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Low-temperature heat capacity of cryocrystals, which contain impurity clusters has been investigated

theoretically and experimentally. Such defects might essentially enrich low-frequency part of the phonon

spectrum by introducing both localized and delocalized vibrations. The effect of both types of the vibrations

on the temperature dependence of the heat capacity is analyzed. Heat capacity of the disordered solid solu-

tion Kr–Ar (Ar concentration is ~25%) is studied as an example of the effect of the light weakly connected

impurities on the low-temperature thermodynamic characteristics of the system. The mass defect of such an

impurity induces «phonon pumping» from the low-frequency part of the spectrum into the high-frequency

part and decreasing the low-temperature heat capacity, while the weakened interaction between the impurity

and the host atoms combined with even weaker interaction between the impurities leads to the formation of

the low-temperature maximum on the heat capacity temperature dependence. The analysis performed shows

that at rather high Ar concentrations, the nonmonotonous temperature dependence of the relative change in

the heat capacity of solid Kr Ar1�p p solutions is determined by excitation of delocalized high-dispersion

low-frequency phonons.

PACS: 63.20.–e Phonons in crystal lattice;
63.20.Mt Phonon-defect interaction;
63.50.+x Vibrational states of disordered systems;
63.70.+h Statistical mechanics of lattice vibrations and displacive phase transitions.

Keywords: disordered solid solution, impurity cluster, boson peak, Jacoby matrix, Green function.

Introduction

For many years the influence of defects upon the phys-

ical properties of cryocrystals has been one of the most

important problems of low temperature physics of solids

that stimulated intense theoretical and experimental re-

search (e.g., see monograph [1] and references therein).

The results obtained on such objects are explainable with

high accuracy within quite simple crystal lattice models

and can be generalized for a very wide class of crystalline

structures.

At present there is a practically completed theory in-

terpreting the variations of the crystal properties caused

by the so-called isolated defects, whose influence upon

one another is negligible. It is certainly interesting to in-

vestigate crystals with defects that can be defined as com-

plex ones, for example, impurities located near a sample

boundary or a vacancy. When the concentration of impu-

rity atoms in the lattice grows, complex defects can ap-

pear in addition to the isolated ones. Complex defects are

formed by closely-spaced impurities. In some cases they

may be considered as isolated defects [2–5] and can be

described in terms of the regular perturbation theory.

Special interest is focused on systems consisting of

a cryocrystalline matrix containing randomly–dissolved

impurity atoms. At a growing concentration the spectral

characteristics of such solutions exhibit properties that

are typical of amorphous compounds, glasses, biopoly-

mers and so on. One of the features characterizing such

systems is the anomalous frequency distribution of phon-

ons in the long-wavelength (low-frequency) region. This

is evident in Raman and neutron scattering experiments

[6–8] and in the behavior of the low-temperature heat ca-

pacity and thermal conductivity [9–11].

This anomaly of the frequency distribution of phonons

can be described as a maximum of the magnitude

I � g( ) /� �2, where g( )� is the phonon density of states

and � is the frequency. The maximum was called a «boson
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peak». It is typical for glasses, amorphous media, and

other disordered systems in which the influence of de-

fects goes beyond local disturbances. The change in the

vibrational and other physical properties of such systems

cannot be interpreted as regular degenerate perturbation.

In this study we investigate theoretically how the low-

temperature heat capacity of solid Kr Ar1�p p solutions

changes at growing concentration p of Ar atoms. Argon

and krypton are highly soluble in each other and the pa-

rameter p can take any value varying from zero to unity

[12]. The calculated results are compared with the cur-

rently available experimental data. It is shown that the

change in the low-temperature heat capacity at p � 20%

and lower (~ 5 10� %) concentrations of argon has qualita-

tive features induced by delocalized excitations analo-

gous with boson peaks that appear in addition to the local

(including complex) defects.

Changes in heat capacity of krypton caused

by argon impurity

We develop the model crystal lattice of the Kr Ar1�p p

system on the basis of the fcc structure with the lattice pa-

rameter of pure krypton (a � 5.59 � [1]). In our descrip-

tion the interatomic interaction in solidified inert gases is

reduced to the interaction between the nearest neighbors.

