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Thermodynamic properties of the t–J model on square and triangular lattices near half-filling are investi-

gated theoretically within an analytical approach based on the Kondo and Yamaji’s Green function decoupling

scheme. The temperature dependences of the heat capacity and spin susceptibility are calculated in the wide

temperature range for the case when the exchange constant J is greater than the hopping amplitude t. It was

found, that with the increase of doping from the half-filling, the maximum of the spin susceptibility increases

and its position shifts to lower temperatures for both types of lattices. Such behavior is in agreement with the

qualitative predictions [E. Dagotto, Rev. Mod. Phys. 66, 763 (1994)]. Heat capacity demonstrates a double

peak shape. The high temperature peak associated with the «spin wave-like» excitations shifts to lower tem-

peratures with doping. The low temperature peak appears due to the holes and its height and position depend

on both the doping and the ratio t J/ .

PACS: 71.10.Fd Lattice fermion models (Hubbard model, etc.);
75.40.Cx Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.).

Keywords: two-dimensional t–J model, heat capacity, susceptibility.

1. Introduction

The t–J model is one of the central models for strongly

correlated systems. It has been studied intensively in vari-

ous theoretical aspects and also in view of its applications

to the treatment of experimentally observed phenomena

[1–3]. Of special interest is the two-dimensional t–J mo-

del on square and triangular lattices.

As compared to the triangular lattice, the square-lat-

tice t–J model has been investigated in much more detail

for at least two reasons. First, the theoretical results ob-

tained with this model are of principal importance to ex-

plain the real features of high-temperature superconduc-

tivity. These results appeared to be useful for a better

understanding of the normal state properties of high-Tc

superconductors [1] as well as of the mechanism of

hole-type high-Tc superconductivity [4]. Second, the the-

oretical treatment of the frustrated t–J model on a triangu-

lar lattice in some respects is more complicated.

Most efforts were directed to the study of the ground

state of the square-lattice t–J model, and also its high-

temperature properties are carefully investigated at least

for t J/ � 1 [5,6]. In the intermediate temperature range

the model was studied numerically [1,3], and analyti-

cal results were obtained for t J/ .� 2 5 [2]. In Ref. 7 the

Green function formalism with the extended Kon-

do–Yamaji decoupling procedure [8] has been employed

to describe the dependences of the magnetization and

magnetic susceptibility upon the hole concentration at

T � 0 and t J�� . This theory has been constructed in

terms of quantities describing a short-range order, i.e., in

terms of correlation functions for which a system of self-

consistent equations has been derived.

Theoretically, the t–J model on the triangular lattice is

less investigated. By now, as far as we know, it was

treated only within high-temperature series expansions

[9,10]. On the other hand, it has been suggested recently

[11,12] that the triangular lattice t–J model can be appro-

priate to interpret the behavior of the heat capacity in

solid 3He layers on graphite substrates. Thus, having in

view the practical application of the theoretical results it

is important to develop analytical approaches to describe

the thermodynamics of the model at arbitrary tempera-

tures.

In the present work, on the basis of the analytical me-

thod [7] we study thermodynamic properties (temperature
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dependences of the magnetic susceptibility and heat ca-

pacity) of the t–J model on the triangular and square lat-

tices near half-filling for t J/ �� 1in the wide temperature

range. We take into account some fluctuation terms omit-

ted in Ref. 7. In our calculation scheme the systems of

self-consistent equations have an identical form for both

types of lattices, differing only in the form of the structu-

ral factor entering these equations.

2. Model

We consider an assembly of N p spins S � �1 2 on the

two-dimensional lattice with N sites. The Hamiltonian

has the form

H H Ht J� � . (1)

Here

H t c ct � � �
��~ ~
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,f

f

f,	
	

	
�
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where t is the matrix element of the hopping between

nearest neighbour sites, � is the unit vector connecting the

nearest neighbours. The annihilation operator ~cf,	 is de-

fined through the conventional Fermi-operators c f,	 , c f,	
�
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so that the double occupation of the lattice sites is forbid-

den. The second term in (1) is
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We consider the practically important case: n n� 
 � �f

� N /Np is close to unity, and the number of holes nh �
� �1 n is small. We also restrict our consideration to t J�� .

