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The density of states g( )� of disordered solutions of solidified inert gases have been calculated using the

Jacobian matrix method. The transformation of a discrete vibrational level into an impurity zone at a

growing concentration of light impurity atoms has been investigated. It is shown that a 1–10% change in the

impurity concentration leads to smearing the local discrete level into an impurity band. As this occurs,

additional resonance levels appear which carry important information about the impurity–impurity and im-

purity–basic lattice force interactions in such solutions.

PACS: 63.20.–e Phonons in crystal lattice;
63.20.Mt Phonon–defect interaction;
63.20.Pw Localized modes;
63.50.+x Vibrational states of disordered systems.
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Introduction

It is well known that impurity atoms introduced into a

crystal can cause discrete impurity levels (the so-called

local oscillations) beyond the band of the quasi-con-

tinuous phonon spectrum of an ideal lattice. This occurs

when the mass of the impurity atom is smaller than that of

the atoms in the basic lattice or when the impurity atom

basic lattice binding is stronger than the atomic bonds in

the basic lattice. The appearing oscillations are localized

at the impurity atoms and their amplitudes decrease rapid-

ly with distance from the defect. The degree of localiza-

tion is the higher, the father is the oscillation frequency

from the upper edge of the continuous spectrum band. It is

thought that the damping of the local oscillation ampli-

tude is exponential when the distance from the defect

exceeds considerably the characteristic radius of the in-

teratomic interaction in the crystal. A systematic investi-

gation of local oscillations was started by I.M. Lifshitz

[1–4]. The conditions of the formation and the charac-

teristics of such oscillations can be found in many mono-

graphs concerned with the crystal lattice dynamics (e.g.,

see [5–7]). At present there are numerous techniques of

experimental measurement of local oscillation frequen-

cies. Such frequencies were obtained for many solid

solutions [8,9]. This kind of experiments provide

abundant easily-obtainable (e.g., see [10]) information

about the parameters of defects and basic lattices.

In experiment, local frequencies can be observed in

solid solutions with a finite (and small) concentration of

impurity atoms in which the interaction of states at close-

ly-spaced defects is not always negligible. Because of this

interaction, the localized oscillation levels can transform

into impurity zones with a quasi-continuous spectrum,

i.e., they alter to delocalized states [11–15]. The degree of

the smearing of discrete localized levels into impurity

zones is dependent not only on the impurity concent-

ration, but also on the parameters of the defect, the basic

lattice and the defect–defect interaction. It is therefore

interesting to find out if the resonance character of the

impurity vibrations persists at a particular matrix. If so,

will the frequency of the corresponding resonance maxi-

mum shift away from the frequency of the local oscil-

lation induced by an isolated impurity?

At present there is a consistent theory of evolution of

localized oscillations into impurity zones at low impurity
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concentrations [12–15] when the average distance bet-

ween the impurity atoms l is much larger than the atomic

spacing in the basic lattice a. The power series expansion

(the parameter of the expansion is c a l� �( ) 3) was ob-

tained for the density of states (DOS) in the impurity

zone.

Note that at low concentrations p (commonly found as

a ratio between the number of impurity atoms and the

total number of atoms in the system) the l value becomes

smaller than 2a (at p � 2% for closely-packed structures,

at p � 3% for a simple cubic structure and so on). With

this spacing between the impurity atoms, their effective

interaction involves at least the second moments of their

spectral density, which can appreciably affect (e.g., see

[10]) the frequencies of localized oscillations. Even at

such low impurity concentrations we can observe not a

discrete highly localized oscillation level, but an impurity

zone formed by delocalized oscillations.

The evolution of discrete localized levels into impurity

zones was investigated for rapidly attenuating phonons in

narrow optical bands [16,17]. However, the calculation

technique proposed in [16,17], which was based on the

Green functions and the diagram procedure, works poorly

for slowly attenuating acoustic phonons.

In this study the phonon DOS of disordered solid solu-

tions of inert gases Kr Ar1�p p have been calculated nu-

merically.

