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Fractional quantum Hall quasiparticles are famous for having fractional electric charge. Recent experiments 
report that the quasiparticle’s effective electric charge determined through tunneling current noise measurements 
can depend on the system parameters such as temperature or bias voltage. Several works proposed to understand 
this as a signature for edge theory properties changing with energy scale. I consider two of such experiments and 
show that in one of them the apparent dependence of the electric charge on a system parameter is likely to be an 
artefact of experimental data analysis. Conversely, in the second experiment the dependence cannot be explained 
in such a way. 

PACS: 73.43.–f Fractional quantum Hall effect. 
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1. Introduction

The fractional quantum Hall effect (FQHE) is a field of 
intensive research nowadays, with one of the main reasons 
for that is its supporting of quasiparticle excitations with 
unusual properties. Quasiparticles in the FQHE have the 
electric charge which is a fraction of the electron charge, and 
are predicted to have other unusual properties such as 
anyonic or even non-Abelian statistics. The quasiparticles 
obeying the non-Abelian statistics would potentially allow 
for performing topologically protected quantum computa-
tions (TPQC) (i.e., quantum computations in which qubits 
are protected from decoherence by “topological order” of 
the system) [1]. Therefore, finding the properties of 
quasiparticles in different FQHE states is an important task. 

Measuring tunneling current noise is a powerful method 
for finding the properties of quasiparticle excitations in the 
FQHE, in particular the tunneling quasiparticle electric 
charge. In the regime of weak tunneling of quasiparticles 
the tunneling current shot noise is proportional to the tun-
neling current itself, the proportionality coefficient, called 
the Fano factor, is the tunneling quasiparticle charge [2]. If 
several quasiparticles contribute to the tunneling processes, 
then the Fano factor is some average of the quasiparticles' 
charges. It is in this way that the first confirmation was 
given for the fractional charge of quasiparticles in the 
FQHE with filling factor = 1/3ν  [3,4]. 

Some of more recent experiments [5–10] that studied 
more complicated FQHE states report that the “effective 
charge” determined from tunneling current noise depends on 
external parameters such as temperature [6,8], bias voltage 
across the tunneling contact [9], other system parameters 
[10]. Three distinct mechanisms proposed recently can 
contribute to evolution of the Fano factor. Two of them 
assume that the FQHE edges behave differently at different 
energy scales: either due to energy cutoffs of edge 
transport channels [11–13] or due to edge reconstruction 
[14]. The third one, considered in Ref. 15, assumes de-
pendence of quasiparticle tunneling amplitudes on experi-
mental parameters, which can change relative importance 
of different quasiparticles' contributions. 

However, there is a subtlety regarding the data analysis 
in experimental works. Namely, experimentalists [3–10,16] 
tend to use for analysis a formula that is not based on a real-
istic FQHE model but is a generalization of a formula which 
can be derived for free electrons. As it was analyzed in 
Ref. 17 in the case of = 1/3,ν  the formula used by experi-
mentalists can agree well with the exact theory under certain 
conditions, but deviates from the exact theory otherwise. 
This can give rise to misinterpretations of experimental 
data. In particular, the "effective charge" obtained this way 
is not necessarily the same as the Fano factor. 

In this work I analyze the results of Ref. 10 regarding 
= 2/3ν  and of Ref. 6 regarding = 2/5.ν  I show that in the 

former case the data can be explained within the minimal 

© Kyrylo Snizhko, 2016 



Kyrylo Snizhko 

= 2/3ν  FQHE edge model [18,19] without additional 
structure such as energy cutoffs or edge reconstruction. 
Therefore, the effective charge dependence on external 
parameters appears to be a data analysis artefact in this 
case. In the case of the data of Ref. 6 regarding = 2/5,ν  
the charge dependence on the system temperature cannot 
be explained in this simple way. 

The paper structure is as follows. In Sec. 2 I introduce a 
general scheme of the experiments I discuss. Then in 
Sec. 3 I describe a theoretical model that can be used to 
analyze such experiments. This model is not easy to treat, 
therefore in Sec. 4 I discuss the three existing approaches 
to analyzing the model and the experiments: the one based 
on perturbative treatment of tunneling processes (Sec. 4.1), 
the one based on exactly solving the model in the cases 
when this can be done (Sec. 4.2), and the one typically 
used by experimentalists — the phenomenological ap-
proach (Sec. 4.3). Finally, Secs. 5 and 6 present original 
results of analyzing the data regarding = 2/3ν  and 2/5, 
respectively. Some concluding remarks are made in Sec. 7. 

2. Tunneling experiments in the FQHE: 
a typical scheme 

The typical scheme of the experiments I am going to 
discuss is presented in Fig. 1. 

