because the argument

� �� g of the DSF does not satisfy the requirement of

Eq. (39).
There are also multi-ripplon scattering processes in

which the ripplon wavenumbers q are less restricted
by the electron wavenumbers. For q >>1 2/ uf� � their
contribution can be estimated by the geometrical op-
tics approximation. The interaction changes the en-
ergy and velocity of ripplons in the electron localiza-
tion area. The respective correction to the effective
collision frequency of electrons is found as [23]

?�
> �

��
/

� �

�
3 4 2

3 3 2 3 24

T

m uf
/( )

. (40)

This correction has a relatively weaker dependence on
the holding electric field (?� >� � ;

4 4 3E / ).
Usually, it is much smaller than the result given by
the short-time approximation Eq. (34).

5. Results and discussion

An important consequence of the weak-coupling re-
sult [14] given by Eqs. (20) and (22) is that the ap-
pearance of the electron-ripplon resonances generally
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does not coincide with the WS phase transition. Let us
define the characteristic temperatures Tn

* (here
n � 1 2 3, , , ...) as the solutions of the equation
� g nn

T( )* � 1. Recalling the melting temperature of the
2D electron crystal T n a m c /m s e t� 2 2 4� given by the
dislocation-melting theory [24] and the definition of
� g T( ), we can see that for the triangular electron lat-
tice the series Tn

* is T Tm1 3* � , T Tm2
* � , and

T T / Tm m3 3 4* � 	 . Therefore, near the WS phase tran-
sition the only resonance at � � �g1

can exist in the
presence of long-wavelength fluctuations. Still, at this
resonant frequency there are no electron-ripplon reso-
nances under the usual experimental conditions (they
are shifted into the range � �	 g1

). The other two re-
sonances �� �g2

and � �� g3
cannot exist at T � Tm

in the weak-coupling theory because the exponent
1 � � g T( ) appearing in the resonant conductivity term

 � �

�
� �

�
1

1
/ g

g| | is zero or negative.
According to the relation between T3

* and Tm writ-
ten above, as temperature decreases the weak-coupling
theory gives a 25% delay in the appearance of the elec-
tron resonances with �� �g3

as compared to the reso-
nance with �� �g2

and the WS phase transition. For
example, the resonance Z of the experiment of Grimes
and Adams [3] should not be observed before
T /� �( )3 4 0.45 K � 0.345 K. Still, it is clearly seen
already at a substantially higher temperature T �
= 0.42 K. A similar conclusion follows from a detailed
study of the electron-ripplon resonances reported by
Deville [7]. He observed the high-order resonances up
to � �� g13

. The high-order resonances indeed appear
successively at progressively lower temperatures be-
low Tm . It was reported that at T � T /m 5 modes
up to n � 13 can be detected for typical density n �
� 2 108 2� �cm . The characteristic temperature Tn

*, be-
low which the resonance can be observed according to
the weak-coupling theory under these conditions, is
substantially lower than T: T T /m13 3 28� � 01. Tm .
Thus both experiments show that the weak-coupling
treatment of thermal fluctuations of the 2D WS over-
estimates the role of long-wavelength vibrations.

The discussion above pertains not only to the reso-
nance structure of the effective collision rate � �( ). It is
clear that the model DSF Eq. (20) cannot give the pro-
per resonance structure of the real part of the conducti-
vity relaxation kernel w M / g( ) Re ( ) ( )� � � � �� � �2 2

which is responsible for the high-order coupled pho-
non-ripplon modes. Therefore the observation of the
high-order resonances for 1 0� �� g T( ) indicates that
long-wavelength fluctuations of the 2D WS which are
strongly coupled to media vibrations are less impor-
tant for the conductivity relaxation kernel. An expla-
nation of this surprising conclusion was given in the
preceding section. It is based on the fact that the most

important part of the electron-ripplon interaction pro-
portional to � q lqui s, is included in the Hamiltonian of
the slow coupled phonon-ripplon modes. As a result, it
cannot lead to any scattering of excitations of the slow
modes. The long-wave fluctuations represent the exci-
tations of slow coupled phonon-ripplon modes and
therefore in the strong-coupling theory they affect the
conductivity relaxation kernel to a much lesser extent.
Then the appearance of the slow plasmon-ripplon reso-
nance with � < �g1

obviously coincides with the WS
phase transition, and the high-order resonances (
g gn � 1) are not restricted by the condition
1 0� �� g T( ) ; this is important for experimental de-
termination of the liquid-solid phase diagram.