In this system the concentration p can take any value

varying from zero to unity [18]. As the concentration

changes from 1 to 10%, the smearing of the local discrete

level into an impurity band is attended by additional re-

sonance levels carrying important information about the

Kr–Ar and Ar –Ar force interactions in such crystals.

Phonon densities of states of solutions of solidified

inert gases

The computation performed in this study is based on

the method of Jacobian matrices (J matrices) [19–21]

(also see [22]). The essence of the method is the classifi-

cation of vibrations, which differs from the traditional

plane wave expansion. The corresponded basis { }
�
hn n�

�
0

can be obtained through orthonormalization of the se-

quence

{ � } , � , � , , � ,L L L L
n

n
n

� � � �
�

�
�h h h h h0 0 0 0

2
0 0�

� � , (1)

which is one of possible representations of the Huygens

principle. Here �L is the operator describing the crystal

lattice vibrations

L ik
ik

m m
( , )

( , )

( ) ( )
r r

r r

r r
� �

�

�

�
;

r and r� are the radius-vectors of the interacting atoms;

� ik ( )r r, � is the force constant matrix describing this in-

teraction; m( )r and m( )r� are the atomic masses.
�
h0 is the

vector in the space of renormalized atomic displacements

H in which the operator �L acts. The vectors of this

3N -dimensional space (N is the number of atoms in the

system) are marked with arrows to distinguish them from

ordinary «three-dimensional vectors» traditionally

shown in roman bold.

The operator �L in the basis { }
�
hn n�

�
0 is represented by a

three-diagonal (Jacobian) matrix (J matrix). Below an
and bn are used to designate the diagonal and off-diago-

nal matrix elements, respectively (n N	 
 �[ ; ]0 3 ); the

index numbering the subspaces will be omitted. This

J matrix has a simple spectrum, which simplifies con-

siderably the computation of phonon DOS. Let � �� 2 be

the eigenvalues of the operator �L (squares of eigenfre-

quencies�). If the band of the quasi-continuous spectrum

is singly connected � �	 [ ; ]0 m , the following limit rela-

tions hold for the matrix elements an and bn

lim lim ( )
n

n
n

n
m

m ma b

� 
�

� � �2
2

2�
� � . (2)

The arbitrary matrix elements Gmn ( )� of the resolvent

operator � ( � �)G I L� � �� 1 can be represented in terms of the

element G00( )� (Green function). For m n� we have

G Gmn m n( ) ( , �( ) )� �� �
� �
h h

� � 
P Q P P Gm n m n( ) ( ) ( ) ( ) ( )� � � � �00 . (3)

Here �I is the unit operator; Pn ( )� and Q n ( )� are the

polynomians to the powers n and n �1, respectively. They

can be found in [19–22]. The polynomial Pn ( )� corres-

ponds to the determinant of the n-rank matrix of the oper-

ator � � �I L� . The polynomial Q n ( )� is the minor of the first

diagonal element of this matrix.

The Green function of the system G G( ) ( )� �� 00 can be

written down easily as a continued fraction

G G( ) lim ( )( )� ��

�n

n ;

G
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In Eq. (4) K � ( )� is the function to which the continued

fraction corresponds to the J matrix whose elements are

equal to their asymptotic values can be reduced. For the

limiting values in Eq. (2) we have

K Z� � � 
 �( ) { ( ) | |}�
�

� � � � � �
4

2 2
2
m

m m , (5)

Z( ) ( ) ( ) ( )� � � � � �� � � �i m m� � � (6)

(�( )x is the Heaviside function).