There are two FQHE edges (upper and lower) along 
which transport of electric charge and of heat can occur, 
the rest of the sample is insulating. Each edge contains at 
least one “charged mode” — the channel, excitations in 
which carry electric charge and are responsible for charge 

transport. The transport channels are chiral, i.e., excitations 
in a channel can propagate in one direction only. If there 
are several charged modes in an edge, I assume that all of 
them flow in one direction. Apart from the charged modes 
the edges can support “neutral modes”. These are transport 
channels that do not carry electric charge. They can, how-
ever, transport heat, spin etc. The neutral modes can be 
absent at all, there can be one or several of them. Neutral 
modes are also chiral. Some of the neutral modes can flow 
in the same direction as the charged ones, some — in the 
opposite direction. 

The upper and lower edges come close together at the 
quantum point contact (QPC) where tunneling of 
quasiparticles between the edges can take place. Apart 
from the QPC, the edges are separated and do not interact 
with each other. 

Experimental equipment is connected to the system 
through four Ohmic contacts (yellow rectangles). Ground 1 
contact is grounded. Source S is used to inject electric cur-
rent sI  into the lower edge. Voltage probe is used to meas-
ure the current I  flowing into it, and its noise. If no tunnel-
ing takes place at the QPC, then = sI I  and the noise of I  
is just the Johnson–Nyquist noise. However, if there is tun-
neling at the QPC, then both I  and its noise carry infor-
mation about the tunneling processes. Finally, Source N is 
used to inject current nI  into the system. As one can see 
from the scheme, the electric current itself does not flow into 
the system. However, its injection can excite the neutral 
modes of the upper edge, and if some of them flow opposite 
to the charged mode, they can influence the tunneling pro-
cesses at the QPC. 

3. Tunneling experiments in the FQHE: the model 

In this section I briefly outline the standard model for ana-
lyzing the experiments described in the previous section. 

The model contains three distinct ingredients: single 
edge model (to describe each of the two edges), tunneling 
processes model, and a model for interaction of the Ohmic 
contacts with the edge. 

Here I consider the case of Abelian edge theories. The 
non-Abelian ones can be considered similarly, but I do not 
analyze them in this paper. For a general discussion of how 
the FQHE edge theories are constructed see Ref. 20. 
A single Abelian edge can be described in terms of N  
bosonic fields iϕ  with = 1, . . ., ,i N  one for each edge 
mode. The action for the fields is* 

 21= ( ( ) ),
4 m x m t m m x m

m
S dxdt v−χ ∂ ϕ ∂ ϕ − ∂ ϕ

π ∑∫  (1) 

Fig. 1. (Color online) A typical experiment scheme. Two FQHE 
edges form a quantum point contact (QPC) at which quasiparticles 
can tunnel between the edges. The Ohmic contact Ground 1 is 
grounded. Source N and Source S are used to inject some electric 
current into the system. Measurement of the electric current and its 
noise is performed at Voltage probe. T0 is the system and its envi-
ronment temperature when currents Is, In are not injected. 

*  In this section I put e = ħ = kB = 1 unless the opposite is stated explicitly. Here e is the elementary charge, ħ is the Planck constant, 
kB is the Boltzmann constant. 
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where = 1mχ ±  determine chiralities of the modes (plus 
for counterclockwise-movers and minus for clockwise-
movers*), and > 0mv  are the modes' propagation veloci-
ties. Without loss of generality, I put = 1mχ +  for 

= 1, . . ., lm N  and = 1mχ −  for = 1, . . .,lm N N+  ( lN  is 
thus the number of counterclockwise-moving modes). 

The electric current J α  0(J  is the electric charge den-
sity, 1J  is the electric current flowing along the edge) has 
the form 

 1= ,
2 m m

m
J qα αβ

βε ∂ ϕ
π ∑  (2) 

where the symbol αβε  denotes the fully antisymmetric 
tensor with ,α β  taking values t and x (or 0 and 1, respec-
tively) and 01= = 1.txε ε  The numbers iq  should satisfy 
the constraint [21,22] 

 2 = ,m m
m

qχ ν∑  (3) 

where ν  is the filling factor. 
As it was mentioned in the previous section, I assume that 

all the modes that carry electric charge flow in one direction. 
Formally this means that = 0mq  for = 1, . . ., ,lm N N+  i.e., 
only counterclockwise-propagating modes can carry electric 
charge. 

