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The mechanism of high-temperature superconductivity (HTS) and the correlation between the
antiferromagnetic long-range order (AFLRO) and superconductivity (SC) phases are the central
issues of the study of HTS theory. SC and AFLRO of the hole-doped two-dimensional extended
t J� model are studied by the variational Monte Carlo method. The results show that SC is greatly
enhanced by the long-range hopping terms t� and ��t for the optimal and overdoped cases. The phase
of coexisting SC and AFM in the t J� model disappears when t� and ��t are included. It is concluded
that the extended t J� model provides a more accurate description for HTS than the traditional
t J� model does. The momentum distribution function n( )k and the shape of Fermi surface play
critical roles for establishing the phase diagram of HTS materials.

PACS: 74.20.–z, 74.25.Ha, 71.18+y

Introduction

The two-dimensional (2D) t J� model has been pro-
posed to provide the mechanism of superconductivity
(SC) [1,2] right after the discovery of high-temperature
superconductivity (HTS). This idea quickly gained mo-
mentum when variational calculations showed that the
doping dependence of pairing correlation [3,4] and the
phase diagram of the antiferranagnetic long-range order
(AFLRO) and SC seem to agree with experimental
results fairly well [5]. However, the calculation beyond
variational method showed that SC of pure 2D
t J� model was not large enough to explain such high
transition temperature of the cuprates [6]. Up to now,
this issue is still to be settled [7–9].

Interplay between the d-wave SC and AFLRO is
another one of the critical issues in the physics of HTS
[10,11]. Early experimental results showed the exis-
tence of AFLRO at temperature lower than the N�el
temperature TN in the insulating perovskite parent
compounds of the cuprates. When charge carriers are
doped, AFLRO is destroyed quickly and then SC ap-
pears. In most thermodynamic measurements for hole

doped cuprates, AFLRO does not coexist with SC
[12] and disappears completely around doping density
�h � 5%. However, recent experiments such as muon
spin rotation and elastic neutron scattering show that
the spin density wave (SDW) may compete, or coexist
with SC [13–18]. These results suggest that AFLRO
may coexist with SC but the possibility of
inhomogeneous phases is not completely ruled out.

For the theoretical part of this issue, analytical and
numerical studies of the t J� model show that at
half-filling, the d �wave resonating valence bond
(RVB) state with AFLRO is a good trial wave func-
tion (TWF) and SC is absent due to the constraint of
no-double-occupancy. Upon doping, the carriers be-
come mobile and SC sets in while AFLRO is quickly
suppressed. However, AFLRO will survive until the
hole density �h � 10%, which is much larger than the
critical density observed by experiments. SC and
AFLRO coexist in the very underdoped regime
[5,19–22].

The discrepancies imply that the t J� model may be
insufficient to describe the physics of HTS. On the
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other hand, there are several experimental and theo-
retical studies suggesting the presence of the next- and
third-nearest-neighbor hopping terms t� and ��t in
cuprates. For example, the topology of the large
Fermi surface (FS) and the single-hole dispersion
studied by angle-resolved photoemission spectroscopy
(ARPES), and the asymmetry of phase diagrams of
the electron- and hole-doped cuprates can be under-
stood by introducing these terms [23].

It is suggested that the longer range hopping terms
may play important roles on the mechanism of HTS.
Results of band-structure calculations [24,25] and ex-
perimental analysis [26] show that Tc is enhanced by
the next-nearest neighbor hopping t t�/ , and the high-
est Tc,max for different monolayer hole doped cuprates
strongly correlates with t t�/ . However, this contra-
dicts with previous results [27,28] of exact calcula-
tions that for the hole doped systems, introducing t�
into the t J� model will suppress pairing.

We will discuss the model and the trial wave func-
tion in Sec. 2, and the variational Monte Carlo
(VMC) method results for SC, AFLRO, and the shape
of the Fermi surface in Sec. 3. At last we will make a
summary in Sec. 4.

2. The model and the wave functions

The Hamiltonian of the extended t J� model is

H H H t c ct J ij
ij

i j� � � � � �� (~ ~ ),
†

,� � H.c.

