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Use of time series models to forecast the
evolution of corrosion pit in steel rebars
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Abstract: This paper presents the time series method to forecast the evolution of pitting
depth in corroded reinforcing steel bars. Basic time series analysis models are introduced, and
the method for establishing the autoregressive integrated moving average (ARIMA) model is de-
scribed through an example. Based on ARIMA model, the pitting depth in reinforcing steel bars
under two different corrosion environments is predicted. The results show that ARIMA model
can describe the variation tendency of pitting depth in corroded reinforcing steel bars quantita-
tively. The predicted values and the observed ones are in good conformity.

Keywords: time series analysis, autoregressive integrated moving average model, pitting
evolution, steel rebars.

TIpencrasiien MeTo BpeMEeHHBIX PAMOB JJIs IIPOTHO3UPOBAHUS PA3BUTHUSA TOBPEKICHUN B
IPOPKABEBIINX APMHUPYIOIIUX CTAJIBHBIX cTep:kHSX. OmpesesieHbl 0a30Bble MOJEIH aHAIN3A
BPEMEHHBIX PSI0B. MeTo /I yCTAHOBJIEHUS aBTOPErPEeCCHH MHTETPUPOBAHHBIN CKOJIb3SIIEH
cpenneit mogesu (ARIMA) onuceiBaercs Ha npumepe. Ha ocaose momenu ARIMA, mporaosupyercs
TJIyOMHA TOYEYHON KOPPO3UM B APMHUPYIONINX CTAJBHBIX CTEPIKHSIX B JBYX PA3JIMUYHBIX CpeIax.
PesynpraTer mokaseiBator, uro ARIMA momesnb MoskeT OIMcATh KAYECTBEHHO M KOJIMYECTBEHHO
pas3JuYHbIe TEHJEHIIUH TJIyOMHBI IOBPEsKJIEHUN B IIPOPYKABEBIINX APMUPYIOIIUX CTAJIBHBIX
crepsxHax. [Iporuosupyembie sHaYeHns U HAOIII01aeMble HAXOATCS B XOPOIIIEM COOTBETCTBHH.

Bukopucramnus moaesieil THMYaCOBHUX PAIIB IJIs MPOTHO3yBAHHS €BOJIIOIIT KOPO3ien
B cTasieBux apmarypHux npytikax. Croi Ioon

v po60T1 peJICTABJIEHUI METOJ] YACOBHX PAMIB VIS IIPOTHO3YBAHHS PO3BUTKY TJIMOWHU
1p>IcaB1HHa B KODOJOBAHHX apMyIOUHX CTAJIEBUX CTPUIKHIX. HpeJI[CTaBJIeHI OCHOBHI Mogesi
aHaJnsy YACOBUX PSAJIB 1 ONMMCAHUA HA MPUKJIAJL MeTOJI CTBOPEHHS MOJIeJIl aBTOPErpPeCUBHOIO
inTerpoBaHoro pyxomoro cepemaboro (ARIMA). Ha ocaosi momeni ARIMA nepenbavena raubuaa
1psKaBIHHS B ApMYIOUYNX CTAJIEBUX CTPUIKHSX B JBOX PI3HUX KOPOIYIOUNX cepenoBuInax. Pesynbratu
OKA3yI0Th, 110 Moaeib ARIMA Moske KIIIBKICHO OIIMCYBATH TEHAEHIII] 3MIHHU MJIMOMHY 1psKaBIHHA
B KOPOJOBAHUX apMYIOUYMNX CTAJIEBUX CTPISKHAX. [lepenbadueni sHaueHH 3HAXOOATHCA B XOPOIIILi
3rofi 13 TUMH, 1110 CIOCTEPIraInCs.
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1. Introduction