The quantized fields mϕ  obey the commutation relations 

     ,[ ( , ), ( , )] = sgn ( ) ,m m m m m mx t x t i X X′ ′ϕ ϕ − π − δ′ ′ ′  (4) 

where = .m m mX x v t−χ +  
It is convenient to introduce local quasiparticle operators 

 
2 /2

( , ) = : exp ( , ) : .
2

gm
m m m

m

LV x t i g x t
−    ϕ   π  

∑
∑g  (5) 

These operators can be not used when describing transport 
along a single edge, but are important for tunneling pro-
cesses. Here L  is the edge length, : ... :  stands for the nor-
mal ordering, 1= ( ,..., ),Ng gg  and mg ∈  are the 
quasiparticle quantum numbers. The quasiparticles' quan-
tum numbers are quantized, i.e., the set of allowed vectors 
g  is discrete. The quasiparticle's two most important quan-
tum numbers, the electric charge Q  and the scaling dimen-
sion ,δ  are equal to 

 = ,m m m
m

Q q gχ∑  (6) 

 21= .
2 m

m
gδ ∑  (7) 

Having constructed a single edge theory, one can de-
scribe tunneling between the two edges at the QPC as hop-
ping of local quasiparticles from one edge to another. The 
Hamiltonian for such processes is [2,21,23,24] 

 ( )† ( )= (0, ) (0, ) h.c.u l
TH V t V tη +∑ g g g

g
, (8) 

here the superscripts ( ), ( )u l  label quantities relating to the 
upper and the lower edges, respectively, ηg  are the tunnel-
ing amplitudes; for simplicity I have put the position of the 
QPC to the origin of coordinates. In the limit of large edge 
length ( )L → ∞  the dominant contribution to the tunneling 
processes comes from the quasiparticles with the smallest 
scaling dimension δ **. In the following I label such 
quasiparticle types by = 1, . . ., ,i n  with the quasiparticle 
electric charges being iQ  (in the units of the elementary 
charge e), their common scaling dimension being = ,iδ δ  
and the full set of quantum numbers being .ig  

The final component is a model for interaction between 
the Ohmic contacts and the edge. For this work I use the 
following set of assumptions regarding the interaction. 
I assume that when an edge mode flows into an Ohmic 
contact all the excitations are absorbed by the latter, and 
the state of inflowing modes does not influence the state of 
modes that flow away from the contact. I also assume that 
an edge mode emitted by an Ohmic contact, when no cur-
rent is injected into it, is in thermal equilibrium with the 
contact and its environment. When an electric current is 
injected through an Ohmic contact, the only change to the 
state of the charged mode(s) emanating from the contact is 
the change of their chemical potentials, so that they carry 
the injected current. The influence of current injection on 
the neutral modes should be a matter of separate investiga-
tion. For this work I assume that the neutral modes that 
propagate in the same direction as the charged mode(s) are 
not influenced by current injection at all, while the 
counterpropagating neutral modes get heated due to this. 
Therefore, if counterflowing neutral modes are present in 
the edge, the temperature of the upper edge near the QPC 
is 0= ( ) ,nT I Tλ  with ( ) (0) = 1.nIλ ≥ λ  Details of this 
heating for = 2/3ν  were investigated in Ref. 15. 

Before reviewing the existing approaches to solving the 
model outlined above, I define the observables that are 
measured in the experiments I consider below. 

Current I  flowing into Voltage probe contact (see 
Fig. 1) is equal to 1J  component of the current ,J α  de-
fined in Eq. (2), taken at some point to the right of the QPC 
along the lower edge. I denote the operator of this current 
as ˆ( ).I t  Then, the average current flowing into Voltage 

*  In this section I put e = ħ = kB = 1 unless the opposite is stated explicitly. Here e is the elementary charge, ħ  is the Planck con-
stant, kB is the Boltzmann constant. 

*  Clockwise-movers are left-movers at the lower edge and right-movers at the upper edge. Correspondingly, the counterclockwise-
movers are the right-movers at the lower edge and left-movers at the upper edge. 

** One can see this from L–δ factor in Eq. (5). This statement is also confirmed by Monte Carlo simulations [25]. 
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probe is ˆ= ( ) .I I t〈 〉  It is also convenient to introduce oper-
ator ˆ( ) = ( ) .I t I t Iδ −  

If there is no tunneling at the QPC, then I  is equal to 
the current sI  injected at Source S. As soon as there is 
tunneling, some part of the quasiparticles will not reach 
Voltage probe, with =s TI I I−  being the tunneling cur-
rent. Define the following quantities: 

    • transmission rate = / st I I ; 
    • tunneling (or reflection) rate = / = 1T sr I I t− ; 
    • measured current noise* 

 
1( ) = exp( ) { (0), ( )} ,
2

S d i I I
∞

−∞
ω τ ωτ 〈 δ δ τ 〉∫ 

  (9) 

where { }  denotes the anti-commutator. 
In what follows I only use the zero-frequency noise 

( = 0).S ω  It is also convenient to talk about the excess 
noise 

 Nyquist 0( = 0) = (0) (0) = (0) ,
2

S S S S Tν
ω − −

π
  (10) 

where 0T  is the system temperature when no currents are 
injected. 