The region D of existence of the imaginary part of the

function G( )� , Eq. (4), determines the band of the quasi-

continuous spectrum of the operator �L (in general non-
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singly-connected). The spectral density is estimated at

�	D to be

g( ) ( ) ( )�
�

�
�
�

�� �
1

2Im ImG G . (7)

The method of J matrices does not include explicitly

the translational symmetry of the crystal lattice and

allows a straight forward computation of the spectral

densities corresponding to the displacements of the atoms

of the system along different crystallographical direc-

tions i. If the generating vector
�
h0 is the displacement of

an atom with the radius-vector r in the direction i, the

spectral density gi ( , )� r calculated by Eqs. (4)–(7) cha-

racterizes the frequency spectrum of the oscillations of

this atom in this direction. The phonon DOS of a solid

solution with the impurity concentration p is found as

� � � � �g p
N

( , ) ( � �)�
�

�
�

2 2 1Sp Im I L

and is a self-averaging value [12–15]. It can be obtained

by averaging the functions gi ( , )� r over all positions of

the atoms r and all directions i of their displacements.

For a fcc crystal with the nearest-neighbors interaction

the matrix of the operator �L can be represented as

L ik
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r r r

r r
, ; ;
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The other matrices can be obtained through Oh -symmetry

operations, and the matrix L ik ( , )r r is ( ) / ( )8 4�  !
 ik m r .

The force constants �,  and � characterizing the

Kr–Kr, Kr–Ar and Ar–Ar interactions in the solid

Kr Ar1�p p solution [23] were found from the elastic con-

stants [24] and experimental data on heat capacity. A ran-

dom distribution of impurities was realized using a gener-

ator of pseudo-random numbers distributed uniformly in

the interval ( ; )0 1 . The generator operates on the basis of

multiplicative congruent method [25]. We calculated the

phonon DOS for different concentrations of impurity at-

oms. At each concentration the averaging was performed

over several thousands of random configurations of im-

purity distribution. For each configuration the DOS was

found through averaging over several tens of spectral

densities corresponding to the displacements of several

tens of sequential atoms along different crystallographic

directions.

The analytical properties of our calculated Jacobian

matrices at p� 0.1% suggest unambiguously that the

band of the quasi-continuous phonon spectrum of dis-

ordered solid solutions is singly connected. The gap se-

parating the continuous spectrum band from the local

frequency in the case of an isolated impurity is filled with

phonons even at limiting low concentrations of impurity

atoms. The eigenfrequencies are in the interval [ , ( )]0 �m p ,

where the frequency �m p( ) is determined by the asymp-

totic behavior of the matrix elements [19–21]. It exceeds

the local vibration frequency corresponding to the iso-

lated impurity with the same mass defect and it is howe-

ver smaller than the so-called natural spectrum edge (e.g.,

see [15]), i.e., smaller than the highest vibration frequen-

cy of an ideal crystal lattice consisting of atoms which we

consider as light impurity. The later fact is the result of

the finiteness of the rank of the J matrices (in our cal-

culation it is 60), which prohibits the occurrence of an

«arbitrarily large» region occupied only by impurity in

the investigated configurations (covering slightly fewer

than 10 6 atoms). At p � 50% the behavior of the spectral

densities near �m p( ) can be thought of as exponential

attenuation, which is also suggested by the general theory

of phonon spectra of disordered solid solutions [12–15].

The single-connectedness of the quasi-continuous spect-

ral region in the systems analyzed permits us to calculate

the Green functions and the spectral densities using their

analytical approximation by a continued fraction [21,22].

Such approximation enables us to calculate with accuracy

the above functions at any frequency, which is parti-

cularly important in this case when the phonon DOS

spectral densities contain sharp resonance peaks.

Discussion. Additional resonance levels at finite

impurity concentrations

Figures 1–4 show the evolution of the phonon densi-

ties � �g p( , )� in Kr Ar1�p p solutions at growing concentra-

tion p of argon atoms. The fragments b, Figs. 1, 2, are the

regions of these densities corresponding to the values

� �" m (�m is band edge of the quasi-continuous spect-

rum of Kr ideal lattice) at which these densities are signi-

ficantly nonzero. Thus, the figure illustrates transforma-

tion of the local frequency into an impurity band.

The oscillations of the impurity atoms are strongly

localized at p � 0.5% (Fig. 1,a–c) Their frequencies are

within a very narrow ( # $ �2 10 6�m) band near the fre-

quency of the local oscillation (�0) caused by one isolated

impurity atom. This is described with high accuracy

( %# 25 ) within a «two-moment approximation» proposed

in [10]. The local frequency calculated on the basis of

such approximation is shown in Figs. 1–3 (heavy dashed

line).