In the general case this interaction is characterized by

three force constants �, �, and �:
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The other force constant matrices can be found from

Eq. (1) by Oh — group symmetry operations, and the ma-

trix of self-action is

	 ik ik( ; ; ) ( )0 0 0 8 4� �� � � . (2)

Since a cubic-symmetry crystal has three independent

elastic moduli C11, C12, and C 66, we can use their values

and estimate unambiguously the force constants �, �, and

�. For krypton [13] we obtain � Kr–Kr � 7260.3 dyn/cm,

� Kr–Kr � 310.75 dyn/cm, � Kr–Kr � 7797.0 dyn/cm. The

force constants characterizing the Kr–Ar and Ar–Ar in-

teractions can be calculated with help of the Lennard–

Jones potentials (parameters � and � for Kr and Ar see e.g.

[1]):

� Kr–Ar � 7804.0 , � Kr–Ar � 127.00 , � Kr–Ar � 7310.0 ;

� Ar–Ar � 1551.83 , � Ar–Ar � 220 677. , � Ar–Ar � 1331.15.

We assume that the Ar–Ar interaction is the same for the

nearest Ar pairs and the larger clusters of defects (trian-

gles, tetrahedrons, etc.) that can form as the Ar concentra-

tion increases.

The calculations performed in this study are based on

the � -matrix technique (e.g., see [14–16]). The method

does not use explicitly the translational symmetry of the

crystal lattice and permits a straightforward calculation of

the spectral densities corresponding to the displacements

of different atoms of the system along displacements of

different crystallographic directions i:

� �
�

�i i( , ) ( , )r r�
1

Im � . (3)

Here r is the radius-vector characterizing the position of

the particular atom, � is the frequency; the Green function

� i ( , )� r is expressed in terms of the matrix element of op-

erator-resolvent as follows:

� � �i
i iu u

( , ) ( � �)� � �r
r r

� � � �2 2 1 (4)

where the symbol � r
u i

| has the meaning of the displace-

ment of the atom with the radius-vector r along the crys-

tallographic direction i (a certain vector in the space of

atom displacements in the system H); �� is the unit opera-

tor, �� is the operator describing the atomic oscillations in

the system, its eigenvalues are squared eigenfrequencies.

The matrix of this operator can be expressed in terms of

the force constant matrix and the masses of the interacting

atoms m( )r and m( )r� .

The spectral density of the system is

� � � �
� �

�� �
�

�
�( , ) lim Im ( � �) ,p

NN

2 2 1Sp � � (5)

According to [17–20], it is a self-averaging quantity and

can be estimated through averaging the functions over all

r-positions and displacement directions i.

The random distribution of the Ar impurity atoms was

performed using a random-number generator of pseu-

dorandom numbers distributed uniformly in the interval

(0,1). The random-number generator operates on the mul-

tiplying congruent principle [21]. We calculated the spec-

tral densities � �� �( , )p for different concentration of im-

purity atoms. At each concentration, the averaging was

made over several thousands of random configurations

of the impurity distribution. For each configuration the

density of states was determined through averaging over

several tens of spectral densities corresponding to the dis-

placements along different crystallographic directions of

several tens of sequentially arranged atoms.

The vibrational heat capacity C
v

(heat capacity at con-

stant volume) is expressed in terms of the phonon density

as (e.g., see [22]) of solid solutions is expressed in terms

of � �( ) as

C T p R
kT kT

d
v

( , ) sinh ( ) ,�
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where the integral is calculated in the whole region of the

atomic oscillation frequencies � both over the quasi-con-

tinuous spectrum band and over the discrete levels (if

there are).

We obtain � � � �( ) ( , )� � �i p for solid solutions and

� � � �( ) ( , )� �i r for a perfect single-atom crystalline lat-

tice of cubic symmetry. The function  !� �� �i , r is the

spectral density caused by the displacement of an arbi-

trary atom in any of the crystallographic directions.

It is known that at low concentrations the interaction

between the impurity atoms is negligible. It is also as-

sumed that the impurity-induced change in the additive

thermodynamic characteristics is linear in impurity con-

centration p. Thus, at p "" 1

# #C T p

C T
p

C T

C T

l
v

v

v

v

( , )

( )

( )

( )(Kr) (Kr)
� ,

where #C Tl
v

( ) is the change in the heat capacity per local

defect. The disturbance of the lattice vibrations generated

by a local defect is as a rule, localized around this defect.

