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Level statistics for quantum Hall systems
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Level statistics for two classes of disordered systems at criticality are analyzed in terms of dif-
ferent realizations of the Chalker—Coddington network model. These include: 1) Re-examination
of the standard U(1) model describing dynamics of electrons on the lowest Landau level in the
quantum Hall effect, where it is shown that after proper local unfolding the nearest-neighbor spac-
ing distribution (NNSD) at the critical energy follows the Wigner surmise for Gaussian unitary en-
sembles (GUE). 2) Quasi-particles in disordered superconductors with broken time reversal and
spin rotation invariance (in the language of random matrix theory this system is a representative of
symmetry class D in the classification scheme of Altland and Zirnbauer). Here again the NNSD
obeys the Wigner surmise for GUE, reflecting therefore only «basic» discrete symmetries of the
system (time reversal violation) and ignoring particle~hole symmetries and other finer details
(criticality). In the localized regime level repulsion is suppressed.

PACS: 73.20.Fz, 72.15.Rn

1. Introduction

The statistics of energy levels in a disordered sys-
tem is an important tool in determining its transport
properties as well as its critical behavior. A central
quantity in this study is the nearest-neighbor spacing
distribution (NNSD) denoted by p(s). Here the ran-
dom variable s is the (fluctuating) level spacing under
the proviso that the local average of the density of
states is energy independent (otherwise, a proper un-
folding procedure is required). The distribution p(s)
involves all N point correlation functions of the perti-
nent Green function and hence, it is generally not
available in a closed form.

In dealing with disordered systems, it is useful to
distinguish between systems undergoing an Anderson
type metal—insulator transition, and those character-
ized by a quantum Hall (QH)-like transition where,
in the thermodynamic limit, critical state energies are
isolated points occuring between continuous intervals
of localized state energies. As for level statistics per-
taining to disordered systems of the Anderson
metal—insulater transition kind, there are a couple
of important properties which are well established:
1) Under certain conditions it is expected to be repre-
sented (on the metallic side) by random matrix spec-
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tra [1]. To be more precise, it is well described by one
of the corresponding Gaussian ensembles, Gaussian
orthogonal (GOE), Gaussian unitary (GUE) and
Gaussian simplectic (GSE), depending on the symme-
try class to which the physical system belongs. The
main condition is that the corresponding energy inter-
vals are smaller than the Thouless energy. 2) It has
been shown [2] that in the limit of an infinite system
there are only three types of distributions p(s). They
are the Poisson law for the insulating regime, the
Wigner surmise for the metallic domain, and a third
one for the critical region. On the other hand, for sys-
tems in the second group (such as the quantum Hall
effect) there is no similar analysis. The main difficulty
is related to the fact that in the absence of a metallic
regime, it is not possible to approach the critical point
from the metallic regime using the powerful tool of ex-
pansion in the small parameter 1/g (here g is the
dimensionless conductance). Common sense suggests
that the distribution follows the Poisson law in the in-
sulating part of the spectra while again, the distribu-
tion in the critical region is different, and related to
the relevant universality class. For the quantum Hall
transition this is supported by numerous numerical
calculations [3].
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Recently, it has been noticed that the second group
contains, beside the systems belonging to the quantum
Hall effect universality class, other disordered systems
whose phase diagram is much richer. They are related
to the physics of disordered superconductors [4] and
comprise of four novel universality classes, deter-
mined according to the symmetry properties of the
corresponding Bogoliubov—de Gennes Hamiltonian
under spin rotation and time reversal. Some of these
new phase diagrams have already been exposed,
mainly in class C (where time reversal symmetry is
broken while spin rotation invarinace is preserved).
So far, the level statistics in the critical regions of the
four new universality classes has not yet been studied.
The goal of the present work is to fill this gap, start-
ing by elucidating the level statistics of one of these
new classes, namely class D, for which both symme-
tries (spin rotation and time reversal) are violated.

Some of the disordered systems in the second group
can be mapped on a network model. The most studied
one is the quantum Hall system which is mapped on
the Chalker—Coddington network model (CCNM)
[5]. The CCNM is designed to describe transition be-
tween plateaus in the QH system using transfer matrix
algorithm in an infinite cylinder geometry (in the
Landauer sense). It was later suggested that if, in-
stead of studying transport properties, the system is
closed up as a torus, then the eigenvalue problem can
be addressed and the level statistics can be studied [6]
(although no Hamiltonian is specified). In our previ-
ous works, a somewhat modified CCNM has been con-
structed which can describe noninteracting quasi-
particles in disordered superconductors [7,8]. It
appears that such a description can serve as an appro-
priate physical realization of the new random matrix
universality classes [4].

