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The structural relaxation in glass forming materials is studied near the glass transformation temperature

Tg indicated by the heat capacity maximum. The late-time asymptote of the Kohlrausch–Williams–Watts

form of the relaxation function is rationalized via the mesoscopic-scale correlated regions in terms of the

Debye-type clusters following the dynamic scaling law. It is repeatedly shown that regardless of underlying

microscopic realizations in glass formers with site disorder the structural relaxation is driven by local ran-

dom fields, described via the directed random walks model. The relaxation space dimension ds � 3 at Tg is

suggested for relaxing units of fractal dimension d /f � 5 2 for quadrupolar-glass clusters in ortho–para hy-

drogen mixtures, that is compared with entangled-chain clusters in polymers (d f �1) and solid-like clusters

relaxing in supercooled molecular liquids (with ds � 6 and d f � 3). The relaxation dynamics of

orientational-glass clusters in plastic crystals is attributed to the model of continuos time random walks in

space ds � 6. As a by-product, the expansivity in polymers, molecular liquids and networks is predicted.

PACS: 61.41.+e Polymers, elastomers, and plastics;
61.43.Fs Glasses;
64.70.Rf Glass transitions.

Keywords: cluster, relaxation, fitting forms, fractal cluster, fractal cluster treatment, thermodynamic instability.

I. Introduction

The process of structural-glass transformation in

supercooled liquids (SCLs) is followed by the formation

of intermediate metastable states in which a dramatic in-

crease in viscosity. These states expose anomalous tem-

perature behavior of transport characteristics commonly

studied above the glass transformation temperature Tg ,

established by scanning calorimetry [1]. An intriguing as-

pect in glass transformation is the apparent connection

between dynamics and thermodynamic features [2]. In

particular, there is a great interest in complex, experimen-

tal and theoretical, studies of the temperature-temporal

behavior of primary structural relaxation in SCLs [1],

which is often similar to that in other glass formers [3–8].

Dynamic data on the relaxation timescale �
T
(exp )

deter-

mined in viscoelastic, dielectric, conductivity, mechani-

cal relaxation, light and neutron scattering experiments is

regarded as one of the main keys to the understanding of

mechanisms of the structural glass transformation

[1,9,10]. A unified approach to the problem given within

one coherent framework remains a challenge for theorists

[11]. Here we put forward a mesoscopic-scale conside-

ration of the primary relaxation observed during vitri-

fication in liquids and solids and approached by per-

colative-geometric [12], dynamic-stochastic [8] and

thermodynamic-statistic [13] treatments. In this study we

focus on the mechanisms of the primary in solid and liq-

uid glass forming materials specified by space-relaxation

dimensions fractal clusters. We also stress the relation-

ships between thermodynamic and dynamic observable

quantities, which are raised from the underlying con-

straints imposed on degrees of freedom in glass formation

systems. Similarly to the case of the universal equation

established for characteristic temperatures [13], the uni-

versal mechanisms of relaxation will be found for distinct

glass formers, presented here by SCLs, polymers, orien-

tational quadrupolar-glass molecular, and spin-glass me-

tallic and nonmetallic solids. The paper is organized as

follows. In Sec. 2, the experimental and theoretical pre-

liminaries are provided for dynamical macroscopic char-

acteristics commonly describing non-Arrhenius tempera-
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ture and non-Debye temporal behavior in glass forming

materials. Predictions for thermal expansion which are

given in terms of the dynamical and thermodynamical

(characteristic temperatures) parameters are provided in

Sec. 3. The mechanisms of the primary relaxation near the

glass transformation temperature are discussed in Sec. 4

for distinct glass formers, including a special case of

the ortho-para-H2 mixtures. Conclusions are summarized

in Sec. 5.

