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Electronic spectrum of one-dimensional system with a low concentration of weakly bound Fano-Anderson 

impurities is considered. It is assumed that the energy of the impurity resonance is located in a vicinity of the 

band center of the host system. It is demonstrated that with increasing the impurity concentration the dispersion 

of states with the low damping undergoes a transformation. This transformation passes in a threshold manner 

and results in the reproduction of some characteristic features inherent in the cross-type spectrum rearrangement. 

At that, the density of states at the energy of the impurity resonance manifests a steady growth. 

PACS: 73.22.–f Electronic structure of nanoscale materials and related systems; 

71.23.–k Electronic structure of disordered solids; 

71.55.–i Impurity and defect levels. 
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1. Introduction 

For more than two decades there was a constant inter-

est in nanocrystalline and polycrystalline diamond-like 

thin films and diamondlike carbon. In this respect, the 

C(111) 2X1 surface remains to be an intriguing object of 

investigation [1–5]. Still, electronic properties of this sur-

face are not fully understood. There is a good agreement 

between the experimental data and the results of the first-

principles calculations for the analogous surfaces: Si(111) 

2X1 and Ge(111) 2X1. It is commonly accepted that the 

reconstruction of all these surfaces leads to the formation 

of the so-called Pandey chains [6]. In the case of the Si 

and Ge the atoms belonging to the Pandey chains are 

dimerized. In contrast, it is generally agreed that the 

Pandey chains on the clean C(111) surface stay un-

dimerized. Ab initio calculations produce the band gap in 

the surface states that is substantially narrower than the 

experimentally observed [7–9]. Usually, the reconstruc-

tion of the C(111) surface is achieved by its annealing 

after the cleavage. This suggests that it can remain con-

taminated by impurities. Numerical calculations evidently 

demonstrate that Pandey chains on the C(111) surface are 

dimerized, when ten percent or so of their atoms are 

passivated by hydrogen [10]. Such dimerization can help 

to widen the gap in the surface states, but this effect does 

not work for the lower impurity concentration. 

At this point it is possible to ask whether or not other 

impurity effects can be responsible for the formation of a 

gap at the band center of a one-dimensional system. Below 

we will try to address this question in general, without tak-

ing into account specifics of Pandey chains on the diamond 

surface. 

It is well known that electronic spectra in tree-di-

mensional systems can undergo a rearrangement of the cross 

type with increasing the amount of impurities [11–13]. 

When the critical concentration of impurities is exceeded, 

the renormalized dispersion of electrons looks like a result 

of the conventional hybridization between the host disper-

sion branch and the dispersionless branch that is located at 

the impurity resonance energy. It is essential that the rear-

ranged spectrum of a disordered system features two over-

lapping branches of itinerant states. As a consequence, two 

different energies of electrons correspond to some wave 

vectors. These dispersion branches are separated by a true 

gap, which is gradually broadening with increasing the im-

purity concentration. As a rule, this type of the spectrum 

rearrangement is realized when the damping of the single-

impurity resonance is much less than the interval between 

the impurity resonance energy and the nearest van Hove 

singularity in the spectrum. This condition insures the suffi-

cient sharpness of the impurity resonance. 

Cross-type spectrum rearrangement can occur in low-

dimensional systems too (in particular, in one-dimensional 
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systems). In this case, the impurity should be weakly 

bound [14]. That is, the hybridization parameter for the 

impurity level should satisfy a certain condition, which is 

quite restrictive for one-dimensional systems. Again, this 

condition arises from the demand that the impurity reso-

nance is to be sufficiently sharp. In addition, it is not cor-

rect to talk of itinerant states in one-dimensional disor-

dered systems at a finite concentration of impurities. 

However, all previous studies on the passage of the spec-

trum rearrangement in low-dimensional disordered systems 

were confined to the case, when the impurity resonance en-

ergy is located close to the band edge of the host system. 