It is seen in both fragments of the Fig. 2 that the local

level is smeared at p � 1–5%. The shapes of the impurity

bands at these concentrations are in good agreement with

the general results [12–15]. Besides, as was mentioned in

the Introduction, at p�2% the average distance between

the impurity atoms does not exceed the doubled atomic

spacing in the lattice. In this case the influence of most

impurities upon one another starts to manifest itself in the

DOS at the second moment. The number of impurity pairs

(the impurity atoms interacting directly with each other
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Fig. 2. Phonon densities of solid Kr Ar1�p p solutions for p � 001. , 0.025, and 0.05: a — the whole frequency interval; b — beyond

the quasicontinuous spectrum band, pure Kr. Solid lines (in a and b fragments) correspond to the functions � �g p( )� ; thin dashed

vertical straight lines are the local frequencies calculated within the «two-moment approximation». Dashed curve in fragment a is

the phonon density of pure Kr.
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— the nearest neighbors in our case) becomes sufficient

to show up in the phonon spectrum. For these pairs the

impurity interaction is observable even at the first mo-

ment of the spectral density. It is shown in [10] that a

change in the second moment of the spectral density leads

to a displacement of the local level by ' (1–3)%. Such

displacements are shown in Figs. 2, 3 (dashed lines) near

�0 (not specified). A change in the first moment shifts the

local level by # ' (10–20)%. These levels (
( )�l
�

, �(
( )�

and �n
( )� ) are shown in the same figures by thin dashed

lines.

The levels �l
( )�

occur on co- and anti-phase displace-

ments, respectively, of two adjacent impurity atoms along

the straight line connecting them. The levels �(
( )� and

�n
( )� correspond to the displacements of two adjacent

impurity atoms that are perpendicular to the above

straight line.

When the adjacent atoms build up triangles, additional

resonance peaks appear. The local frequencies calculated

in the two-moment approximation are shown in Figs. 2, 3

(thin dashed lines). The frequency corresponds to small

rotational displacements of an equilateral triangle about

the three-fold axis; the frequency correlates with the dis-

placement of the triangle as a whole and its uniform

compression.

In the two-moment approximation the relation bet-

ween these frequencies and the force constants character-

izing the Kr–Kr, Kr–Ar and Ar–Ar interactions [10],

which enable us to calculate the force constants from

the measured frequencies of the corresponding resonance

peaks.

On a further growth of the concentration ( p �10–15,

and 25%, Fig. 3), the impurity pairs start to interact (at the

second-moment level) both with single impurity atoms

and with one another. With the mass and force constants

ratios describing the atomic interaction in the Kr Ar1�p p
solutions, the interaction at the level of the second mo-

ments causes the formation of a single band of the quasi-

continuous spectrum at these concentrations. However, at

the expression for � �� m the DOS has a nonanalytic

form. The corresponding oscillations are quasi-localized.

Their delocalization occurs as the impurity concent-

ration continues to increase. The phonon DOS of the
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Kr Ar0 5 0 5. . solution has no resonance peaks at � �" m, and

the singularity present in this frequency interval agrees

with the van Hove singularity for pure Ar. It suggests that

such a solution contains rather large clusters of each

component, which is typical for this concentration.

Conclusions

The densities of states obtained in this study for disor-

dered solid solutions (in particular, for solidified inert

gases) with a fcc lattice and an interaction of the nearest

neighbors provide at least a qualitative picture of trans-

formation of discrete oscillation levels localized at impu-

rity atoms into an impurity band formed by delocalized

states. The main feature of the transformation is the ap-

pearance of additional impurity — induced resonance

peaks at increasing impurity concentrations. The peaks

are due to the oscillations of impurity pairs and impurity

clusters. The adequate description of such oscillations

with the two-moment approximation [10] enables one to

restore in a rather simple way the parameters of the defec-

tive lattice from the measured frequencies of resonance

peaks in solid solutions.
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