2. Preliminary

2.1. Fitting forms

The phenomenological Vogel–Fulcher–Tammann

(VFT) fitting form, namely

� �
T
VFT gD T

T T

( )
min exp�

�

�

�
�
�

�

�
	
	

0

0

(1)

is widely used to describe non-Arrhenius temperature be-

havior of the structural relaxation in amorphous liquids

and solids; Dg is the so-called strength index [14] and T0

is the VFT temperature. Proposed in the 1920s [9], Eq. (1)

performs well within the temperature range established as

T T Tg c
 � [13,15]. Here Tc is the crossover temperature

Tc , which separates the moderately and strongly SCL

states [13], distinguished in mode coupling theory (MCT)

[1]. The pre-factor �
min
(exp ) � � �10 14 2 s reflects the Debye

molecule vibrational times, characteristic of the nor-

mal-liquid state. Besides Eq. (1), the non-Debye time-de-

cay of structural correlations is also a generic feature of

collective relaxation dynamics in supercooled states of all

glass formers. The late-time dynamical response function

is commonly fitted through the phenomenological

Kohlrausch–Williams–Watts (KWW) form by the two

temperature-dependent parameters 
T and �T [1]. Near

Tg , the slow part of the relaxation function is due to the

late-time asymptote

�
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Here
 g is the KWW stretching exponent that commonly

weakly depends on T in the vicinity of Tg .

The process of glass formation is followed by the

strengthening of dynamic correlations. As the tempera-

ture approaches Tg from above, it evolves smoothly start-

ing from the Debye behavior typical of the normal liquid

state [16,18,19]. The relaxation function can be therefore

approximated by the ensemble of modified Debye-type

clusters. The trial ensemble of clusters of random ra-

dius-size R and relaxation time �D R( ) is characterized by

the dynamically stable Debye clusters with the mean size

RT and relaxation time �DT . Thus, �T t( ) gradually

changes from the high-T Debye form to that given as

�
�

( ) ( )
( , ) exp

( )
( ) ,mod mod

t T
t

R
P R/R dR

D
T T� �

�

�
�

�

�
�

�

�
0

(3)

where P R/R P R T
T T
( )

( ) ( , )
mod � stands for the radius-size

distribution function for relaxing structural units. The lat-

ter are solid-like clusters in the case of SCLs. Following

the idea of the phase-ordering kinetics [20], the dynamic

scaling law

� �D T DT
T

z

R/R
R

R

g

( ) �
�

�
��

�

�
		 , with R RT a� (4)

was employed [12] near Tg , with the help of the dynamic

cluster-dimension exponent zT for clusters restricted by

the minimum cluster size Ra .

2.2. Fractal cluster treatment

A schematic scenario of the stretched-time relax-

ation can be figured out as a percolation process of fractal

clusters of fixed structure, performing a diffusive motion

at a given temperature T . The cluster-volume distribution

density function P V T( , ) is thought of to be distinct for

small-volume (V VT� ) clusters and for large-volume

( )V VT� clusters distinguished by the typical-cluster volume

VT . The radius-size cluster statistics of self-similar clusters is

therefore described by P R/R P V T dV/dRT T( ) ( , )� . The clus-

ter fractal dimension d f is defined through [21]

V V
R

R
T

T

d f

�
�

�
��

�

�
		 .

(5)

In this way, the process of structural relaxation is treated

as a percolation of correlated sites or bonds [21]. The

site-percolation relaxation can be described through the

model density probability [12]

P x x x x
R

R
u

d

dT
ud d

T

f

s

( )
~ ~

( ) exp ( ), ,
mod � � � � �1

. (6)

It is introduced through the two cluster-shape parameters:

d f (5 ) and d s , which is the effective dimension of space

of late-time relaxation attributed to large clusters compet-

ing with small clusters of size R RT� .