� � �
� �
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i j
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where t tij � , t�, ��t , and 0 for sites i and j are the
nearest, next nearest, third nearest neighbors, and oth-
ers, respectively. � 	i j, in HJ means the spin–spin inte-
raction occurs only for nearest neighbors. ~

,ci � �
� � �( ), ,1 n ci i� �, satisfies the no-double-occupancy con-
straint. At half-filling, the system is reduced to the
Heisenberg Hamiltonian HJ . As carriers are doped into
the parent compound, Ht is included in the Hamil-
tonian.

To solve the ground state wave function of this
Hamiltonian, three mean-field order parameters are
introduced [21,29]: the staggered magnetization
m Ss A

z� � 	 � � � 	SB
z , where the lattice is divided into

A and B sublattices, the uniform bond order parame-
ters 
 �

�

�� � 	�c ci j
† , and d-wave RVB (d-RVB) one

� � � � 	� � � �c c c cj i j i if i and j are n.n. sites in the x
direction and �� for the y direction. The Lee–Shih
wave function (WF), which is the mean-field ground
state WF, is
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where Ns is the total number of sites and
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are the operators of the lower and upper SDW bands,
respectively.

� �� � � � � �� �4 2 2 2t k k t k kv x y v x ycos cos cos cos( ),

where � is the chemical potential which determines
the number of electrons, �tv and ��tv are variational pa-
rameters corresponding to the next and third nearest
neighbor hoppings. �tv and ��tv are not necessarily equal
to the bare values t� and ��t because the constraint
strongly renormalizes the hopping amplitude. Note
that the summation in Eq. (2) is taken over the
sublattice Brillouin zone (SBZ). The operator Pd en-
forces the constraint of no doubly occupied sites for
cases with finite doping.

For the half filled case, � � � � �� �t t 0 and the opti-
mal variational energy of this trial wave function
(TWF) obtained by tuning � and ms in the VMC sim-
ulation is �0 332. J per bond which is within 1% of the
best estimate of the ground state energy of the
Heisenberg model [30]. For the case of pure AFLRO
without �, energy per bond is about 3 to 4% higher.

Upon doping, there are two methods to modify the
TWF: one is to use a nonzero � to control the filling of
the SDW bands [29], the other is to create charge ex-
citations from the half-filled ground states [31]. For
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the former method, the TWF is optimized by tuning
�, ms , �tv , ��tv and �. Note that for larger doping densi-
ties, AFLRO disappears (ms � 0) and the WF reduces
to the standard d-RVB WF. For the latter method, the
WF is the «small Fermi pocket» state | :�p 	
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The k-points in Qp are the momenta of the electron
singlet pairs (with momenta and spin ( , )k k� � � ) re-
moved from the half-filled FS. Thus the number of
holes is twice of the number of k-points in Qp , �, t v�
and ��tv are identical to zero in Eq. (2) because the size
and shape of FS are determined by the choice of Qp .
Note that no matter what k’s are chosen inQp , the to-
tal momentum of the WF is zero. k’s can be viewed as
«hidden quantum numbers» of the wave function.

In general, for the ground state the set Qp should
be determined variationally. As we expected, it agrees
well with the rigid band picture for very underdoped
systems [31]. For example, there is only one point in
the two-hole system.

The variational energies for several choices of k in a
12 12� lattice are shown in Fig. 1. It can be seen that
for both ( , ) (– . , . )� �� �t t t01 0 05 (full circles) ( , )� �� �t t
� (– . , . )0 3 0 2 t (open circles) cases, the k with lowest
energy is ( , )� �/ /2 2 . The k’s with the second lowest
energy are ( , )2 3 3� �/ / and ( , )� �/ /2 3 for ( , )� �� �t t
� (– . , . )01 0 05 t and ( , ) (– . , . )� �� �t t t0 3 0 2 , respectively.

According to the rigid-band assumption, we expect
that the best choice of Qp for the 4-hole system is

{( , ), ( , )}� � � �/ / / /2 2 2 2� . And Qp ’s for the 6-hole
system with

( , ) (– . , . )� �� �t t t0 3 0 2 and ( , )� �� �t t (– . , . )01 0 05 t

are

{( , ), ( , ),� � � �/ / / /2 2 2 2� ( , )}� �/ /2 3 ,

and

{( , ),� �/ /2 2 ( , ),�� �/ /2 2 ( , )2 3 3� �/ / },

respectively.
Figure 2 shows the choices of Qp ’s for several dop-

ing densities (0 10� holes) for the ( , ) (– . , . )� �� �t t t0 3 0 2
case. The validity of the rigid-band picture has been
checked by comparing several Qp ’s for the same num-
ber of holes for these very underdoped cases.