4. Three approaches to theoretical description  
of tunneling experiments 

4.1. Perturbative treatment of tunneling 

The model described in the previous section is hard to 
solve. Exact solutions are available only in exceptional 
cases. Therefore, the most generally applicable approach is 
to treat the tunneling Hamiltonian (8) as a small perturba-
tion. Then in the lowest nontrivial order of perturbation 
theory one obtains the following results [15,28]**: 

 
4 1

0
4 1

4 ( )
= ,B

i i
is

e k T
r G

I

δ−

δ+
π

κ∑


 (11) 

 
2 4 1

0
4 1

4 ( )
(0) = ,B

i i
i

e k T
S F

δ−

δ+
π

κ∑



 (12) 

 
2

2 2
0

sin
= sin 2

(sinh ) (sinh )
i i s

i
Q Q j t

G dt
t t

∞ δ

δ δ
λ

πδ
λ∫ , (13) 

 02= cos 2 sin 2 ,TT T
i i iF F Fπδ − πδ

π
 (14) 

   
21 4

2
2 20

cos
= lim 1 4 (sinh ) (sinh )

TT i s
i i

Q j t
F Q dt

t t

∞ δ− δ

δ δε→+ ε

 λε
+  − δ λ 

∫ , (15) 

 
2 2

0
2 2

0

cos
=

(sinh ) (sinh )
T i i s

i
Q t Q j t

F dt
t t

∞ δ

δ δ
λ

λ∫ , (16) 

 0 0
0

= , = ,s
s B

I ej I k T
I h

ν π  (17) 

where 0T  is the equilibrium system temperature, sI  is the 
current injected into Source S, = ( )nIλ λ  is related to the 
upper edge heating due to injection of current nI  (the upper 
edge temperature at near the QPC is 0= ),T Tλ  = 2h π  is 
the Planck constant, ν  is the filling factor, 

22( )2= | | ,
igmi i m

m
v−κ η ∏g  and i enumerates different qua-

siparticles participating in tunneling. I remind the reader that 
iQ  are the electric charges of the quasiparticles and δ  is 

their common scaling dimension. The formulas (13), (15), 
(16) are correct for < 1/2,δ  for 1/2δ ≥  they should be 
modified. However, typically the quasiparticles contributing 
to the tunneling processes are predicted to have < 1/2.δ  

If one applies the formulas above to analyze experi-
mental data, one often finds a significant disagreement be-
tween the theory and experiment already for the tunneling 
rate r (see, e.g., [16,29,30] and references therein). This is 
believed to be the result of nonuniversal physical processes 
in the system which can lead to (a) renormalization of the 
scaling dimension δ  [31–34] and/or (b) tunneling ampli-
tudes iη

g
 depending on various external parameters such as 

the injected currents ,sI  ,nI  system temperature T0 [15]. 
Both effects are likely to be relevant in realistic situations. 
The tunneling amplitudes should be exponentially sensitive 
to the distance between the edges in the QPC since they de-
scribe tunneling of quasiparticles under a barrier. The dis-
tance between the electrostatically confined edges is in turn 
sensitive to the edges' electrostatic potentials, which change 
in the course of a tunneling experiment. The scaling dimen-
sion renormalization is also likely to be relevant in experi-
ments. For example, the mechanism of renormalization due 
to 1/f noise, proposed in Ref. 34, is extremely robust: even 
vanishingly small interaction of the FQHE edge with the 1/f 

*  One must be cautious when comparing formulas and data for noise from different articles since there are two conventions regard-
ing the definition of the noise spectral density. While some authors (see, e.g., [26]) use the same definition as I do, others (see, 
e.g., [10,27]) adopt the definition which is twice as large as the one used here. 

** Here and in the rest of the paper I restore the elementary charge e, the Planck constant ħ, and the Boltzmann constant kB, which I 
had put to 1 in Sec. 3. 
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noise can produce a finite renormalization of the scaling 
dimension. Moreover, this mechanism (unlike the ones of 
Refs. 31–33) is equally applicable for any type of the FQHE 
edge: with or without counterflowing modes. 

However, in this work I assume that no scaling dimen-
sion renormalization happens, but the tunneling amplitudes 
can depend on the system parameters*. 

For such a case, it has been argued in [15,28] that in-
stead of considering r and (0)S  separately, it is advanta-
geous to consider their ratio (noise to tunneling rate ratio, 
NtTRR) 

 
(0)( ) = = .

i i
i

s s
i i

i

F
SX I eI

r G

κ

κ

∑
∑



 (18) 

In the large-Is limit one obtains 

 | | ( ) 1( ) = =
i i

i
s j I ss n i i

i

F
X I eI

Gλ ≥

κ

κ

∑
∑

  

 

4 1

0 04= | | ( , ),
i i

i
s

i i
i

Q
e I O I I

Q

δ+

δ

κ
+ λ

κ

∑

∑
 (19) 

or equivalently 

 * *
| | ( ) 1(0) = | | = | |,j I s Ts n

S Q er I Q e Iλ ≥

  (20) 

 

4 1

*
4= .

i i
i

i i
i

Q
Q

Q

δ+

δ

κ

κ

∑

∑
 (21) 

Therefore, in the regime of weak quasiparticle tunneling, 
the large-Is asymptote of the ratio of the measured excess 
noise and the tunneling current is equal to some average of 
the quasiparticle charges *Q  (the coefficient *Q e  is often 
called the Fano factor). This well-known result is correct 
not just for the model I consider here, but is quite robust 
against nonuniversal processes that may influence the 
physics at the QPC [31]. 