It is then natural to attempt an investigation of
level statistics of these new symmetry classes by using
the CCNM. Our main results are summarized below.
1) As a starting reference point we revisit the familiar
QH system by repeating calculations for the original
U (1) model [6]. The results of Ref. 6 are indeed repro-
duced ( p(s) deviates slightly from the Wigner sur-
mise for GUE). Moreover, we show that after proper
local unfolding, the NNSD of the U(1) model at the
critical energy is exactly identical with the Wigner
surmise. In order to stress the necessity of unfolding
we argue that the density of states (DOS) averaged
over all samples is indeed uniform, whereas it has
some structure for each sample. 2) We then present re-
sults for class D of disordered superconductors that
have neither time-reversal nor spin-rotation inva-
riance. Once again NNSD at the critical energy (after
unfolding) coincides with the Wigner surmise. We
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find the DOS to have a periodic structure (period
n/2), as one would expect from the form of the uni-
tary operator. Beside the critical region, we also pres-
ent results for the localized regime and show that level
repulsion disappears. Thus, although the U(1) and
class D models considered here describe different sys-
tems and have different phase diagrams, yet the NNSD
in the critical region is the same, depending only on
the broken time-reversal symmetry. The fact that class
D obeys particle—hole symmetry is not reflected in its
NNSD. Our findings are in agreement with recent
works [9] where it is argued that k-body embedded
Gaussian ensembles of random matrices for suffi-
ciently high rank & of the random interaction behave
generically (i.e., in order to have exact RMT results it
is not necessary for the Hamiltonian to be a full ran-
dom matrix).

2. The U(1) network model

In the original CCNM, electrons move along unidi-
rectional links forming closed loops in analogy with
semiclassical motion on equipotential contours. Scat-
tering between links is allowed at nodes in order to
map tunneling through saddle point potentials. Propa-
gation along links yields a random phase ¢, thus links
are presented by diagonal matrices with elements in
the form exp(ip) (hence the notation U(1) model).
The transfer matrix for one node relates a pair of in-
coming and outgoing amplitudes on the left to a corre-
sponding pair on the right; it has the form

(1

B cosh & sinh 0
“|sinh® cosho

The node parameter 0 is related to the electron energy
in the following way

€= 2 In (sinh 0), (2)
T

where ¢ is a relative distance between the electron en-
ergy and the barrier height.

If the network forms a torus, then on every link the
electron motion appears once as an outgoing one and
once as an incoming one. The collection of relations
between incoming and outgoing amplitudes defines
the system’s S matrix or rather, a discrete-time unitary
evolution operator, U(g) [6]. The eigenphases of U
serve as input for level statistics analysis. For a square
network of N x N nodes, U is an (2 x N2) x (2 x N2)
unitary matrix. The action of U on a vector ¥ of flux
amplitudes defined on the start of each link maps the
system onto itself, providing therefore an implicit
eigenvalue equation U(e)W = ¥. Since the dependence
of the matrix elements of U on ¢ is comlicated, it is
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Fig. 1. Histogram for the DOS of a single sample at the
critical point & = 0 for U(1) model without unfolding.

practically impossible to find solutions of that equa-
tion (even numerically). Instead, it has been sug-
gested [6] to find the eigenvalues of the equation

UY¥, =exp [in,()]Y, 3)
and to study statistics of ®, for a given ¢. The ratio-
nale behind it is twofold. First, there are sufficiently
many states even in a narrow window near a particu-
lar energy ¢ to provide good statistics. Second, the be-
havior of the curves o, (e) is rather smooth, and
therefore the statistics of ®,, for a given ¢ is expected
to be the same as the statistics of ¢, for @ =0 (which
are the true energy eigenvalues). We argue that the
second hypothesis is justified only after a proper un-
folding procedure is executed. Indeed, from the RMT
point of view the eigenvalue problem of Eq. (3) be-
longs to the circular unitary ensemble (CUE). In the
standard CUE all the eigenvalues lie on the unit cir-
cle and are equally spaced, so there is no need for un-
folding of the spectra. However, Eq. (3) represents a
physical problem in which not all the elements of U
are independent random variables. Therefore, the
question of whether the U(1) model is a bona fide
CUE should be examined. Our calculations show that
the averaged (over 50 samples) DOS is indeed uni-
form, whereas it has some pronounced structure for
each particular sample. Since the level statistics
should be manifested for each individual sample (as
in the study of nuclear spectra), the spectrum of each
sample should then be properly unfolded. Here we
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Fig. 2. Histogram for the DOS of 50 samples at the criti-
cal point ¢ = 0 for U(1) model.

make use of the fact that the dimensionless unfolded
distance between two levels is

En+1 _En

ASn :2k4 )
En+k - En—k

(4)
where k is a number of neighbors to be optimized by
the requirement of having a constant DOS. This pro-
cedure encodes the important local fluctuations of
level spacing. We have checked that for k> 6 the re-
sult is practically independent of k, provided of
course that k << 2 x N2. To substantiate this point we
plot in Fig. 1 the DOS of a single sample (at the crit-
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Fig. 3. Nearest neighbor spacing distribution P(s) for U(1)
model at ¢ =0 (critical regime). The curve is the Wigner
surmise for the GUE; without unfolding Mettzer—Klesse
(A), £3 neighbor local unfolding (H).
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Fig. 4. Nearest neighbor spacing distribution P(s) for U(1)
model at & =1 (localized regime). The curve is the
Poissonian statistics, data after unfolding (H).

ical point € =0) without unfolding. It shows indeed
that the averaged DOS is not constant in energy. On
the other hand, after averaging over 50 samples,
Fig. 2 indicates that the average DOS is constant, as
expected for random matrices belonging to CUE. The
corresponding NNSD are displayed in Fig. 3. Raw
data without unfolding reproduce the results ob-
tained in [6], whereas after local unfolding the NNSD
nearly coincides with the Wigner surmise for GUE
(expected to be true also for CUE at large N).
Finally, we assert in Fig. 4 that in the localized re-
gime (¢ =1) the NNSD follows the Poisson statistics

S

pls) =e™.