Another issue is that the choice of Qp may change
the total symmetry of the WF. For example, Fig. 2,e
shows that Qp for 8 holes is

{( , ), ( , ), ( , ), ( , )}.� � � � � � � �/ / / / / / / /2 2 2 2 2 3 2 3� � �

We can also choose

Q / / / /p � �{( , ),( , ),� � � �2 2 2 2

( , ), ( , )}� � � �/ / / /2 3 3 2 .
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Fig. 1. Energies for two holes in a 12 12� lattice for
J/t � 03. , ( , ) ( . , . )� �� � �t t t01 005 (full circles) and ( , )� �� �t t
� �( . , . )03 02 t (open circles), respectively. k is the «hidden
quantum number» corresponding to the momentum of the
pair removed from the half filled Fermi surface. Note that
the total momenta of all the wave functions are zero.
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Fig. 2. Choices of Qp (open circles) for several doping
densities for t t� � �/ .03 and �� �t /t 02. in the k-space. Full
circles are the occupied k-points: 0(a), 2(b), 4(c), 6(d),
8(e), 10(f) holes, respectively.



The variational energies of these two wave func-
tions, long-range pair–pair correlation, and staggered
magetization are almost identical (within error bars).
Since k � � �( , )� �/ /2 3 and ( , )� �� �/ /3 2 are all
degenerate for the two-hole system, the WF could also
be degenerated for those Qp ’s with k-points
( , )� �/ /2 2� and any two of k � � �( , )� �/ /2 3 and
( / , / )� �� �3 2 for the 8-hole system. This conjec-
ture has been verified numerically. Thus the best TWF
should be a linear combination of all these WF’s. For
simplicity, we choose only one of theQp in the follow-
ing calculation. The properties of SC and AFLRO are
not affected by this simplification [32].

3. Results and discussion

The staggered magnetization
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and the d-wave pair–pair correlation

P
Nd

s i
i i

( ) †R R R R� � �� �
1

� � , (6)

where

�R R R x R x R y R yi i i i i i
c c c c c� � � �� � � � � � � � �( )

� � � �

are measured for J/t � 0 3. and (a) t t� � �� � 0, (b)
( , ) ( . , . )� �� � �t t t0 3 0 2 and (c) ( , ) ( . , . )� �� � �t t t01 0 05 ca-
ses for the 12 12� lattice with periodic boundary
condition. Pd

ave is the averaged value of the
long-range part (| | )R � 2 of Pd ( )R . The optimal WF
for different densities are determined by minimizing
the variational energies among | ( , , { })� �p s pm Q 	 and
| ( , , , , )� �LS s v vm t t� �� 	� . We will discuss the results for
these three cases in this section.

3.1. � � �� �t t 0

It can be seen in Fig. 3,a that in the underdoped re-
gion for the J/t � 0 3. , t t� � �� � 0 case, AFLRO coexists
with SC for density smaller than � c � 10%. The � c is
smaller than the weak-coupling mean-field result
� 15% [21], but is still larger than the phase boundary
of AFLRO determined by experiments ( %)� c � 5 . The
energies of |�LS 	 are lower than those of |�P 	 for all
doping densities in this case. This result is also consis-
tent with the results reported by Himeda and Ogata
[22]. Comparison of the VMC result with that of the
weak-coupling one seems to indicate that the rigorous

no-double-occupancy constraint suppresses the
AFLRO faster than the constraint-relaxed mean-field
approximation.

Pd
ave shows a dome-like shape which agrees well

with the experiments except in the slightly doped
AFLRO region. It is well known that the variational
method usually overestimates the order parameters.
Our previous studies using calculations beyond VMC
show that Pd

ave will be suppressed greatly when the
WF is projected to the true ground state. Note that
the two-hole binding energy becomes positive (no
binding) in the thermodynamic limit [6].

3.2. � � �t /t 0 3. and �� �t /t 0 2.