In order to establish the model parameter u for distinct

glass-formers, we have performed the model-independent

analysis of dielectric response data in SCLs proposed by

in Ref. 16. The well known Dixon–Nagel universal mas-

ter curve [16] scales the dielectric susceptibility spectrum

over a wide temperature range above Tg and over more

than ten orders of magnitude in frequency�. In order to fit

the Dixon–Nagel curve, and thereby to describe the ex-

perimental data on dielectric susceptibility, we estimated

the model susceptibility
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which is a Fourier analogue of Eq. (3 ); �T ( )0 is the static

susceptibility. The extended analysis of the Dixon–Nagel

master curve provided on the basis of the model distribu-

tion function P
T
( )mod

(6 ) and the Debye-cluster relaxation

time �D R( ) (4) is similar to that described in Fig. 1 in Ref.

12. The results [17]

u ug g.( ) ( ). . .,pol netw� � � �0 33 0 03 0 26 0 04,

and u g
liq � �0 25 0 06. . (8)

obtained, respectively, for supercooled polymeric, net-

work, and molecular liquids will be employed below for

the cluster-dimension description in these materials.

Another simple-model estimation for the slow-relax-

ation function

� � �
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follows from Eq. (3). It is presented with the help of the

auxiliary function�  , the variable x R/RT� , and the tem-

poral parameter  �� t/ DT . Application of the standard

method of steepness descent leads to the late-time asymp-

tote, shown in Eq. (9) for  �� 1, where !!�  stands for the

second-order derivative with respect to x. The saddle

point x z/d f
/ z d f

0
1

�
"

( )
( )

 is established by the station-

ary condition [ ! ��  ( )x 0 0, !! ��  ( )x 0 0 ] which is valid for

late times t d |/zDT f
/�� �� 
 
(| )1 1 . Then, through a com-

parison of Eq. (9) with the experimental data (2), one

finds the model estimate for the stretching exponent re-

sulting in the model relation [12]


 g
s
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d

z d
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When the effective dimension d s and the stretching expo-

nent 
 g can be established independently, Eq. (10 ) pro-

vides the cluster-growth exponent prediction
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Also, a relation between the primary relaxation time and

the mean intrinsic time of solid-like Debye clusters:

� � 
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follows from the simplest model (9), where �T and
g can

be observed by means of the KWW fitting form.

Using � �DT a T a
z

R /R g� ( ) in the scaling form ( 4) and

taking into account Eq. (12), the timescale steepness at Tg

(fragility) estimates as

m
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This provides a link between the fragility mg and the clus-

ter-dimension dynamic exponent z g (11), namely [8]
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g
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This can be read as an alternative to Eq. (10) prediction

for the stretching exponent








g

g

m

m m
�

"

*

*
. (15)

The experimental data on structural relaxation shown

in Fig. 1 provide evidence for mz
* � 0 (13), i.e., the growth

of correlations in collective dynamics under cooling. This

view is based on assumption of that correlated regions of

finite size RT and of a certain structure exist, for which

dR /dTT � 0, near Tg , ensues a stabilization of the mate-

rial-weakly-dependent parameter mz
* . Such a kind of
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Fig. 1. Non-Debye against Non-Arrhenius behavior near Tg .

Symbols are experimental data on dielectric, mechanical and

light-scatterer relaxation, Ref. 14. Solid lines correspond to

Eq. (15). The fitting parameters m m
 

( ) ( )pol netw� � �70 5 are

found for polymeric and network glass-forming liquids, and

m

( )liq � �100 10 for simple, complex and alcoholic SCLs, ex-

tended by molten salts (shown in inset). The thick dashed line

is given by the overall linear phenomenological fitting

mg g� �250 320
 , reported in Ref. 14, and the thin dashed lines

indicate, approximately, the upper and lower limits of the data.



model-independent clusters is observed indirectly in

Fig. 1, through the parameter m

* , establishing the effec-

tive dimension d s (14) derived below.

