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The apparent insulator —quantum Hall —insulator (I—QH —1I) transition for filling factor v =1
has been investigated in p-type Ge,/Gey_,Si, heterostructures with €zt /% ~1. Scaling analysis is

carried out for both the low- and high-field transition point. In low magnetic fields .t <1 pro-
nounced QH-like peculiarities for v=1 are also observed in both the longitudinal and Hall
resistivities. Such behavior may be evidence of a localization effect in the mixing region of Landau

levels and is inherent for two-dimensional structures in a vicinity of the metal —insulator transi-

tion.

PACS: 73.40.—c Electronic transport interface structures;

73.43.—f Quantum Hall effects.
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Introduction

A magnetic-field-induced transition from an Ander-
son insulator to quantum Hall effect (QHE) conduc-
tor has been reportedly observed both for low-elec-
tron-mobility GaAs/AlGaAs heterostructures [1—4]
and low-hole-mobility Ge /SiGe quantum wells [5,6],
which at magnetic field B = 0 exhibit insulating be-
havior with a divergent resistance p(T — 0) >> h/e’.
An initial very large decrease of diagonal resistivity
p . (giant negative magnetoresistence [7]) is followed
by a clear critical point at B = B where the p ., value
is temperature independent. At higher fields the QHE
minima for filling factor either v =2 or v =1 are deve-
loped. The insulator to QHE boundary points at
B = B are characterized by the equality of the diago-
nal and Hall resistivities, p .. =pyye, Within experi-
mental uncertainty [5]. Just the T-independent point
B¢ is identified by the authors of [1-6] as the quan-

tum phase transition point between the insulator and
QHE conductor.

In contrast to that, Huckestein [8] identifies the
apparent low-field insulator—QHE transition as a
crossover due to weak localization and a strong reduc-
tion of the conductivity when Landau quantization be-
comes dominant at ® .t > 1, ® . being the cyclotron fre-
quency and t being the elastic mean free time.

On the other hand, for well-conducting 2D systems
with kgl >> 1 (kg is Fermi quasimomentum and / is the
mean free path) the interplay of classical cyclotron
motion and the quantum correction Ac,, due to elec-
tron —electron interaction (EEI) to the Drude con-
ductivity o jy = (e? / B)(kg1) leads to a parabolic nega-
tive magnetoresistance [9—11]:

o (BT) = 411 - (0,02 %;” W
cSD GD
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The temperature independent point at o .t =1 (for
Prr = Pyy) Predicted by Eq. (1) has been observed in
various experiments and used for the estimation of the
o p value (see, for example, [12-15]).

It seems for us that the results of the paper [16] of
C.F. Huang et al. are an especially beautiful experi-
mental demonstration just of this (EEI) physical pic-
ture in a gated GaAs,/ AlGaAs heterostructure (our es-
timations give 4 < kpl <13 for five V,, values on your
Fig. 2), but the authors of [16] treated the low-field
T-independent point as a kind of quantum phase tran-
sition (see also [17]).

Here we report and analyze the results of
magnetotransport measurements for low-mobility
p-Ge / Ge _,Si, heterostructures, where the low-field
temperature-independent point on the p,., (B) depend-
ence is clearly observed.

Experimental results and discussion

Experimental data are presented for two samples
A and B of a multilayered Ge/Ge_,Si, p-type he-
terostructures. The hole density and Hall mobili-
ty, as obtained from zero field resistivity p, and
low field Hall coefficient at T'=4.2 K, are p =
=1.3(1.1) 10" em™ and p = 3.6(4.0) - 103 cm? /(V -5)
(py =16(15) kQ2/0). From the relation py! = (¢? / 1) x
x(e pt/h) the important parameter, connecting the
Fermi energy ¢  and elastic mean free time T may be
estimated: €pt/h =08(0.85). Thus for the samples
investigated € pt/ % ~ 1, and we are in a region of con-
jectural metal-insulator transition, which is seen ex-
perimentally in a variety of two-dimensional semicon-
ductor systems [18].

The dependencies of longitudinal p, and Hall p,,
resistivities on magnetic field B at T=1.7-4.2 K up to
B =12 T for sample A are shown in Fig. 1. The quan-
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tum Hall effect (QHE) plateau number one with cor-
responding p,, minimum at B ~ 3.5 T are well seen
in the pictures. The estimation of the hole mobility
from the condition uBc =1, where Bgy(= 2.7 T)
is the field where p,, =p,, (see Fig. 1,a), gives
p=37-103cm? /(V -s) in reasonable accordance with
the low-field estimate.

We take notice that at B < 0.5 T positive
magnetoresistance due to the effect of Zeeman split-
ting [19] is observed for all temperatures. At fields
B> 0.5Tup to QHE p,, minimum a background nega-
tive magnetoresistance takes place with the following
peculiarities observed: i) Shubnikov—de Haas (SdH)
oscillation structure with maximum at B~2 T, and
ii) the p, temperature-independent point at B ~ B¢y
(Fig. 1,b). In the high-field region the transition from
the QHE regime to the insulator takes place in the vi-
cinity of Bey »7.5 T (Fig. 1,a).