For small wavenumbers q the WS DSF S( , )q �

which should be employed in the conductivity relax-

ation kernel of the strong-coupling theory has well-de-

fined peaks S( , ) (q q,g
g

� % �@ %� � . This results in the

characteristic form w( )� � �� � �/ g( )2 2 , which is im-

portant for the secular equation describing the slow

coupled modes [Eq. (2)]. At low frequencies the main

contribution to w( )� is due to the smallest g, even if

the DWF exp ( )� � �g u /f
2 2 2 is not small, because the

corresponding terms of the sum over g are propor-

tional to 1 12 3/ /gg� � . At the same time the main

contribution to the effective collision frequency � �( )

defined by Eq. (10) sometimes is due to large q, where

the WS DSF can be described by the short-time ap-

proximation [Eq. (32)]. This follows from the general

structure of Eqs. (10) and (32).
Another important result of the weak-coupling the-

ory is the unusual line-shape with the non-Lorentzian
tails: 
 � �

�
� �

�
1

1
/ g

g| | . In contrast, the strong-cou-
pling theory considered here results in the usual
Lorentzian shape of the electron-ripplon resonances
which is described by Eq. (1). Even if the sharp reso-
nance structure of � �( ) becomes important, the
line-shape of the resonance excitation of the slow
plasmon-ripplon mode 
 l

s k( )( )0 , which is shifted sub-
stantially in the range � < �g1

, is obviously close to a
Lorentzian function. The presence of the nonresonance
terms in the effective collision frequency � �( ) means
that the tails of the high-order resonances (gn > g1)
are the usual Lorentzian functions determined by
Eq. (1) as well.

Besides qualitative distinctions stated above, it is
interesting to give a numerical comparison of the
weak- and strong-coupling approaches for typical ex-
perimental conditions. Consider the effective collision
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frequency � of the WS and the corresponding mobility
A �� e/ me( ) which is related to the conductivity form
of Eq. (1) at the resonance � �� R. The results of dif-
ferent theoretical approximations and the experimen-
tal data of Ref. 9 are shown in Fig. 4. The weak-cou-
pling theory result Eq. (22) (dash-dotted line) was
calculated considering terms with g < g4 only, be-
cause for g gB 4 the parameter � g becomes larger than
1 and the approximation fails. Numerically it is ap-
proximately 6 times lower than the experimental data,
which means that electron scattering by ripplons is
overestimated in this approach. This would give a
much broader resonance line-shape for the excitation
of the slow plasmon-ripplon modes. The short time ap-
proximation for the WS DSF gives a substantially
higher mobility (dotted line labelled «WS»). It is
lower than the mobility evaluated for the gas state of
the electron system (dashed line labelled «Gas»). Un-
der the conditions considered the two-ripplon pro-
cesses [Eq. (40)] have only a weak effect on the WS
mobility (solid line).

The short-time approximation Eq. (34) describes
the contribution of multi-phonon scattering events
when the Debye—Waller function 2 0 02q W( , ) is large.
The accuracy of this approximation can be estimated

considering the contribution of two-phonon scattering
events for two models of the WS DWF
exp ( )� � �g u /2 2 2 . If only zero-point vibrations are
taken into account (� � � � �u u2

0
2 ) in Eq. (37) found for

the fast modes, then the respective collision frequency
increases rapidly with temperature and the WS mobil-
ity decreases as indicated by short-dot line labelled
«2-ph». When thermal fluctuations are included
(� � � � �u uf

2 2 ) the mobility curve (short-dash line la-
belled «2-ph») deviate strongly at T > 0.2 K and the
effective collision frequency induced by two-phonon
processes is drastically decreased. This means that in
this temperature range 2 0 02q W( , ) is large and the
short-time approximations Eqs. (32) and (34) are rea-
sonable for the description of the WS conductivity.

The experimental data shown in Fig. 4 do not con-
tradict the short-time approximation for the DSF.
Still they indicate lower mobility values than that
shown by the solid curve. The numerical difference
may be due to the Debye approximation used to evalu-
ate Ke and � �u0

2 . The influence of other mechanisms of
momentum relaxation, which were disregarded in this
work, cannot be ruled out. For example, it is well
known that for the usual driving voltages the WS con-
ductivity shows a remarkable nonlinear behavior
[10,11], which is not entirely understood.

In conclusion, we found that the quantum trans-
port framework based on the memory function formal-
ism is very fruitful for analyzing the WS conductivity
in the low-frequency range, where it exhibits the reso-
nance anomalies due to the interaction with media
vibrations. The analytical properties of the memory
function and its relationship with the electron dynam-
ical structure factor makes it possible to coordinate
the approximations used to describe the real part of
the relaxation kernel, determining the positions of the
resonance frequencies, and the effective collision fre-
quency responsible for the broadening and line-shape
of the resonances. For example, the model used to de-
scribe the secular equation for the coupled WS
phonon-ripplon modes imposes strict consistency re-
quirements on the approximations that can be used to
obtain the effective collision frequency. The conduc-
tivity analysis given here for the strong-coupling re-
gime eliminates the discrepancies between experiment
and the weak-coupling approximation which concerns
the line-shape and broadening of the conductivity res-
onances.
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