The average (or effective) charge *Q  may be not a con-
stant but a function of sI  as the tunneling amplitudes iηg  
contained in iκ  may depend on sI  strongly. However, in 
the cases I consider in this paper this does not happen. If 
all the quasiparticles participating in tunneling processes 
have the same charge =iQ Q  (as it is for the model of 

= 2/5ν  I consider), then * =Q Q  independently of the 
tunneling amplitudes' dependence on the current. In the 
case of = 2/3ν  not all the iQ  are equal. However, when 
the ratios /i jκ κ  are constant (as it has been shown [15] 
for the data I consider below), then again *Q  does not de-
pend on .sI  

A more accurate large-Is asymptotic expression for the 
NtTRR, obtained in [28], 

 | | ( ) 1( ) =s j Is n
X I λ ≥

  

   

4 1
2 2 2

0 0
04

2 8= | | , ,
i i

i
s

s si i
i

Q
I I

e I eI O
I IQ

δ+

δ

κ
 λ− δ

+ +  πκ  

∑

∑
 (22) 

may be useful in some cases. Its subleading term contains 
information about the scaling dimension of the tunneling 
quasiparticles. 

To conclude the section, the main statements I would 
like the reader to take from it are as follows. The pertur-
bative treatment of tunneling processes allows one to ob-
tain results for experimental observables in the limit of 
weak quasiparticle tunneling. From large-Is asymptote of 
the ratio of the excess noise and the tunneling rate one can 
obtain some average of the tunneling quasiparticles' char-
ges *,Q  which is often called the effective charge. 

4.2. Exact solutions 

The cases for which the model of tunneling experiments 
in QHE can be solved exactly are scarce: only two cases 
are known to me. One is the case of = 1ν  integer QHE 
(IQHE), the other is the Laughlin sequence of states 

= 1/(2 1),kν +  .k ∈  I briefly discuss these two cases 
below. 

In the case of = 1ν  IQHE the simplest edge theory is a 
theory of free chiral electrons. It can be rewritten into the 
model of a single free chiral boson of the type described in 
Sec. 3 through the standard bozonization technique [35]. 

* I must acknowledge here, that an unknown dependence of the tunneling amplitudes leads to a huge ambiguity: for example, one 
can fit any dependence of r on Is. The question regarding possible dependences of the tunneling amplitudes deserves a study. For 
example, in the case of ν = 2/3 considered in Ref. 15 the dependence turns out not to be generic. The tunneling amplitudes for the 
quasiparticles there depend significantly on Is and In, but in the same way for different quasiparticles, i.e., the ratios κi/κj are con-
stant. An explanation for such a restriction is unknown to me. In contrast to this, the approach with scaling dimensions being 
renormalized, uses a few unknown fitting parameters, but no unknown functions. In some cases the latter approach allows one to 
describe the data for both tunneling rate and noise very well using a finite number of fitting parameters [11–13]. Whether it is pos-
sible to describe the case of ν = 2/3 considered in Ref. 15 within this approach is a matter of future investigation. 
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The edge contains a charged mode and no neutral modes, 
so the injection of nI  does not influence the observable 
quantities. The quasiparticle with the smallest scaling di-
mension (i.e., the one giving dominant contribution to the 
tunneling processes) in this case is the electron. Therefore, 
the problem of tunneling is a problem of free electrons that 
can be scattered back by a δ-function barrier. Such a model 
can be solved exactly [26,27,36]. The results are as fol-
lows. The tunneling rate = constr , i.e., r  does not depend 
on .sI  The excess noise has the form 

 0
2(0) = (1 ) coth ,

2
s

s
j

S r r eI eI
 π  − −    π 

  (23) 

sj  and 0I  are defined in Eq. (17). In the limit 0r →  this 
expression can be reproduced by treating tunneling 
perturbatively as in Sec. 4.1, with the electron as the tun-
neling quasiparticle (the electric charge = 1,Q  the scaling 
dimension = 1/2).δ  

The simplest models for the FQHE edge at 
= 1/(2 1),kν +  k ∈  also contain a single charged mode. 

However, solving such models exactly requires the use of 
the Bethe ansatz technique. The details for the solution 
together with answers can be found in Refs. 23, 24, 37. 
Analytic answers for this case are only available for zero-
temperature 0( = 0)T . Therefore, the use of this exact solu-
tion is not easy and requires a certain skill level in using 
Bethe ansatz. 