Now we examine the phase diagram for J/t � 0 3. ,
t t� � �/ .0 3 and �� �t /t 0 2. , parameters for YBCO and
BSCO compounds. The results are shown in Fig. 3,b.
It was found that level crossing occurs at � c � 0 06. .
For �h � 0 06. , |�p 	 is the ground state WF and � 	M is
a little larger than in the t t� � �� � 0 case while Pd

ave is
suppressed by one order of magnitude. Thus there is
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Fig. 3. � �M (full circles) and Pd
ave (empty circles) for

J/t � 03. : t t� � �� � 0 (a), t t t� � �� � �( . , . )03 02 (b), and
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ms � 0) represent the best TWF’s of each region.



AFLRO but no SC in this regime. For �h larger than
0 06. , the RVB state (ms � 0 in | )�LS 	 optimizes the
energy. Pd

ave increases and � 	M drops to zero sharply.
Unlike the t t� � �� � 0 case, there is no region optimized
by |�LS 	 with non-zero ms . In conclusion, there is no
coexistence of AFLRO and SC for the ( , )� � �� �t t
� �( . , . )0 3 0 2 t case.

To show |�LS 	 and |�P 	 belong to two different
types of WF, we calculate the overlap of them.
( )| (| | | | )� 	� � � �LS P LS P/ is only 0 0113 4. ( ) [33]. The
almost orthogonality of the two wave functions im-
plies that the ground state WF’s switch at the critical
density.

The result that the critical �h for negative t t�/ is
smaller than that of t� � 0 case is consistent with the re-
sults evaluated by exact diagonalization [35,36] and
the suppression of coexistence of AFLRO and SC is
consistent with the slave-boson mean-field theory [37].

For a little larger doping density 0 06 015. .� ��h , it
can be seen that Pd

ave starts to grow but is still smaller
in comparison with that in the t t� � �� � 0 case. The sup-
pression of Pd

ave by t� and ��t in the underdoped regime
is consistent with the results [27,28] obtained the den-
sity matrix renormalization group (DMRG) method.
Interestingly, for even larger �h , Pd

ave grows greatly
and reaches the maximum at �h � 30% and the SC re-
gion extends to �h � 0 4. . The maximal Pd

ave is larger
than the t t� � �� � 0 value at the same density by almost
one order of magnitude, and about 2 5. times larger
than the maximum of the optimal value of the
t t� � �� � 0 case. The enhancement of Pd

ave may come
from the deformation of the Fermi surface. The elec-
tron occupation at the k-points near (�,0) is increased
by a negative t�. The results from exact diagonalization
and slave-boson mean-field theory also show similar
behavior [34].

The great enhancement of pairing due to t� may pro-
vide a possible mechanism for HTS. But the doping den-
sity �max with maximal Pd

ave is too large ( %)� 30 in
comparison with experiments (15%). This discrepancy
may disappear for the real ground state of the extended
t J� model. From our experience, if we do the calcula-
tion beyond VMC, the amplitude of Pd

ave will be sup-
pressed and �max will move to a smaller value [6]. If
this trend is true for the t J� type models, we expect
that �max may move toward the more physical value.
This conjecture will be investigated in the future.

3.3. � � �t /t 01. and �� �t /t 0 05.

For the lanthanum materials with t t� � �/ .01 and
�� �t /t 0 05. , the behaviors are more complex. It can be

seen from Fig. 3,c that for the hole density �h � 4%
|�P 	 optimizes the variational energy and the phase in
this region is ARFLO but no SC. For 4 10% %� ��h ,

|�LS 	 is the best TWF with nonzero ms and �.
AFLRO and SC coexist in the ground state of this
density interval. For even larger dopings, ms in |�LS 	
vanishes and the phase becomes pure SC. The maxi-
mum of the SC dome is at �h � 20%, and maximal
Pd

ave is about 1.5 times larger than the t t� � �� � 0 value.
Since the phase transition comes from the level

crossing of the two classes of states |�P 	 and |�LS 	, it
is a first order phase transition. It is quite natural to
have inhomogeneity in the system near the critical
point [38]. It may also lead to other more novel
inhomogeneous states such as stripe phase [39]. An-
other interesting result of our study is that the non-co-
existence of SC and AFLRO is much more robust for
systems with larger values of t t�/ and ��t /t such as
YBCO and BSCO [25]. For LSCO where t t�/ and
��t /t are smaller, the tendency toward coexistence is

larger and the possibility of inhomogeneous phase will
become much more likely.