3. Disordered superconductors: Class D

The properties of quasiparticles in disordered su-
perconductors have been the subject of much recent
interest. The Hamiltonians of such systems are repre-
sentatives of a set of symmetry classes different from
the three classes which are familiar both in normal dis-
ordered conductors and in the Wigner—Dyson random
matrix ensembles. A list of additional random matrix
ensembles, determined by these new symmetry classes,
has been established [4]. Below we present numerical
results on statistics of energy levels for a certain
two-dimensional system with a particularly rich phase
diagram. In the numenclature of Ref. 4 the corre-
sponding symmetry is denoted as class D. It can be re-
alized in superconductors with broken time-reversal
invariance, and either broken spin-rotation invariance
(as in d-wave superconductors with spin—orbit scat-
tering) or spinless or spin-polarized fermions (as in
certain p-wave states). A particular realization of class
D (which will be adopted here) is the Cho—Fisher
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(CF) model [10] which has a rich phase diagram.
Each realization has two parameters: a disorder
strength W(0 < W < 1), and a tunneling amplitude &,
which controls the value of the thermal Hall conduc-
tance at short distances. The phases on the links on the
two sides of the same node (which are either © with
probability W or 0 with probability 1 — W) are corre-
lated: the same random phase appears on both sides. It
is equivalent to attributing random sign to the off-di-
agonal elements of the transfer matrix. The phase dia-
gram in the (g,W) plane contains a region of metallic
states, and two distinct localized domains, which can
be identified as regions with different quantized ther-
mal Hall conductance. There is a critical state ate =0
for any W. The detailed structure of the phase dia-
gram has been presented elsewhere [8].

In our numerical simulations we have studied 50 dif-
ferent network systems, of size (2 x 322)(2 x 32%) on
the critical line ¢ =0 and disorder strength parameter
W =0.1. The raw DOS appears to be a periodic func-
tion of o with period =2 reflecting the cubic symme-
try of the CF model (Fig. 5). The NNSD is presented
in Fig. 6 and are compared with the Wigner surmise
for GUE. The agreement is rather evident, and it
could not be achieved without unfolding. We are thus
convinced that the critical form of the NNSD at the
critical line of the CF model (in fact of class D in gen-
eral) coicides with the GUE. Next, we move away
from the critical line and put € =1, keeping the same
value W = 0.1 which, according to our phase diagram,
is well within a localized domain. The results are

800

600

400

200

0 1 2 3 4 5 6

Fig. 5. Histogram for the DOS of 50 samples for CF
model at the critical point ¢ =0 and W =0.1.
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Fig. 6. Nearest-neighbor spacing distribution P(s) for CF
model at ¢ =0 and W =01 (metallic regime). The curve is
the Wigner surmise for the GUE.

shown in Fig. 7. They are fitted by the Berry—Robnick
approximation [11]. Usually, the large s behavior is
more sensitive to localization than the small s beha-
vior. In other words, even deep inside the localized re-
gime one still finds level repulsion p(0) =0. Remark-
ably, for the CF model we find »(0.025) ~ 0.53, which
cannot be just attributed to statistical error in view of
the fact that we study almost 108 energy levels. We
have also calculated the compressibility 1 of the spec-
trum and have found an extremely small value ~ 0.01,
which is in agreement with the classical result for the
GUE, where n— 0 for large system sizes.

In conclusion, although mapping of a physical
problem on a network model results in correlated and
sparse matrices of unitary evolution operators, the re-
sults for NNSD seem to agree with the predictions of
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Fig. 7. Nearest-neighbor spacing distribution P(s) for CF
model at € =1 and W =0.1 (localized regime). Curve is
the Berry—Robnick fit for the transition from GUE to
Poissonian statistics.
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RMT which assume non-sparse matrices with
uncorrelated matrix elements [9]. In the cases studied
here this agreement is achieved after a proper local un-
folding of the spectra is executed.

The main physical result is the following: Despite
the occurrence of ten different random matrix symme-
try classes according to time-reversal, spin-rotation,
and particle-hole symmetries, with many different
physical properties, some basic characteristics remain
intact, depending only on time reversibility and spin
rotation invariance. There have been numerous at-
tempts to check whether the form of p(s) in QH like
systems deviates from that of GUE [12]. Our results
indicate that as far the network model realization is
concerned, p(s) is satisfactorily accounted for by the
Wigner surmise for the unitary ensemble. The viola-
tion of time reversal invariance either by a magnetic
field (in QH systems) or spontaneously in unconven-
tional superconductors is the dominant factor, which
masks finer details such as quantum criticality.
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