3. Method

The calculation method we use is based on the formal-

ism of two-time Green functions. Since in the systems un-

der consideration the long-range order does not exist at

any finite temperature, the problem should be treated in

terms of local correlations describing a short range order.

We need two types of Green functions: two-spin



 ���S Sz z
f f| and one-particle 

 ���

�~ | ~, ,c cf f	 	 .

Let us start with the two-spin Green function whose

Fourier time transform satisfies the equation of motion
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At this stage the decoupling of the higher functions does

not lead to any satisfactory results because the average

value of the spin operator equals to zero. That is why it is

necessary to put down the equations of motion for the

Green functions in the right hand side of (6). Then we de-

couple the higher Green functions appearing in the right

hand sides of the obtained equations. We follow the de-

coupling procedure proposed in [7] which is the exten-

sion of the Kondo and Yamaji approach [8] originally de-

veloped for low-dimensional Heisenberg systems with

spin1 2� . According to this procedure the operators on the

same lattice site are not decoupled in order to retain the

local correlations. This approach is believed to give a

proper description for the systems under study [7].

The equation of motion for the first term in the right

hand side of (6) has the form
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where the correlation function

c S S x y z1 4� 
 � ��f f

� � �
�

, , ,

describes spin correlations between the particles at the

nearest neighbour sites. We illustrate the decoupling pro-

cedure using the first term in the sum over �� with � � y. It

can be rewritten in the form
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where � i j, is the Kronecker symbol. According to [7,8]

we have for the Green functions containing only spin op-

erators on different sites (i.e. � �� �)
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Here ~c c1 1�� . A vertex parameter � is a function of tem-

perature and is chosen to satisfy the sum rule
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In the same manner we treat other terms in the sum

over �� in Eq. (7). The last term in (7) vanishes after de-

coupling. As a result, we have
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Here a prime over the sum stands for � �� � and a linear combination
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describes correlations between spins which are two steps apart along the translation vector.

Let us now proceed to the second term in the right hand side of (6). Being proportional to t this term vanishes in the half-fill-

ing limit n � 1and its contribution to the two-spin Green function is small. That is why in the equation of motion for this term

we perform decoupling without introducing any vertex corrections. Thus, we obtain
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Here the following notifications are introduced
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It can be shown that the last term in the right hand side of

Eq. (10) is less than other terms at least by a factor of t J/

and can be neglected.

Substituting the expressions (9) and (10) into Eq. (6)

we obtain the closed equation for the two-spin Green

function, which includes the correlation functions c1, c2,

n1, n2 and the vertex parameter � to be found. For the

Fourier transform in coordinates of the two-spin Green

function we have
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the structural factor � k is determined by

� k k��exp ( )

�

�i ,

and � 0 is a coordination number.

The equation of motion for the Green function



 ���
�~ | ~, ,c cf f	 	 has the form
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where S S i Sx y
f f f
	 	� � . We treat (14) in a similar way as

the second term in (6). In the main approximation we get

for the Fourier transform 
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This approximation is rather crude and the functions n1,

n2 calculated within it should be considered only as rea-

sonable estimates. A more elaborate result for the Green

function (15) can be obtained by accounting for fluctua-

tions of order J in the right hand side of (14).

Using the dispersion relations for the Green functions,

we have:
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where $ is the chemical potential. Finally, we find the fol-

lowing complete set of equations:
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The first equation is due to the sum rule (8), the second

one determines the chemical potential. Other equations in

(18) arise from the definitions of c1, c2 and n1, n2. In the

general case the system (18) can be solved only numeri-

cally. The heat capacity per one site and static spin sus-

ceptibility are calculated using the following expressions:

C
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dT
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4. Results and discussion

In our theory the Heisenberg limit is correctly recov-

ered because n1, n2 tend to zero with n � 1. Near the

half-filling, the functions n1, n2 are small quantities of or-

der 1� n.