3. Link to thermal expansion

Let us re-present the dynamic scaling law (4) in the

form R R /T a DT a
/zg� ( )� �

1
. When the VFT Eq. ( 1) is ad-

ditionally used for �T in Eq. (12 ), the cluster mean size

R R
D
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is made explicit. Furthermore, if for the fractal clusters

(5) one introduces the thermal expansion coefficient

$T
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the estimate
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immediately follows from Eqs. (17) and (16). The

strongly material-dependent expansion coefficient (18)

is presented with the help of the known relation

D m m mg g g g� � �* *( ) ln2 1 10, earlier established [14] for

the VFT phenomenological form. Then, the material-in-

dependent quantity

| | ln*$ g g z fT m d� 10 (19)

can be readily established for fractal clusters. It is de-

duced from Eqs. (17) and (13), taken at Tg , without re-

course to any fitting form, including the VFT case (16).

Moreover, one can examine that Eqs. (18) and (19) are

self-consistent. In addition, the model equation

| | ln(mod) *$ 
g gT m u� 10 (20)

can be obtained, if the material-independent relations

m m /dz s
* *� 
 (14 ) and u d /df s� (8 ) are employed.

A direct observation of the cluster-dimension growth

(11) through Eq. (13) becomes possible thanks to the neu-

tron scattering data [22,23] on the dynamical exponent z g

available for supercooled polymers and analyzed in

Ref. 8. Combining the result mz
( )pol � �22 2, obtained

through analysis given in Fig. 2, with the output of dielec-

tric and mechanical dynamical experiments for m

( )pol �

� �70 5, derived in Fig. 1, one finds d s
( ) . .pol � �3 2 0 3, for

the effective relaxation-space dimension (6 ).

Furthermore, taking into consideration the fact of the

applicability of the model finding u g
( ) . .pol � �0 33 0 03 (8),

the fractal dimension (6) d
f

.( ) .pol � �100 0 09 is derived

here for tangled-chained structures common for glass

forming polymers. Moreover, a model prediction

| | ln( ) (exp )$
%
g g g

g

g

T u
m

pred �
�

10
1 1

(21)

is obtained through Eqs. (20) and ( 14). With the aim of

testing the material dependence of the model quantity de-

scribed in Eq. (20), the model-equivalent relation (21) is

plotted in the inset in Fig. 2. When one uses the

well-known relation for the characteristic temperatures

(see, e.g., Eq. (6) in Ref. 13)

T

T

m

m m

g g

g g0

�
� *

(22)

a new prediction follows from Eq. (21 ), namely

| | ln
( )

( ) (exp )
*

$
%
g g
g g

g

T u
m m

pred
0 10

1 1
�

�

�
. (23)

This can be compared with the model-equivalent relation

| | ln( ) (exp ) *
*

$ 
g g
g

g

T u m
m

m

pred
0 10 1� �

�

�

�
�

�

�

	
	
, (24)

which is smoothed through the parameter m

* , obtained

above in Fig. 1. Finally, our findings for the cluster-shape

parameter u g
(exp )(8) enables one to provide analysis for

all studied glass formers, presented in Fig. 3.
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Fig. 2. Cluster-dimension dynamical exponent against fragil-

ity. The points are the quasi-elastic neutron scattering and fra-

gility data reported for polymers in [22–24]. The solid, upper

and lower pointed lines are drawn through Eq. (13) with

mz* � 22 , 20 and 24, respectively. Insert: model prediction for

the expansivity relation in polymers against glass transforma-

tion temperature Tg . The thin and thick squares are the experi-

mental data reported in, respectively, [14,22–24], re-estimated

through Eq. (21) with ug
(exp )

.� 033. Lines are guide to the eye.



As seen in Fig. 3, the predicted expansion coefficient

$ g is expected to be strongly material dependent. Con-

versely, the quantity | |( )$ g Tpred
0 changes weakly with

chemical structure in glass forming liquids and polymers.

This allows to find the minimum expansivity as

$ g /T(min) ( )� � �54 5 0, obtained in the fragile-glass limit

( )*m /mg g & � .