4.3. Phenomenological approach 

A third, phenomenological, approach to treating the 
experiment model is often used in experimental papers 
[3–10,16]. Essentially it does not use any solution of the 
model but generalizes the answer of Eq. (23) for = 1:ν  

 
*

* 0
2(0) = (1 ) coth ,

2
s

s
jeS r r e I eI

e

  π
− −   π  

  (24) 

where sj  and 0I  are defined in Eq. (17), and *e  is a phe-
nomenological parameter. 

The advantages of this approach are the simplicity of 
Eq. (24) and the correct leading asymptotic behavior: 

 =0(0) = 0,Is
S  (25) 

and for 1r   

 * *| | 1(0) = | | = | | .j s Ts
S e r I e I



  (26) 

The last equation is in accord with Eq. (20) for ** = .e eQ  
Formula (24) was compared against the exact solution 

for the simplest model of = 1/3ν  FQHE in Ref. 17, where 
a good agreement was found. 

However, there are several disadvantages to using for-
mula (24). As it has been pointed out in Ref. 12, the value 

of *e  extracted from real experimental data with the help 
of formula (24) depends strongly on the range of Is consid-
ered. Second, the formula cannot be derived from a model 
for the FQHE. Indeed, the result (23) is derived for the 
model of noninteracting electrons. If one replaces the 
charge of particles e  by *,e  then the edge conductance 
would be 2 2*( ) / / .e h e h≠ ν  E.g., for the Laughlin series of 
states * = ,e eν  so that 2 2 2*( ) / = / .e h e hν  Third, the for-
mula does not catch correctly the subleading terms in the 
large-Is asymptotic behavior of NtTRR (22) that carry in-
formation about the tunneling quasiparticles' scaling di-
mension. Finally, it does not have a natural way to include 
the influence of ,nI  since such an effect is impossible in 
the simplest model of = 1ν  IQHE. 

From the above one can see that formula (24) is a good 
interpolation formula, but not more. In particular, one should 
be careful when trying to apply it to the experiments in 
which injection of current nI  plays an important role. 

5. = 2/3 :ν  Neutral mode heating and behavior  
of the effective charge 

The = 2/3ν  edge has been predicted to support a single 
charged mode and a single counterpropagating neutral 
mode [18,19]. The experiment of the type described in 
Sec. 2 that was reported in Ref. 10 was able to confirm 
qualitatively the existence of a counterflowing neutral 
mode. I and my co-authors analyzed the experiment data 
quantitatively [15] and found a good quantitative agree-
ment between the data and the theory described in Sec. 4.1. 
However, Ref. 10 reported a dependence of the effective 
charge *e  on the injected current nI  (see Fig. 3b of 
Ref. 10), while in our theory the effective charge does not 
have such a dependence. In this section I explain the origin 
of this apparent discrepancy. 

The = 2/3ν  edge can be described with a model that 
contains a single charged mode and a single neutral mode 
that propagates opposite to the charged one. Then, according 
to what has been discussed in Sec. 3, the upper edge gets 
heated upon injection of current ,nI  so that the upper edge 
temperature near the QPC is equal to 0( ) ,nI Tλ  while the 
lower edge temperature is always equal to 0.T  There are 
three quasiparticles that give contribution to the tunneling 
processes, their charges are 1 2= = 1/3Q Q  and 3 = 2/3,Q  
their scaling dimension is = 1/3.δ  Using the formulas of 
Sec. 4.1 one can compare the theory with the experimental 
data for the tunneling rate 0.2r ≈  presented in Fig. 3a of 
Ref. 10. In Ref. 15, as a result of such comparison, it was 
found that the experimental data can be described well with 

( ) = 1 | | ,a
n nI C Iλ +  where C = 5.05(13)nA–a and a = 

= 0.54(5) and parameter 3 1 2= /( )κ κ κ + κ  being independ-
ent of sI  and nI  and equal to = 0.39.κ  The temperature 
T0 = 10 mK is taken to be the same for all values of nI . 
From the formulas of Sec. 4.1 one can see that the effective 
charge *Q  is then equal to * 0.5Q ≈  independently of .nI  
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In Ref. 10 the experimental data is analyzed with the help 
of Eq. (24) using *e  and 0T  as fitting parameters. The in-
terpretation connected to this is that for = 0nI  the tempera-
ture 0T  is equal to the environment temperature, but injec-
tion of 0nI ≠  heats up the whole system (or at least both 
edges of the QPC) leading to a different value of 0T  in 
Eq. (24). The resulting agreement with the experimental data 
is also good, however, the behavior of the effective charge 

*e  is different. One would expect ** = /(1 ) 0.63e Q e r e− ≈  
independently of ,nI  but Fig. 3b of Ref. 10 says that the 
effective charge *e  varies from * 2 /3e e≈  to * 0.4e e≈  as a 
function of .nI  

In order to explain this I fit the perturbative formula for 
measured current noise* 

 
2

pert 0(0) = ( ) 2 ,s B
eS rX I k T
h

ν
+  (27) 

where ( )sX I  is defined in Eq. (18), with the phenomeno-
logical formula 

 
2*

*phen 0 0
2(0) = (1 ) coth 2 .