Below we are going to consider a qualitatively different 

case. We will place the impurity resonance energy close to 

the band center of the host system, and examine transfor-

mations of the electronic spectrum, which develop with 

increasing the impurity concentration. The attention will be 

mostly focused on the close vicinity of the band center. In 

accordance with previous studies, we will assume that im-

purities are weakly bound, and will analyze the existence 

of possibilities for the gap formation in such a system. 

2. Impurity model 

 Let's consider the electron spectrum in a one-dimen-

sional system with impurities. One can usually assume that 

the Hamiltonian of a disordered system decomposes into a 

translation-invariant host part and an impurity part: 

 0 imp
ˆ ˆ ˆ= ,H H H  (1) 

where 0Ĥ  is the host Hamiltonian, and impĤ  is the impu-

rity perturbation. We will describe the host system by 

means of the tight-binding approximation, taking into ac-

count only hoppings between nearest-neighbors in a linear 

chain of atoms. The resulting Hamiltonian reads: 

 
††

0 1 1
ˆ = ( ) , > 0,n nn n

n

H t c c c c t  (2) 

where n  enumerates lattice sites, †
nc  and nc  are the crea-

tion and annihilation Fermi operators at the corresponding 

lattice site, and > 0t  is the transfer integral. The negative 

sign before the right-hand part of the equation appears be-

cause the transfer integral between the carbon p-orbitals in 

a Pandey chain is negative. Indeed, this choice of the sign 

does not diminish the degree of generality of the problem. 

It is supposed that impurities are represented by adsorbed 

atoms of some kind, and that these atoms are distributed 

absolutely at random along the chain. Besides, it is as-

sumed that each adatom is coupled only to a single host 

lattice site, and can be described by the Fano-Anderson 

model: 

   † † * †
imp impimp imp
ˆ = ( ) ,n n n n n n n

n

H E d d t c d t d c  (3) 

where 
imp
t  is the transfer integral between the orbital, 

which is added to the system by an impurity, and the or-

bital of the adjacent host atom from the chain, impE  is the 

bare energy of the impurity level, †
nd  and dn are the crea-

tion and annihilation operators at this level, the variable 

n  takes the value of 1 with the probability c or the value 

of 0 with the probability 1 – c, and c is the impurity con-

centration. The problem can be reduced to a more simple 

form by eliminating wave-function amplitudes at adatoms 

from the stationary Shrödinger equation for the Hamiltoni-

an ˆ .H  Then, the impurity perturbation takes the form: 

 

2
imp†

imp
imp

| |
ˆ = ( ) , ( ) = .n n n

n

t
H V E c c V E

E E
 (4) 

It is trivial to obtain the dispersion relation for electrons in 

the host system (the band width equals 4t): 

 ( ) = (e e ) = 2 cos( ),
ik a ik ad d

d dE t t k ak  (5) 

where a is the lattice constant, and dk  is the wave vector. 

Correspondingly, the diagonal element of the host Green's 

function 

 1
0

ˆ ˆˆ ( ) = ( )dg E EI H  (6) 

reads: 

  00
2 2

1 1
( ) = = , | |< 2 ,

( ) (2 )

d

d
d

i
g E E t

N E E t Ek
k

 (7) 

where N  is the number of atoms in the chain, and Î  is the 

identity matrix. It is convenient to pass to dimensionless 

variables: 

 = , =
2

d
E

k k a
t

. (8) 

Then, the dispersion relation becomes: 

 ( ) = cos( ),kk  (9) 

and the dimensionless diagonal element of the host Green's 

function takes the form: 

 00
2

( ) = , | |< 1.

1

i
g  (10) 

Accordingly, it is helpful to introduce following dimen-

sionless variables: 

 
imp imp

imp
( )

= , = , = ,
2 2 2

t E V E

t t t
v  (11) 

so that the on-site impurity perturbation reads: 

 
2

imp

| |
=v . (12) 
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We are going to study possible scenarios of the gap for-

mation in a spectral region around = 0 . The impurity 

scattering, which is responsible for the gap formation in 

the ordinary course of events, is the strongest at the energy 

of the impurity level imp.  Consequently, the energy of the 

impurity level should be located nearby the zero energy. 