3.4. Shape of the Fermi surface

Figure 4 shows FS of both under- and overdoped
systems with the parameter sets we discussed above.
For the underdoped systems (�h /� 6 144), there is a
large FS for the t t� � �� � 0 case (Fig. 4,a) whereas a
clear «Fermi pocket» for the t t� � �/ .0 3 and �� �t /t 0 2.
case (Fig. 4,b), whose ground state WF is |�P 	. The
shape of the FS for t t� � �/ .01 and �� �t /t 0 05. (Fig.
4,c) is placed between the previous two cases. The
ground state WF is |�LS 	 but the pocket-like feature
is still obvious. Being lack of a large FS is one of the
possible reasons for the suppression of Pd

ave by t� in the
underdoped region.

For the overdoped systems ( )�h /� 44 144 , the
ground state WF for all the three cases are |�LS 	.
They all have large FS’s but with different shapes
mainly determined by the parameters �tv and ��tv . It is
clear that the distortion of FS makes n ( ( , ))k � � 0 for
the � � �t /t 0 3. and �� �t /t 0 2. (Fig. 4,e) case much
larger than the other two. The shapes of FS for
t t� � �� � 0 (Fig. 4,d) and t t� � �/ .01 and �� �t /t 0 05.
(Fig. 4,f) are similar and the occupations near ( , )� 0
are both small. For the d-wave SC, the electron pairs
with momenta near ( , )� 0 contribute to SC most. Thus
Pd

ave for t t� � �/ .0 3 and �� �t /t 0 2. case is much larger
than the other two.

Our results show that Pd
ave is closely correlated with

n( )k and thus with the shape of FS. Figure 5 plots the
maximal possible value of Pd

ave for all doping densities
as a function of t�. The maximal Pd

ave is proportional to
t� in the range 0 0 3 0 4 � � ��t . . . Beyond these values
pairing is no longer enhanced. Coincidentally these val-
ues are about the same value of t t�/ for mercury
cuprates as estimated by Pavarini et al. [25] but much
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larger than those reported in Ref. 24. Among all the
cuprate series, mercury cuprate maintains the record of
having highest Tc for almost a decade.

The decrease of Pd
ave for � �  t 0 4. in the overdoped

regime such as � � 0 31. is also likely the consequence
of the change of the FS. n ( ( , ))k � � 0 is almost satu-
rated at � � �t 0 4. and remains unchanged for larger � �t .
It is not difficult to recognize that as � �t becomes much
larger than t, electrons will occupy separate regions
around k � �( , )� 0 and k � �( , )0 � . Hence the FS be-
comes disjoint pieces. Although at � � �t t/ .0 4 the FS
is still connected but this tendency is already ob-
served. The density of states starts to decrease and this
is probably the reason for the suppression of pairing
beyond � � � t /t 0 4. .

4. Summary

In summary, a new WF |�P 	 is proposed for the ex-
tended t J� model for very low hole densities. The size
and shape of the FS and of |�P 	 are determined by the
choice of pairs with the momenta k’s !Qp removed
from the half-filled system. The chosen k’s are around
the ( , )� �/ /2 2 region in the k-space for hole-doped
materials. The behavior of |�P 	 is very different from

that of |�LS 	 which optimizes the energy for the
t J� model. In contrast to |�P 	, the FS for the states
of |�LS 	 is controlled by the chemical potential � and
the effective long-range hopping terms �tv and ��tv .

There are three remarkable effects of t� and ��t for
the extended t J� model. First, the critical density
where AFLRO vanishes is moved to more physical val-
ues. Second, the phase of coexisting AFLRO and SC is
suppressed. If t� and ��t are large enough (correspond-
ing to the YBCO or BSCO materials), the coexisting
phase will disappear. Third, Pd

ave is enhanced for the
optimal and overdoped region, and suppressed for the
underdoped region. This solves the controversy be-
tween the DMRG and band structure calculation re-
sults. The enhancement of Pd

ave can be explained by
the electron occupation near ( , )� 0 and FS. These re-
sults offer a possible mechanism for HTS.
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