4. Cluster relaxation mechanisms

The mechanisms of structural relaxation in glass forming

polymers and structural disordered orientational-glass

formers were discussed respectively in Refs. 25 and 8. In

both cases the directed by random walk (DRW) mecha-

nism, known from the restricted-diffusion models for

d s �1 extended over the dimension d s � 3, was estab-

lished. The DRW model prediction is [8]

z g
DRW

g

( ) � �
�

�
�
�

�

�
	
	

3
1

1



,
(25)

that can be compared with Eq. (11). It seems reasonable to

extend this mechanism to the site-disordered solid o-p-H2

(OPH) mixtures, as the quadrupolar-glass (QG) former,

though no dielectric loss data can be available [26]. In

what follows, we seek to provide the data on the standard

set of VFT and KWW dynamical exponents through the

coarse-graining of microscopic model descriptions of

OPH mixtures given in Refs. 27 and 28.

4.1. The case of OPH

Microscopic treatment of the QG state in real OPH

mixtures is based on the random-bond and random-site

quadrupolar Hamiltonian introduced from the first princi-

ples [26,29]. The microscopic theory was developed in

Ref. 27 within the framework of Bogolyubov’s varia-

tional scheme developed in terms of the two local-order

dynamical variables ' i and (i . A description of the

metastable rotational state, arising from the quenched

site-substitutional disorder, is introduced through a set of

macroscopic order parameters

q x p xT i i C T i i C( ) , ( )� � " � � � � �' ( ' (2 2 2 2 , and

' 'T i Cx( ) �� � , (26)

given at a fixed temperature T and a rotor-molecule con-

centration x corresponding to the ortho-hydrogen over-

tion. Symbol C denotes a configurational average over

random realizations. The microscopic treatment provides

a closed system for the order-parameter equations [27].

Their analysis at high temperatures indicates that the dy-

namical freezing into the short-ranged, bond-bond corre-

lated quantum QG state occurs at a certain glass freezing

temperature T x T xf g( ) ( )� established in both thermody-

namic and dynamic NMR experiments [26]. Below Tg ,

the isotropic (IQG, q pT T T� ��� ' ) and anisotropic

( )q pT T T� �� ' quadrupolar glass states are possible [27].

Within context of the theory of diluted magnetics, the

outcomes of the QG theory are described through the two

competing parameters

J x J ij C
/( ) � � �2 1 2 and

)T
i C

i C

x
h h

h

h x T

h x T
( )

( ) ( , )

( , )
�

� � �

� �
�1

2
2

1

, (27)

which are, respectively, the variance of the random ex-

change J ij and the ratio of the variance h2 and mean h1 for

the fluctuation field hi , both are the energetic parameters

of the OPH Hamiltonian [27]. The IQG ground state

( ( ) , ,q q x0 0 01 0� � �' q p0 0�� ) defined [30] through

the QG order parameter q xT ( ) estimated at T � 0 reads as

q x q
x

q

x

x
0

0
2

0
2

0
2 2

1

2
1 1

3

4 1
( )

( ) ( )

[ ( )]
max

max

�
�

" �
�

�

�

�
�
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)

�

�

	
	
,

)0 118( ) . maxx
x x

n xa

�
�

, (28)
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Fig. 3. Model predictions for the expansivity relations in dif-

ferent glass formers against fragility. Symbols and lines corre-

spond to those shown in Fig. 1. The points are dynamic relax-

ation data [14] re-estimated through Eq. (23), with
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where the parameter qmax establishes a certain scale of

variation of q0 at the maximum concentration x max;

na �12 is the number of nearest neighbors in HCP lattice.

The ground-state prediction (28) was carefully tested by

the experimental data (see Fig. 1 in Ref. 30 and Fig. 3 in

Ref. 28). The low-T asymptotic behavior [27]

q x q x q x
T

J x
q

T

J x
T ( ) ( ) ( )

( ) ( )
� �

�

�
�

�

�
	 "

�

�
�

�

�
	0 02

2

04

4

, with

J x n xa( ) � * , (29)

is presented by the Taylor series and the quadrupolar cou-

pling constant * � 0 82. K.