On the other hand, the density of states in the one dimen-

sional system under consideration is nearly flat close to the 

band center. Because of that, subsequent results will not 

significantly change, when imp  is varied to a certain ex-

tent around the zero energy. Then, it is possible, for the 

sake of simplicity, to put everywhere below imp = 0 :  

 
2| |

= ,v  (13) 

without any considerable loss of generality. 

3. Local density of states 

To start with, we will examine the behavior of the local 

density of states at the impurity site, when the system un-

der consideration contains a single impurity. Usually, this 

characteristic appears to be rather informative regarding 

possible modifications of the spectrum, which develop 

with increasing the impurity concentration. To be more 

specific, we will assume that a single adatom is occupying 

the zeroth site. The corresponding diagonal element of the 

Green's function 

 1ˆ ˆ ˆ( ) = ( ) ,G I H  (14) 

which yields the local density of states at the host atom, 

can be expressed as follows: 

 
2

00 00 00 002
00

| |
( ) = ( ) ( ) ( ).

| | ( )
G g g g

g
 (15) 

In a vicinity of the band center ( = 0)  the host Green's 

function is nearly constant: 

 00( ) , | | 1.g i  (16) 

As a result, we have 

 
2

00 2 2

| |
( ) = .

| | | |
G i i

i i
 (17) 

Thus, the local density of states at the host atom 

 
2

00 2 4

1 1
( ) = Im ( )

| |

h
loc G  (18) 

features the Fano antiresonance at the energy of the impu-

rity level (i.e., at the band center). Moreover, this local 

density of states recedes at this energy to the exact zero 

(see Fig. 1). The half-width of the antiresonance is 2| | .  

Therefore, the more impurities is present in the system, the 

more the total density of states of host atoms is depleted at 

the band center. However, this effect, as it will be evident 

later, is not that much pronounced at a small concentration 

of impurities. 

We expect to get certain qualitative transformations in 

the spectrum. Consequently, different portions of the spec-

trum should change in a different manner under an increase 

in the impurity concentration. This task can be fulfilled 

only when the Fano antiresonance is rather sharp: 

 2| | 1.  (19) 

It is worth mentioning that the other partial local densi-

ty of states at the impurity site, namely the local density of 

states at the adatom reads: 

 loc 00 2
00

1 1 1
( ) = Im ( ) = Im

| | ( )

i iG
g

  

 
2

2 2 4

1 1 1 | |
Im =

| | | |i
. (20) 

In other words, the local density of states at the adatom 

shows a sharp, well defined resonance at the energy of the 

impurity level, provided that the inequality (19) is satis-

fied. 

At this point, it seems instructive to consider the disper-

sion of electrons in the case, when all atoms in the chain 

are occupied by impurities. It is obvious that the on-site 

potential in this case is given by the impurity perturbation 

v.  Thus, the new dispersion relation is a solution of the 

equation: 

 
2| |

( ) cos ( ) = 0.
( )

k k
k

 (21) 

This quadratic yields: 

 
22

1,2
1

( ) = cos( ) ( ) 4 | | .cos
2

k k k  (22) 

Fig. 1. Local density of states at the host atom occupied by the 

impurity (solid line) compared to the local density of states at an 

atom from the unperturbed chain (dashed line),  = 0.1 
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It is not difficult to see that the width of the gap is equal 

to 22 | |  for a small hybridization parameter: 

 2 2
1

1
(0) = ( 1 1 4 | | ) | | ,

2
  

     2 2 2
2

1
( ) = (1 1 4 | | ) | | , | | 1

2
. (23) 

Therefore, the condition 2| | 1,  provides both for the 

narrow transport gap (as compared to the band width) and 

for the sharp (well-defined) impurity resonance (antire-

sonance). 

4. Critical impurity concentration 

With increasing the impurity concentration, the spec-

trum of a disordered system can change noticeably. 