The decoupling scheme used leads to the Green func-

tions corresponding to two types of elementary excita-

tions. The «spin wave»-like excitations are described in

terms of spin operators. The excitations of the second

type associated with the correlated motion of the holes are

described by means of the one-particle Green function.

The «spin wave»-like excitations exist due to the condi-

tion nh �� 1. Another restriction, t J�� , means that the

spin excitations are faster than the excitations of the sec-

ond type. That is why the two types of excitations are ef-

fectively separated. Owing to this fact it is possible to ob-

tain a closed equation for the two-spin Green function

(see (6), (10)). As can be seen from (12) and (13), the fre-

quencies of the spin waves differ slightly from those for

the pure Heisenberg system, because of the inequalities

nh �� 1, t J�� .

Temperature dependences of the spin susceptibility

and heat capacity per lattice site are shown in Fig. 1 (for

the square lattice) and Fig. 2 (for the triangular lattice).

The Heisenberg limit is shown as solid curves. Curves 1,

2 correspond to n � 0 95. , t J/ .� 0 1 and curves 3, 4 — to

n � 0 95. , t J/ .� 0 25. Curves 1, 3 were calculated using

Eq. (15), and curves 2, 4 were obtained by more accurate

calculations with account for the fluctuation terms of or-

der ~ J in Eq. (14).

Let us discuss %( )T . It was mentioned [1] that for the

t–J model on the square lattice the spin susceptibility

maximum increases in amplitude and shifts to lower tem-

peratures with increasing doping. It was suggested [1]

that this statement holds true for arbitrary values of t J/ ,

and, furthermore, the zero temperature susceptibility in-

creases with doping. These facts were qualitatively ex-

plained in the following way. Due to the presence of holes

in the doped Heisenberg antiferromagnet the exchange

frequency J is effectively reduced. As a consequence,

the temperature where %( )T has a maximum decreases,

and the zero temperature susceptibility increases because

% ~ /1 J . As can be seen from Fig. 1,a, all these features in

%( )T behavior are reproduced by our theory. The same

qualitative picture holds for the triangular lattice (see

Fig. 2,a), but the height of the peak depends on the ratio

t J/ stronger than for the square lattice. As T J/ �� 1 the
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asymptotics for % has the form% � n T/ ( )4 , so that the sus-

ceptibility is independent of t J/ .

Now we proceed to the temperature dependence of the

heat capacity. The main result obtained here is the dou-

ble-peak shape of C T
v

( ). The high temperature peak is

mainly due to the «spin wave»-like excitations. Under

doping this peak shifts to lower temperatures. The low

temperature peak in C T
v

( ) curves is due to the hole mo-

tion. Its height and position depend appreciably on both

the doping and the t J/ ratio. Note that for the triangular

lattice the hole motion gives a noticeable contribution to

the amplitude of the high temperature peak. When T � &
the heat capacity decreases as

C
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n
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T
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As T � 0, the heat capacity is linear in temperature. Our

results for C T
v

( ) agree qualitatively with the numerical

calculations [3] for the cluster on the square lattice with

10 sites. It can be seen from Figs. 1 and 2, that fluctua-

tions affect low temperature run of C T
v

( ) and %( )T

(curves 2, 4). These changes are more pronounced for

C T
v

( ) because the expression (19) for C
v

contains the de-

rivatives of n1 and c1 with respect to T .

Using C T
v

( ) we obtain the entropy

S T
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T
dT

T

( )
( )

� ' v

0

.

The limiting value of the entropy per site at T � & is

S

N
n

n
n nh h
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&
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�
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!
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�

2
.