The #C Tl
v

( )-value can be calculated using, for exam-

ple, a shift function if the disturbance is regular and de-

generate [23,24]. According to the traditional interpreta-

tion of crystal lattice vibrations as a superposition of

plane waves, only the disturbance generated by an isoto-

pic impurity can be considered as degenerate (in three-di-

mensional vector models). The �-matrix method treats

the disturbance as degenerate if it is generated by an im-

purity with changed force constants in the case of the

noncentral interaction between the atoms [25]. The pres-

ence of the noncentral forces allows the disturbance to be

degenerated only in the subspace that can be transformed

in one-dimensional representations of the symmetry

group of the particular lattice.

At the same time, local disturbances do not affect the

band width of the quasi-continuous spectrum of the crys-

tal. They can only form discrete local levels beyond the

band. Therefore, the asymptotic behavior of the � -matrix

elements representing the operators �� that describe the

lattice vibrations do not change under the influence of a

local defect. It is natural to call such disturbances asymp-

totically degenerate.

Since the arbitrary matrix element �mn ( )�2 of the

resolvent operator �( ) ( � �)� � �� �2 2 1� � � can be expressed

strait forwardly through the element � �00
2 2( )� �� ( )

(Green function), for m n" we obtain [5]:

� �
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then the change in the heat capacity for such asymptoti-

cally degenerated local disturbance can be written in the

form of the integral of Eq. (6) with the function � �( ) sub-

stituted by
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The second sum in Eq. (8) describes the contribution of

local frequencies if they appear in the disturbed system;

�n ( )�2 are the Jacobian matrix-generated polynomials

(e.g., see [14–16]); the tilded variables refer to a dis-

turbed system and can be calculated using the correspon-

ding Jacobian matrix; the nontilded variables describe an

ideal perfect lattice. The accuracy of computation by Eqs.

(6), (8) using the finite rank � -matrix corresponds to the

accuracy of calculation of the perfect-lattice heat capacity

with the aid of the matrix of the same rank.

Results and discussion

By the methods above mentioned we received the fol-

lowing results. Figure 1 illustrates the temperature de-

pendencies of the relative change

#C T

C T

C T p C T

C T

v

v

v v

v

( )

( )

( , ) ( )

( )(Kr)

(Kr)

(Kr)
�

� � �

in the heat capacity of solid Kr Ar1�p p solutions with vari-

ous Ar concentrations p in reference to the heat capacity

of pure Kr.

The dependence is smooth at moderate p-values (5 and

10%; curves 1 and 2, respectively). At p �15% (curve 3)

the dependence exhibits some «flattening» in the interval

3.5 K & &T 10 K. On a further increase in the Ar concen-

tration: p � 24 4. % (curve 4) and 50 % (curve 5), two

extrema appear in #C T p C T
v v

( , ) / ( )(Kr) — a maximum at

T � 3 5. K and a minimum at T � 9 K (24.4%) and

T �12 5. K (50% ).

The measured temperature dependence of the relative

change in the heat capacity at p � 24 4. % [26] (�) is
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Fig. 1. Temperature dependences of the relative change in the

heat capacity at a growing concentration of Ar impurity p, %:

5 (1), 10 (2), 15 (3), 24.4 (4), 50 (5).



shown in Fig. 2. There are two extrema in this case too: a

maximum at T � 3 5. K and a minimum at T � 9 K. The

solid line is a portion of the curve of Fig. 1, which illus-

trates a theoretical calculation of the same magnitude at

the same concentration. It is seen that the experimental

and theoretical results are in good agreement — the

extrema temperatures coincide with a high degree of ac-

curacy and the deviations of #C T p C T
v v

( , ) / ( )(Kr) are ac-

tually within the accuracy of the experiment. True, the

character of dilation at these p-values is more compli-

cated than that allowed for in the model.

Let us analyze the possible reasons for the qualitative

behavior of the relative change in the heat capacity at

growing concentration.

Figure 3 illustrates the temperature dependencies of the

#C T C T
v v

1Ar (Kr)( ) / ( ) — parameter describing the change

in the heat capacity of Kr caused by an isolated atom of

the Ar impurity (curve 1) and the #C T C T
v v

2Ar (Kr)( ) / ( ) —

parameter describing the change in the heat capacity

caused by an isolated pair of adjacent Ar atoms (curve 2).