2
s

s B
je eS r r e I eI k T

e h

  π ν
− − +   π  

 

  (28) 
In other words, I repeat the analysis done in Ref. 10, using 
the theory of Ref. 15 instead of experimental data. 

A typical resulting fit is shown in Fig. 2. The range of 
sI  values corresponds to the experimental data range in 

Ref. 10. As one can see, the fit of perturbative formula (27) 
by phenomenological formula (28) is very good. However, 
the perturbative theory only starts leveling off to its large-

sI  asymptote (22) at | | 1sI ≈  nA. Therefore, one can hard-
ly expect the fitted *e  to correspond to the proper effective 
charge. Indeed, the fitted value of *fitted 0.48e e≈  differs 
from the expected ** = /(1 ) 0.63 .e Q e r e− ≈  The system 
temperature fitted

0 19T ≈  mK given by the fit is also differ-
ent from both the lower edge temperature 0 = 10 mKT  and 
the upper edge temperature near the QPC 0( ) = 80 mK.nI Tλ  

I repeat the fitting procedure for different values of 
( )nIλ . The resulting dependence of the fitted effective 

charge is shown in Fig. 3. One can see that the dependence 
of the fitted effective charge *fittede  closely follows the data 
reported in Ref. 10. At the same time the Fano factor (21) 
stays constant since 3 1 2/( )κ = κ κ + κ  is independent of nI . 
This suggests that the true origin of the reported effective 
charge dependence on nI  is the use of phenomenological 
formula (28) for the analysis of experimental data, and is not 
related to the nonuniversal behavior of the tunneling ampli-
tudes, nor to complications in the = 2/3ν  edge theory (for 
example, like the ones proposed in Refs. 12, 14**. 

*  A careful reader has noticed that the Nyquist noise 2νe2kBT0/h here is two times greater than the Nyquist noise subtracted in 
Eq. (10). The Nyquist noise subtracted in Eq. (10) is the Nyquist noise of a single edge to the left of Voltage probe contact in 
Fig. 1. However, in a real experiment there is a similar set of edge transport channels to the right of Voltage probe. While these are 
not influenced by the injection of Is and In, they still contribute to the experimentally measured noise through the Nyquist noise. 
That is the origin of the Nyquist noise “doubling” here. 

** Though, the more elaborate models proposed in Refs. 12, 14 may be necessary to explain other observed effects. Consult the 
works themselves for more details. 
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Fig. 2. (Color online) ν = 2/3 measured current noise: a fit of 
the perturbative theory by the phenomenological formula. The 
green points are generated with the help of perturbative theory 
for T0 = 10 mK and λ(In) = 8 (In ≈ 1.8 nA). The red curve is a fit 
of these points by phenomenological formula (28). The dashed cyan 
curve is the large-Is asymptote of the perturbative theory. 
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Fig. 3. (Color online) ν = 2/3 measured current noise: depend-
ence of the effective charge *e  on current In. The blue points and 
the blue solid line show the data of Fig. 3b of Ref. 10. The green 
points and the green dashed line show the dependence of *fittede  
on In obtained by fitting the perturbative theory with phenomeno-
logical formula (28). The error bars are due to uncertainty in the 
function λ(In). The black horizontal lines correspond to 

* = 2 /3e e  and * = /3.e e  
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6. = 2/5 :ν  System temperature dependence  
of the effective charge 

One of the other cases when an unexpected dependence 
of the effective charge on external parameters was reported 
concerns = 2/5ν  [6]. Namely, the effective charge was 
reported to depend on the system temperature 0.T  In this 
section I apply the same methodology as in the previous 
section to this case. I find that the effective charge depend-
ence on temperature cannot be explained the same way. 

The simplest model for = 2/5ν  edge contains two edge 
channels: the charged one and the neutral one. However, 
unlike in the case of = 2/3,ν  the neutral mode here propa-
gates in the same direction as the charged mode. Therefore, 
the injection of nI  should not have any effect on the 
measured current noise whatsoever. This was confirmed in 
Ref. 10. Therefore, I expect that both edges have the same 
temperature 0T . There are two quasiparticles which con-
tribute most to the tunneling processes, their electric 
charges are 1 2= = 2/5,Q Q  their scaling dimension is 

= 1/5.δ  Therefore, the parameters iκ  drop out of the 
perturbative expression for the NtTRR. 

Figures 2b and 2c of Ref. 6 give some data regarding 
the measured current noise behavior for 0.02.r ≈  The data 
of Fig. 2c of Ref. 6 presents data on the behavior of the 
effective charge *e  as a function of temperature 0T  ob-
tained with the help of phenomenological formula (28). 