Renormalized approaches, such as the coherent potential 

approximation and the modified propagator method, prove 

to be most effective in describing states inside the continu-

ous spectrum of the system. Averaging over all possible 

impurity distributions restores the translational invariance 

of the single-electron Greens function: 

 ˆ ˆ ˆ( ) = ( ) ( ( )),G g  (24) 

where ( )  is the self-energy. Since the modified propaga-

tor method, the coherent potential approximation, and the 

average T-matrix approximation are all of the single-site 

type, the self-energy ( )  within their frameworks does 

not depend on the wave vector. For example, according to 

the modified propagator method, 

 
2

2
00

2

| |
( ) = = ,

1 ( ( )) | |

1 ( )

c c

g i

v

v
 (25) 

where 

 ( ) = ( )  (26) 

is the renormalized energy. The quantity | |  will always 

remain small (much less than unity) below. Therefore, the 

expression for the self energy can be simplified even more: 

 
2

2

| |
( ) .

| |

c

i
 (27) 

At this stage, it becomes clear that it is insignificant 

whether the approximation with the renormalized propaga-

tor, such as the coherent potential approximation and the 

modified propagator method, or with the unrenormalized 

propagator, such as the average T-matrix approximation, is 

used. The new (renormalized) dispersion relation ( )k  is 

defined by the equation: 

 Re ( ( )) = cos( ).k k  (28) 

Since the function cos( )k  varies linearly with wave vector 

at the band center, the attention should be paid to the be-

havior of the dependence Re ( ).  At low impurity con-

centrations, the equation Re ( ) = 0  has only one real 

root, namely = 0 . At that, the point = 0  is also an in-

flection point of the graph of Re ( ).  With increasing the 

impurity concentration, the convex and concave parts are 

gradually developing on the Re ( )  curve. Finally, start-

ing from the certain impurity concentration, the equation 

Re ( ) = 0  has three distinct real roots instead of one. 

Let's take a closer look at this equation: 

 
2

4

| |
Re ( ) = Re ( ) = 0.

| |

c
 (29) 

It is easy to see that the root = 0  is always present. The 

other two are 

 
2

1,2 = | | | | .c  (30) 

Both these roots are real if the condition 

 2>| | = crc c  (31) 

is met. Thus, the concentration crc  is the critical concen-

tration for the spectrum transformation. Indeed, this critical 

concentration should be small cr 1c  in order to be con-

sistent with the approximations adopted above. This condi-

tion translates to the inequality 2| | 1,  which already 

appeared earlier as the criterion for the antiresonance 

sharpness and for the narrowness of the transport gap in a 

system fully covered by impurities. 

5. Parameters of the transformed spectrum 

The portion of the renormalized dispersion curve with 

the negative (anomalous) dispersion, which passes through 

the zero energy at = /2,k  is not valid because of the high 

damping, caused by impurity scatterings. For the same 

reason, one cannot speak about the formation of the real 

gap in the spectrum with increasing the impurity concen-

tration. At the same time, a transport gap does develop in 

the spectrum when the critical concentration crc  is exceed-

ed. According to (30), the “apparent” (or “perceived”) 

width of the gap between dispersion branches at = /2k  is 

 cr cr= 2 | | 2 | | , .a c c c c c  (32) 

However, the width of the actual transport gap is signifi-

cantly smaller. It is not difficult to find extrema of the 

function Re ( ).  They are determined by the following 

equation: 

 
2 4 2

2 4 2

Re ( ) | | (| | )
= 1 = 0.

( | | )

d c

d
 (33) 
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This comes to the quadratic: 

   2 2 2 6 2 2| | (2 | | ) | | (| | ) = 0, = .x c x c x  (34) 

Its roots are: 

   
2

2 2 2
1,2

1 | |
= | | (2 | | ) | | 1 8 .

2
x c c

c
 (35) 

The second root is negative, and, therefore, should be 

omitted. Expanding the expression for the first one at 

cr ,c c  we get: 

 2
1,2 | | .  (36) 

Thus, the distance between extrema on the energy axis at 

cr>c c  is nearly equal to the width of the gap in the sys-

tem with full coverage of the chain by impurities. This 

result can be obtained much faster. At cr ,c c  the renor-

malization of the energy is significant. Therefore: 

   
2 4 2

2 4 2

Re ( ) Re( ) | | (| | )
= 0,

( | | )

d d c

d d
 (37) 

which immediately yields (36). Correspondingly, at the 

extrema points we have: 

 2
1,2Re ( ) Re ( | | ) .