The values of S N( )& � calculated from the dependences

in Figs. 1,b and 2,b are close to the corresponding exact

values. For example, for the triangular lattice with

t J/ .� 0 25 the entropy at T � & is 0 831. for curve 3 and

0 667. for curve 4 while the exact value is S N( ) / .& � 0 857.

In all cases the entropies calculated for curves 2, 4 are less

than those calculated for curves 1, 3. This fact seems to be

natural, because within the Kondo–Yamaji approach the

entropy of a pure antiferromagnet is appreciably underes-

timated.

818 Fizika Nizkikh Temperatur, 2007, v. 33, Nos. 6/7

T.N. Antsygina, M.I. Poltavskaya, I.I. Poltavsky, and K.A. Chishko

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.064

0.068

0.072

0.076

0.080

0.084

1

1

2

2

3

3

4

4

T/J

a

0 0.2 0.4 0.6 0.8 1.0 1.2

0.04

0.08

0.12

0.16

0.20

0.24

T/J

b

C
/N

v

n = 1
1,2 — t/J = 0.1n = 0.95,
3,4 — t/J = 0.25n = 0.95,

n = 1
1,2 — t/J = 0.1n = 0.95,
3,4 — t/J = 0.25n = 0.95,

Fig. 2. Spin susceptibility (a) and heat capacity (b) for the

triangular lattice. Curves 1, 3 are calculated using Eq. (15),

curves 2, 4 are calculated with account for fluctuation terms in

Eq. (14).

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7
0.060

0.065

0.070

0.075

0.080

0.085

T/J

a

b

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.60

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

T/J

1

1

2

2

3

3

4

4

n = 1
1,2 — t/J = 0.1n = 0.95,
3,4 — t/J = 0.25n = 0.95,

n = 1
1,2 — t/J = 0.1n = 0.95,
3,4 — t/J = 0.25n = 0.95,

C
/N

v

Fig. 1. Spin susceptibility (a) and heat capacity (b) for the

square lattice. Curves 1, 3 are calculated using Eq. (15), curves

2, 4 are calculated with account for fluctuation terms in

Eq. (14).



1. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

2. S. Winterfeldt and D. Ihle, Phys. Rev. B58, 9402 (1998).

3. H. R��oder, H. Fehske, V. Waas, and H. B��uttner, Phys. Rev.

B45, 13092 (1992).

4. P.A. Lee, in: Mechanism of High Temperature Conducti-

vity, v. II, H. Kamimura and A. Oshiyama (eds.), Sprin-

ger-Verlag, Berlin (1989).

5. W.O. Putikka, R.L. Glenister, R.R.P. Singh, and H. Tsune-

tsugu, cond-mat/9309031.

6. W.O. Putikka, M.U. Luchini, and R.R.P. Singh, cond-

mat/9912269.

7. H. Shimahara and S. Takada, J. Phys. Soc. Jpn. 61, 989

(1992).

8. J. Kondo and K. Yamaji, Progr. Theor. Phys. 47, 807

(1972).

9. T. Koretsune and M. Ogata, Phys. Rev. Lett. 89, 116401

(2002).

10. T. Koretsune and M. Ogata, J. Phys. Soc. Jpn. 72, 2437

(2003).

11. Y. Matsumoto, D. Tsuji, S. Murakawa, H. Akisato, H.

Kambara, and H. Fukuyama, J. Low. Temp. Phys. 138, 271

(2005).

12. D. Tsuji, Y. Matsumoto, S. Murakawa, H. Akisato, H. Kam-

bara, and H. Fukuyama, J. Low. Temp. Phys. 138, 277 (2005).

13. D.N. Zubarev, Nonequilibrium Statistical Thermodynamics

Consultant Bureau, New York (1974).

14. K. Ishida, M. Morishita, K. Yawata, and H. Fukuyama,

Phys. Rev. Lett. 79, 3451 (1997).

Heat capacity and spin susceptibility of two-dimensional t–J model

Fizika Nizkikh Temperatur, 2007, v. 33, Nos. 6/7 819