I repeat the analysis of the previous section for this 
case, fitting perturbative formula (27) (using the parame-
ters corresponding to the experimental ones) with phenom-
enological formula (28). A typical resulting fit is shown in 
Fig. 4. The same data with the Nyquist noise subtracted are 
shown in Fig. 5. As one can see, the fit is very good. How-
ever, the fitted values of the effective charge and the sys-
tem temperature are slightly overestimated: *fitted 0.46e e≈  
and fitted

0 71T ≈  mK. 
Repeating the fitting procedure for different values of 

0 ,T  I obtain the dependence of the effective charge on 
temperature shown in Fig. 6. At the lowest considered 
temperature 0 = 10T  mK the approach can explain the 
oberved effective charge slightly higher than the expected 

* = 2 /5.e e  However, at higher temperatures the effective 
charge reported in Ref. 6 drops down, while the fitted 
charge *fittede  grows. 

Therefore, in this case the effective charge dependence 
on an external parameter cannot be explained as a peculiar-
ity of the phenomenological formula used for the data 
analysis. In other words, the data of Ref. 6 regarding 

= 2/5ν  does not agree with the perturbative theory for the 
simplest = 2/5ν  edge model. 

Finding models that can describe the data goes beyond 
the present article. However, I would like to mention sev-
eral possibilities. 

The authors of Refs. 11, 12 showed that the data can be 
explained with the help of a more complicated model that 

(a) introduces energy cutoffs to the edge modes, (b) takes 
into account tunneling of the quasiparticles having the next 
smallest scaling dimension, (c) introduces renormalization 
of the scaling dimension due to nonuniversal processes 
(and assumes that tunneling amplitudes do not depend on 

sI  and 0 ).T  
While the model of Refs. 11, 12 allows one to achieve a 

good quantitative agreement, it incorporates several as-
pects not usually considered. Therefore, it would be inter-
esting to check whether it is possible to describe the data 
without some of the complications. For example, one could 
investigate the influence of the quasiparticles having the 
next smallest scaling dimension without introducing scal-
ing dimension renormalization and/or edge mode cutoffs. 

Fig. 4. (Color online) ν = 2/5 measured current noise: a fit of the 
perturbative theory by the phenomenological formula. The green 
points are generated with the help of perturbative theory for T0 = 
= 70 mK. The red curve is a fit of these points by phenomenolo-
gical formula (28). 

Fig. 5. (Color online) ν = 2/5 measured current excess noise: a fit 
of the perturbative theory by the phenomenological formula. The 
green points are generated with the help of perturbative theory for 
T0 = 70 mK. The red curve is the fitted curve from Fig. 4 less the 
Nyquist noise. The dashed cyan curve is the large-Is asymptote of 
the perturbative theory. 
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There may be other important effects. One can consider 
a model, in which the injection of current sI  excites the 
copropagating neutral mode in = 2/5ν  just as the injection 
of current nI  excites the counterpropagating neutral mode 
in = 2/3.ν  

Finally, one can investigate the influence of bulk dy-
namics on the experimental observables. Indeed, the bias 
voltage corresponding to injection of the experimentally 
used current Is = 3 nA onto the = 2/5ν  edge is of the 
order of 200 µV, which corresponds to energies (in the 
units of temperature) about 2 K. With the typical bulk 
gap in the FQHE systems on the order of (and typically 
less than) 1 K one can expect that bulk dynamics is in-
volved at such voltages. 

7. Conclusion 

In this paper I compared two approaches to analyzing 
tunneling current noise experiments in the FQHE: the ap-
proach based on the perturbative treatment of tunneling 
processes in the model describing such experiments in the 
FQHE and the approach that uses a phenomenological 
generalization of the theory which describes such experi-
ments in = 1ν  IQHE. 

The analysis of Sec. 5 shows that using the phenomeno-
logical formula can lead to misinterpretation of the exper-
imental data, like the false dependence of the effective 
charge on current .nI  However, this does not always hap-
pen, as shows the case of Sec. 6. 

While one should be cautious when interpreting the pa-
rameters, such as the effective charge *e  or system tem-
perature 0 ,T  obtained with the help of the phenomenologi-
cal theory, the formula itself shows a remarkable ability to 
fit the proper theory well, as can be seen from Secs. 5, 6 

and as was previously shown in Ref. 17. Therefore, one 
can use the phenomenological formula as an efficient way 
to encode a large set of experimental points into two num-
bers *e  and 0.T  However, one can then miss subtle effects 
related to the scaling dimension of the quasiparticles par-
ticipating in tunneling. 

Finally, I would like to emphasize that the phenomeno-
logical approach is used in most papers that analyze experi-
mental data of the tunneling current noise experiments in the 
FQHE, including Refs. 3–10. Exceptions like Refs. 11–15 
are rare. Therefore, reanalyzing the available experimental 
data with the help of proper theory can be highly beneficial. 
One reason is that false effects, such as in the case consid-
ered in Sec. 5, are possible. Another reason is that missed 
effects are also possible. 
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