Fractal clusters. Following Ref. 30, q x0( ) (28) can be

improved by including distant rotor neighbors n x0( ). In

this way, a fractal structure of the IQG cluster is intro-

duced here through the relations

n x n
R

R
R x R

x

x
a

a

d

a
a

/df

0
0

0

1

( ) , ( )�
�

�
��

�

�
		 �

�

�
��

�

�
		 , for

d d x xf a� �, , (30)

where the fractal dimension d f which is less of the spatial

dimension d � 3; R0 plays the role of the random-walk

cluster correlation length, which exceeds the near-

est-neighbor distance Ra . In the approximation of con-

tinuos medium, x a was estimated [30] as 3 2 0 17% +, - .
corresponding to the observed lower-bound critical con-

centration x
min
(exp ) .- 0 1. Taking into account the up-

per-boundary data [26] x max
(exp ) .� 0 55, the modified struc-

tural-disorder parameter

~ ( ) . max)0
0

118x
x x

n x
�

�
,

n x n
x

x
xa

a

d /df

0 0 55( ) , max .�
�

�
��

�

�
		 � (31)

is employed to fit the data [31] on q x
0
(exp )

( ) through the

modified Eq. (28). As the result, the fractal dimension

d f � �2 5 0 3. . is derived via the fitting analysis (shown

below in Fig. 4). Remarkably, the given coarse-grained

QG description is consistent with the model-independent

critical dimension d /f � 5 2, known for d � 3 in the gen-

eral percolation theory (see, e.g., Table III in Ref. 21). We

therefore put d ds � � 3 in Eq. (11) that justifies the appli-

cation of Eq. (25) to the case of OPH.

Characteristic temperatures. The orientational-order

freezing mechanism rationalized [32] in terms of the

short-range ordering standard molecular field competing

with strongly correlated intrinsic fluctuation field. In this

way, T xg ( ) is treated as a molecular-fluctuation crossover

field temperature. In the weakly rotor-correlated para-ro-

tational phase (PR, T � Tg ), a formation of the moder-

ately supercooled state was shown [32] to be driven by

the random Zeeman-type field [26]. Below Tg , the

Zeeman-field effects are suppressed by the by reaction

Onsager field [27,30], which, along with the molecular

exchange-coupling field, determines the formation of

QG-type clusters.

A microscopic-level description of the so-called

PR–QG boundary [26,30], here determined as T xg ( ), re-

mains an unsolved problem. Nevertheless, a peculiarity in

the temperature behavior of q xT ( ) near Tg can be ex-

pected, when the PR–QG boundary is introduced within

the framework of the coarse-grained description ~ ( )q xT ,

given through Eqs. (29), (28), and (31), as a crossover be-

tween the moderately supercooled state (~qg g� ' ) and the

strongly moderately supercooled state (~qg g� ' 2 ). In

Ref. 32, this peculiarity was discussed through the two

approximate schemes called by the «intrinsic–field

self–compensation effect» near T xg ( ). The first scheme
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Fig. 4. The quadrupolar-glass orientational-order parameter in

OPH molecular mixtures against of ortho-hydrogen concentra-

tion at distinct temperatures. The open circles correspond to the

linear extrapolation to T � 0, after Meyer and Washburn [31].

The closed circles are given by the linear (a) and non-linear (b)

extrapolations, after Sullivan and co-workers [33]. Lines: ~( , )q x 0

is the extrapolated QG ground state ~ ( )q x0 described in Eqs. (28)

and (31), with d f � 2 5. and qM � 071. . The data ~( , )q x T0 and
~( , )q x Tg are Eqs.(29), modified through Eq. (31), shown at the

characteristic temperatures T xg
a( )( ) (32) and T x0( ) (36). Inset:

the quadrupolar-glass transformation characteristic tempera-

tures against concentration. The solid lines are T xg
a( )( ) and

T x0( ). The dashed-dotted line sketches the ergodic-instability

temperature [17]. Notations: PR–para-rotational short-range or-

dered (supercooled) phase, AFR — antiferro-rotational

long-range ordered phase, HR — hindered rotor phase [34].