2

c
 (38) 

Thus, the relative size of the distorted region on the disper-

sion curve is small. The effective damping of an electronic 

state at some energy  is given by the imaginary part of 

the self energy 

 
4

2 4

| |
( ) = Im ( ) .

| |

c
 (39) 

It reaches its maximum at = 0  ( (0) = ).c  At the 

extrema points the damping amounts to c/2, which is in 

good correspondence with (38). Since the damping magni-

tude near the band center is around 2
cr> =| | ,c c  the 

broadening of the portion of the dispersion curve with the 

anomalous dispersion is larger than the width of the gap 

between two portions of the dispersion curve with the posi-

tive dispersion (2 | | ).c  Thus, the presence of the nega-

tive dispersion in the spectrum is not justified, and the re-

spective portion of the dispersion curve is smeared out by 

impurity scatterings. In addition, that means that no real 

gap should be seen in the density of states. 

It is not correct to speak about mobility edges in a one-

dimensional system with impurities. However, heuristical-

ly it is possible to separate electronic states with high and 

low damping. Edges th  between them at cr>c c  will 

limit those portions of the dispersion curve, which have the 

positive dispersion. One can demand that the distance be-

tween portions of the dispersion curve with positive and 

negative dispersion should be less than the concentration 

broadening of the dispersion curve. In the first approxima-

tion, the portion of the dispersion curve with the negative 

dispersion can be considered as a dispersionless. Then, the 

aforementioned distance is approximately equal to | | .  

The resulting condition reads: 

 
4

th th 2 4
th

| |
| | > = Im ( ) .

| |

c
 (40) 

Let's assume that 2
th| | | | .  Then, we have 

 3 4 6
th

cr

| | | | = | | ,
c

c
c

 (41) 

or 

 

1/3
2

cr

| | > | | .
c

c
 (42) 

The opposite assumption 2
th(| | < | | )  leads to the con-

tradiction: 

 2 2
th cr| | > | | > = | | .c c  (43) 

Thus, the threshold magnitude of energy th  is larger than 

the distance from the extremum on the renormalized dis-

persion curve to the zero energy 2| |  due to the factor 
1/3

cr( / ) .c c  At the same time, th  is smaller than the half 

distance between dispersion branches a  at = /2k  (see 

(32)). Thus, branches of states with low damping overlap 

with each other. 

6. Density of states and spectral function 

The density of states of host atoms in the impure chain is 

given by the expression: 

 00 00
1 1

( ) = Im ( ) Im ( ( ))h g . (44) 

Close to the band center we have:  

  
2

2

2

1 1
( ) Im , | | 1.

| |
1

| |

h i

c

i

 (45) 

Thus, the density of states of host atoms does not signifi-

cantly deviate from the unperturbed one (see Fig. 2). In 

this figure the density of states of host atoms is shown at 

the impurity concentration c = 0.05. In this and following 

figures we take the hybridization parameter = 0.1.  The 

corresponding critical concentration crc  is equal to 0.01. 

Therefore, even at crc c  the expected reduction of the 

density of states of host atoms is negligibly small at the 

band center. It is not difficult to check that with a consid-

erable further increase in the impurity concentration the 

deviation will remain barely discernible. 
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The density of states of adatoms reads: 

  00 2
00

1 1
( ) = Im ( ) Im .

| | ( ( ))

i i c

g
 (46) 

Close to the band center this expression can be simplified: 

 
2

2 2 4

1 1 | |
( ) Im = , | | 1.

| | | |

i c c

i
(47) 

Thus, the density of states of adatoms does not remarkably 

differ from the corresponding local density of states 

weighted with the impurity concentration. The density of 

states of adatoms unambiguously dominates in this domain 

by a good margin at crc c  (see Fig. 2), and peaks at the 

zero energy. Indeed, there is no gap in the total density of 

states. 