In a great deal of work [1-6,16,17] the low-field
temperature-independent point at B=Bc on the
P (B) dependence is interpreted as a point of insula-
tor—QHE quantum phase transition. A criterion of
existence of a phase transition is a scaling dependence
of pr (B,T) =f((B - Bc)/T*) in the vicinity of B¢
with k being a critical exponent [20]. By plotting

In (dp,,/dB)g =B versus In T, one could obtain k.
Such a situation may be realized in a system with
genuine (strong) localization, e.g., with variable
range hopping conduction at B = 0.

But for a system with weak localization we think
that it is not the case. The weak localization regime at
kpl>>1(ept/h>>1) is in fact the regime of the elec-
tron diffusion from one scattering event on an impu-
rity to another, with some mean free path /. Here the
notion of insulating behavior is valid only in the sense
that dp/dT < 0. For such a system there exists another
reason for a temperature-independent point on the

B, T

B, T

Fig. 1. Longitudinal resistivity (7—5) and Hall resistivity (6) as functions of magnetic field for sample A. T, K: 1, 6 —

17,2 — 23,3 — 29,4 — 37,5 — 4.2.
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Fig. 2. The first derivative dpy,/dB as a function of
temperature in a vicinity of low-field critical point in
log—log scale (@) and linear—log scale (b). Dashed line
on Fig. 2,a is a guide for eye.

P e (B) dependence at o .t =1 (B =mc/et): it is a
consequence of the interplay of classical cyclotron mo-
tion and the EEI correction Ac,, to the Drude con-
ductivity (see Eq. (1)). According to Eq. (1) the de-
rivative (dp/dT)B=BC should be proportional to
InT as Ac,, is proportional to In (RTt/ k).

To distinguish between the two cases in our sam-
ples with ept/fi=1 an analysis of dependence
(dpyy /dB)g-p. on T has been carried out. Figure
2,a shows the nonscaling behavior of p,,(B,T) near
the low-field critical point B¢q: it is not possible to
extract consistently any power law from the tempera-
ture dependence of derivative (dp,, /dB)p_p.,. On
the other hand, rather good linear dependence of
(dp/dB)g_p., on InT is observed up to T ~3 K
that is an argument in favor of the EEI version. In
contrast to it, real scaling behavior of p ., (B,T) with
critical exponent x =0.38 (compare with theoretical

dp,.,/dB, kQ/T

1o il | [
0.4 1.0 4.0

T, K
Fig. 3. The first derivative dp,, /dB as a function of tem-
perature in a vicinity of high-field critical point (log—log
scale).
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Fig. 4. Longitudinal and Hall resistivities as functions of
magnetic field for sample B at T = 0.4 K.

value x = 0.42 for the spin-split case [21]) takes place
in a vicinity of high-field critical point By (Fig. 3).

The experimental data for sample B at T = 0.4 K
are presented on Fig. 4. The QHE plateau number one
and corresponding minimum at B = 5.6 T are clearly
seen on p ., (B) and p ., (B) dependencies. The estima-
tion of the hole mobility from the p,, =p,, point
Bey =25 T gives p=4.0-103cm? /(V -s). The con-
dition for the field of QHE p,,(B) minima,
p =i(e/ hc)B;, where i is the number of the plateau,
gives p =1.2 10 em ™2,

It is seen from Fig. 4 that in low-field region
B < B¢y (0,1 ~0.7) minimum in p,,(B) at By =14 T
(see inset of this figure) and precursor of p ., (B) pla-
teau number four are observed. Really, Fig. 5 shows
pronounced QHE-like structures on the dependence of
first derivative dp, /dB on filling factor for v = 1, 2,
and 4.

In complete QHE regime at ®,.t>>1 the appear-
ance of quantized plateaus in the p (B) dependences
with vanishing values of p,, is commonly accepted to
be caused by the existence of disorder-induced mobil-
ity gaps (stripes of localized states) between the nar-

dp,,/dB, arb. units

Fig. 5. The first derivative dp,, /dB as a function of fil-
ling factor v for sample B at T = 0.4 K.
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row bands of extended states of width I' presented
close to the center of each of the Landau subbands
[22]. The existence of QHE-like structures at o .t <1
then should be a manifestation of localization of elec-
tron states in mixing regions for adjacent Landau
subbands so that the width of extended state bands is
less than the collision broadening of Landau level:
I' < /1. We think that realization of such a situation
is more preferable just for € pt/#% =1 when the locali-
zation effect is more essential than fore pt/#% >> 1 but
is not yet too strong as for e pt/h << 1.

Conclusions

Both low-field (B¢¢) and high-field (B¢y) T-inde-
pendent points on p,,(B) dependence with the v =1
QHE state between them have been observed for
p-type Ge,/Gey_,Si, heterostructures with low hole
mobility (kpl ~1.6). In contrast to series of works
[1-6] and [16,17] where the low-field point is treated
as the critical point of an insulator - QHE phase
transition, we speculate that in our 2D systems with
kpl=1 such a point at @t =1 is a manifestation of
quantum e—e interaction correction in the diagonal
component of the magnetoresistivity tensor.

On the other hand, in accordance with [1-6] the
high-field B point is a point of genuine quantum
phase transition between the v =1 QHE phase and the
high-field insulator and corresponds to passing of the
Fermi level through the lowest Landau level.
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