treats the crossover point as x-independent kink observed

for ~ ( ) ~ ( )q x q x /T � 0 3 at the temperature

T x J
q

q
g

a( )( )
~

~�
2

3

0

02

, (32)

where the random-mean-square exchange energy J x( ) is

defined in Eq. (27) and specified in Eq. (29). An alterna-

tive approach considers the crossover line as an inflection

point . . �2 2 0~ ( )q x / TT observed at the temperature

T x J
q

q
g

b( )( )
~

~� 02

04

. (33)

Numerical analysis of the proposed cluster description in

OPH is given in Fig. 4.

Thermodynamic instability. Within the mesoscopic

QG-cluster treatment of orientationally-correlated rotors,

given in the concentration domain x x xmin max� � , the

corresponding correlation length R0 is constrained by

R R Ra a� �0 3 . This implies that the distant rotors with

R Ra� 3 are almost isolated relaxing units. Correspon-

dingly, the rotational heat capacity C rot attributed to the ro-

tational degrees of freedom of the system is commonly due

to the contributions from the strongly correlated (collective)

rotational excitations (Ccor ) and from the hindered rotation

of weakly correlated rotors (C hind ), namely

C C Crot cor hind� " . (34)

The last term was described [32] through the Schot-

tky-type anomaly of an isolated rotor modified by distant

rotors. Similarly to the order parameter q xT ( ), the micro-

scopic theory suggests the low-T asymptote for C x Tcor ( , )

represented here as

C x T

xR
s x

T

T x

cor ( , )
( )

( )
�

�

�
��

�

�
		 �

�

�

�
�

�

�

�
�

2 10
0

2

, (35)

with R is the gas constant, T x J x s x / s x0 0 023( ) ( ) ( ) ( )�
and the parameters s x0( ) and s x02( ) are given in Eq. (20)

in Ref. 27. The thermodynamic-instability in Eq. (35) es-

tablishes the VFT temperature

T x
n x

q
q

q

q
0

0
0 0

2 0
2

0

0

06
1 1

8

1 2

1
( ) ( ~ ) ~

~

~
( ~ )

( ~ )
� � � �

�

�
* )

)
(36)

given through the functions ~ ( )q x0 and ~ ( ))0 x , n x0( )

shown in Eqs. (28) and (31), respectively, and is plotted in

the inset in Fig. 4.

Fragility and stretching exponent. In the absence of

the loss dielectric data, the non-Debye primary relaxation

in OPH mixtures could be derived from the order-parame-

ter temporal behavior observed in the NMR spectra [26].

The expected VFT-type behavior, introduced here

through T x0( ) and T xg ( ) suggests the OPH fragility

m x m
T x

T x
g g

g

( )
( )

( )
*� �
�

�
�
�

�

�
�
�

�

1 0

1

, (37)

defined with the help of Eq. (22). This finding provides

the desired stretching exponent of the KWW form (2),

namely








g

g

x
m

m x m
( )

( )

*

*
�

"
(38)

when Eq. (15) is additionally employed. Numerically,

these predictions are analyzed in Fig. 5.

In Fig. 5, both the versions discussed in Eqs. (36)

and (32) are drawn as two ways of the order-parameter

zero-temperature extrapolation. The numerical discrep-

ancy between the two versions, estimated through the ex-

perimental data [33], is shown by the error bar ab in Fig. 4.

4.2. Other glass formers

In Fig. 6 two distinct mechanisms are suggested for

site-disordered and mixed crystals and also for site-or-

dered «bond-frustrated» plastic crystals, all characterized in

Table 1 in Ref. 8, now extended by OPH mixtures. The first

type of materials is described by the DRW model in
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Fig. 5. Primary relaxation characteristics of OPH mixtures
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plot) and stretching exponent (lower plot). The solid lines are

driven through Eqs. (37) and (38) with mg
* �15 for the fragility

and m

* � 21for the stretching exponent, common for site-disor-

dered crystals [8], and T x0( ) and T xg
a( )( ) are given in Eqs. (36)

and (32) with the parameters found in Fig. 4. The dashed lines

correspond to the case T xg
b( )( ) (33).