The smooth rise of curve 1 with temperature and the very

weak temperature dependence of curve 2 permit us to ex-

plain the heat capacity variation at low (down to 10%)

concentrations of Ar impurity at the expense of a super-

position of local disturbances localized near the de-

fects* that generate them. This explanation is totally

unsuitable for the double extrema behavior of the

#C T p C T
v v

( , ) / ( )(Kr) — parameter at higher concentra-

tions.

Since in the Kr Ar1�p p solutions the linkage between

the Ar atoms is much weaker than the Kr–Kr or Kr–Ar

bonds, at p � 20%, when practically each impurity atom

has identical impurity atoms among its nearest neighbors,

some quasi-continuous distribution of the weak bonds oc-

curs in the lattice. In this case each region having the

characteristic size l � $ (sound wavelength) can be char-

acterized by its own set of elastic constants, its own longi-

tudinal and transverse sound velocities which acquire a

meaning of randomly distributed parameters.

No quasi-local low-frequency oscillations can occur in

such systems. The low frequency regions of the density of

states of the Kr Ar1�p p systems are shown in Fig. 4, the Ar

concentrations being as in Fig. 1 (the curves are num-

bered as in Fig. 1, the dashed line shows the density of

states of ideal Kr [13]). In the frequency interval � �& *

(the frequency of the first van Hove singularity) none of

the curves has any sign of the characteristic quasi-local

maximum. The curves have typical «quasi-Debye»

shapes. In other words, the oscillations at these frequen-

cies, which are responsible for the behavior of the heat ca-

pacity in the temperature interval 1–20 K, are completely

delocalized.

At the same time, such systems with randomly distrib-

uted force and elastic parameters are noted for more in-

tensive sound wave dispersion. As a result, the curve � �( )

starts to deviate from the quadratic (Debye) behavior at

lower temperatures. For this reason the ratio � � �( ) ' 2

reaches a maximum in glasses and some other disordered

systems (e.g., the system in [27]). This is the so-called

«boson maximum» (or «boson peak» [6–11,27–32]). Note

that in these studies this peak was investigated mainly for

the phonons with frequencies at which the sound velocity

becomes dependent on the wave vector (from «propa-

gons» to «diffusons», according to the terms of [33]). The

absence of a distinct boundary between the propagons
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* The contributions from impurity clusters such as equilateral triangles and tetrahedrons, are qualitatively similar to the contri-

butions made by impurity pairs; besides, the concentration of such localized defects is extremely low.
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Fig. 2. Temperature dependences of the relative change in the

heat capacity of solid Kr Ar0 756 0 244. . solution: theoretical calcu-

lation (((), experiment (�).
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isolated Ar atom, curve 2 — isolated pair of adjacent Ar atoms.



and diffusons is usually identified with the Ioffe-Regel ef-

fect (e.g., see [32,33]).

However, even higher-frequency acoustic phonons

whose dispersion ceases being linear (the so-called «dif-

fusons») can form a similar maximum if its frequency is

not higher than �* .

Figure 5 illustrates the ratios � � �( ) ' 2 for the

Kr Ar1�p p . There is a maximum only at p � 50%. At other

concentrations it has no time to form the maximum of the

frequency of the first van Hove singularity -– opening of

isofrequency surfaces of transverse acoustic oscillations.

However, as soon as the propagation of the sound wave

slowing down, the number of the low-frequency phonons

(especially those with k � 0) increases and so does the

low temperature heat capacity. On the other hand, the

number of the low frequency phonons decreases because

of the small mass of the impurity atoms. It is natural that

the two mechanisms — the increase and the decrease in

the number of phonons-compete in Ar–Kr solutions. Note

that at p � 24 4. % the maximum of the relative change in

the heat capacity (Figs. 1, 2) is negative and becomes pos-

itive only at higher Ar concentrations (e.g., see Fig. 1,

curve 5).

Thus, the analysis performed shows that at rather high

Ar concentrations, the nonmonotonous temperature de-

pendence of the relative change in the heat capacity of

solid Kr Ar1�p p solutions is determined by excitation of

delocalized high-dispersion low-frequency phonons. In

turn, the high-dispersion low-frequency phonons are due

to the random distribution of weak bonds in the lattice,

which are typical for the Ar–Ar interaction in this solu-

tion. Note that the distributed weak bonds cause a severe

local anisotropy of the oscillations both of Ar and Kr at-

oms. The local anisotropy leads to some pushing the

phonons towards the ends of the band of the quasi-contin-

uous spectrum, which increases the number of low

frequency phonons.
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