The spectral function for host atoms is of the form: 

 
1 1 1

( , ) = Im ( , ) = Im .
( ) ( )

A k k
k

 (48) 

This spectral function is shown for cr=c c  and cr= 5c c  

in Figs. 3 and 4, respectively. In both plots the range of the 

energy axis is limited to a small neighborhood of the band 

center. It is clear from these figures that the distorted por-

tion of the spectrum is confined to a close vicinity of the 

zero energy. Gradual formation of the transport gap with 

increasing the impurity concentration is evident from the 

comparison of these figures. It should be mentioned that 

the overall shape of the spectrum possesses some charac-

teristic features of the cross-type spectrum rearrangement. 

However, it is symmetric about the energy of the Fano 

antiresonance. Such symmetry was not inherent in the 

known types of the cross spectrum rearrangement. 

The spectral function for adatoms reads: 

 
2

1 1 ( )( ( ))
( , ) = Im ( , ) = Im .

| | ( ( ) ( ))

i i k
A k k

k
  

  (49) 

This spectral function is shown in Fig. 5 at the impurity 

concentration cr= 5c c . The range of the z-axis is the same 

as the one that is used in Figs. 3 and 4. It is apparent that 

the height of spectral function for adatoms is nearly negli-

gible compared with the height of the spectral function for 

host atoms. 

7. Conclusion 

To summarize, the local density of states at the host at-

om manifests a sharp Fano antiresonance, when the corre-

sponding host atom is occupied by a weakly bound impuri-

ty. The energy, at which the Fano antiresonance is located, 

coincides with the energy of the impurity level. Despite the 

antiresonance, the density of states of host atoms does not 

express any substantial reduction at the energy of the Fano 

antiresonance under an increase in the impurity concentra-

tion, provided that the impurity concentration remains 

small ( 1).c  In the case of a single weakly bound impu-

rity, the local density of states at the adatom features a 

Fig. 2. The density of states of adatoms (solid line) compared to the 

density of states of host atoms (dashed line) at c = 0.05 and  = 0.1. 

Fig. 3. Spectral function for host atoms at c = 0.01,  = 0.1. 

Fig. 4. Spectral function for host atoms at c = 0.05,  = 0.1. 
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strong resonance positioned at the energy of the impurity 

level. With increasing the impurity concentration, the den-

sity of states of adatoms does not significantly deviate 

from the simple sum of the individual local densities of 

states at adatoms, which are treated as single impurities. 

When the impurity concentration exceeds a certain critical 

one cr( ),c  the density of states of adatoms becomes larger 

than the density of states of the host atoms near the energy 

of the impurity resonance. The critical concentration de-

pends only on the hybridization parameter of the impurity 

level (| |).  

At the same critical concentration the dispersion rela-

tion of the disordered system under consideration under-

goes a noteworthy transformation, which is reflected in the 

shape of the spectral function of the system. However, the 

scope of this transformation is limited to the close vicinity 

of the impurity resonance energy. The dispersion curve 

splits into the two branches with the positive dispersion. 

These branches are showing a saturation-type behavior 

when approaching to the domain of the impurity resonance 

broadening 2( | | ).  Threshold energies for the states with 

the low damping are situated somewhat farther from the 

zero energy than the above margins. Overall, the shape of 

the transformed spectrum reminds the result of the cross-

type spectrum rearrangement. In contrast to the known 

examples of the cross-type spectrum rearrangement, there 

is no real gap filled with the states that are strongly local-

ized on pairs and larger clusters of impurities. In addition, 

the branches of the states with the low damping are sym-

metrical about the point [ = /2, = 0].k  Between these 

branches there is a transport gap, which width is increasing 

with an increase in the impurity concentration. 

As regards the application of the above results to the 

Pandey chains on the diamond surface, the main challenge 

is to find impurity atoms or molecules that can be consid-

ered as a weakly bound. 
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