Eq. (25). Remarkably, that the same relaxation mechanism

with d s � 3 is attributed to polymers [8] and also to non-poly-

meric SCLs, for which though d s � 6 was found [13].

Although Eq. (14) was analyzed in Ref. 8 and m
PC


( ) � 60

was found for plastic crystals, the relaxation mechanism

was not identified. Adopting the Brownian diffusion

( )zcr � 2 ) as the critical regime for any subdiffusion dy-

namics (
cr � 3 5/ shown in Fig. 5), the dynamic exponent

(11) for plastic crystals

z g
CTRW

g
g

( ) and� �
�

�
�
�

�

�
	
	

�6 2
1 3

5


 , (39)

with d g
PC( ) � 6 (along with mz

PC( ) �10) fits well the expe-

rimentally observed data. Even though the suggested re-

laxation regime in known [] only in the effective space

d CTRW( ) �1 of the Continues Time Random Walk

(CTRW) model, as shown in Eq. (85) in Ref. 17, Eq. (39)

extends this mechanism over d CTRW( ) � 6.

5. Summary

We have seen that from the macroscopic point of view

no conceptual gap exists between the supercooled states

in metallic and non-metallic spin glasses, dipolar and

quadrupolar orientational glasses, and molecular and

polymeric structural glasses. A fruitful analogy between

all three fields is widely explored by many researchers

[3–7] that challenges the development of a generalized

theoretical consideration. In our study, a cooperative

process of glass formation it treated in terms of material-ab-

stract relaxing units, whose relaxation dynamics is driven

by late-time correlations associated with large clusters. It

is shown that the universal (material-independent) fea-

tures of the $-relaxation under cooling are stipulated by

the slow growing of correlations as well as by self-simi-

larity of the mesoscopic-scale hierarchical structure of

these correlations. Though a specification of correlations

depends on the chosen theoretical scheme, their structure

similarity is evidently manifested through the existence

of weakly material-dependent parameters, which in turn

provide a link between the dynamic exponents and ther-

modynamic parameters of glass formers. As additionally

shown in Ref. 17, the large clusters attributed to the

late-time spatial correlations and described here through

the KWW asymptotic scaling form are self-consistent

with small clusters, revealed in turn through the short-time

von Schweidler scaling form. As the results, this addi-

tionally ensures the existence of the wide intermediate

scale implicit in the universal Dixon–Nagel curve. Within

this context, the typical cluster radius size RT emerges as

the upper and lower bound for self-similar asymptotically

small and large clusters.

It has been earlier argued [8] that regardless of under-

lying microscopic realizations in distinct materials, the

structural relaxation is driven by local random fields in

glass formers with structural disorder (including poly-

mers) can be described on the mesoscopic-scale level by

DRW model with d s � 3. Although the QG is the first rep-

resentative of orientational glass in site-disordered crys-

tals found by Sullivan’s group through the NMR spectros-

copy [26], the macroscopic parameters of the standard

VFT and KWW forms were not yet established. In a cer-

tain sense, we fill this gap making predictions in Fig. 5.

Moreover, it is shown that the QG clusters in OPH mix-

tures are of fractal dimension d /f � 5 2 and they relax in

space d /f � 5 2, similar to all other site-disordered glass

forming materials. Remarkably, that the same relaxation

mechanism is established for all simple, complex, and al-

coholic liquids, though in this case d s � 6 and d f � 3 [13].

In contrast, the orientational-order relaxation in site-or-

dered plastic crystals is suggested to be driven according

to the CTRW model treated in space with d s � 6. Finally,

the found expansion thermal expansion at Tg challenges

new experimental research in SCLs, polymers and

networks.
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