Structure deterioration induced by corro-
sion of reinforcing bars is one of the major prob-
lems in reinforced concrete structures. How to
forecast the pitting depth of corroded reinforc-
ing bars are problems of current research. Ow-
ing to the discreteness and transient behavior
of steel corrosion, it is difficult to track the
complete process of pitting depth evolution.
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The quantitative evaluation of pitting depth
evolution mainly depends on the actual mea-
surement of pitting depth at different position,
which belongs to post-operation analysis. Pres-
ent studies indicate that lots of factors, such as
environment, stress state and service time, can
influence the characteristics of steel corrosion
[1,2]. It is difficult to establish an effective the-
oretical model for pitting depth evolution.
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A time series is a set of sequential data
points, measured typically at successive points
in time or space at uniform intervals. Time se-
ries analysis comprises methods for analyzing
time series data in order to extract meaningful
statistics and other characteristics of the data,
which can be used to describe, explain, predict,
and control changes through time of selected
variables [3]. This method has already been
applied in structural health monitoring widely
[4-7]. Kim applies time series analysis to inves-
tigate whether the groundwater quality in the
coastal area is affected by the tide [8]. Erdopan
also applies time series analysis to describe the
dynamic movements of suspension bridges [9].

The surface profile of corroded reinforc-
ing bar is a random sequence in spatial order.
The fluctuation of pitting depth is a function of
depth, instead of a function of time. The long
wavelength of roughness corresponds to low
frequency component in time domain, and vice
versa.

Based on time series analysis, this paper is
aimed to develop a new approach to forecasting
the pitting depth evolution in reinforcing steel
bars. By extracting the abundant information
embedded in local pitting depth, the evolution
law of corroded surface profile can be predicted.
The results of this analysis will become the ba-
sis for corrosion damage evolution of corroded
reinforcing steel bars.

2. Experimental

A commercial hot rolled plain steel bar type
HPB235 (with nominal diameter of 12mm) ac-
cording to ISO Standards 6935-1 was used. The
specimen used for the accelerated wet-dry cycle
corrosion test was about 400mm. The two end
parts of the specimen (each is about 125mm)
were coated with anticorrosive grease and plas-
tic film. The middle part of the specimen (about
150mm) was designed as the corrosion region,
as is shown in Figure 1. The salt solution was
prepared by dissolving 5 parts by mass of sodi-
um chloride (NaCl) into 95 parts of distilled wa-
ter. The simulated concrete pore solution was
made up of 0.6 M potassium hydroxide (KOH)
+ 0.2M sodium hydroxide (NaOH) + 0.001 M
calcium hydroxide (Ca(OH),). The derusting so-
lution was prepared by mixing 3% hexameth-
ylene tetramine (analytical reagent) into 97
parts diluted hydrochloric acid [10].

To determine the corrosion characteristics
of reinforcing bar in chloride-free and chloride-
contaminated simulated concrete solutions,
four specimens were subjected to wet-dry cycle
corrosion test. Two specimens (denoted as SC)
were regularly sprayed using the salt solution
and the other two specimens (denoted as SK)
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Fig. 1. Specimens of accelerated wet-dry cycle
corrosion test.

a) Before de-rusting

b) After de-rusting

Fig. 2. Reinforcing bar specimen before and after
de-rusting.

were regularly sprayed using the mixture of salt
solution and simulated concrete pore solution
every 24 hours. When the test was completed,
the specimens were washed using the derust-
ing solution to remove corrosion products, as
is shown is Figure 2. The corrosion mass loss
ratio then was calculated, as is shown in Ta-
ble 1. Along the length of corroded reinforcing
steel bars, the pitting depth were measured by
using single cusp dialgauge (with accuracy of
0.01mm) at intervals of 2.5mm length [11].

3. Basic theory of time series analysis

3.1 Classification of time series model

Let {X} be stationary series with zero mean
and {a} be white noise, E(a,X,)=0 (s>1),
which can satisfy Eq. (1),

Xt _(plXt—l _¢2Xt—2 _"'_(DpXt—p (1)

=a,—06a, ,—6,a, ,—..—0a,

Table 1. Test parameters of reinforcing bar
specimens under chloride attacks

Code corrosior} mass | oo corrosioq mass
loss ratio [%] loss ratio [%]

SC-P1 1.25 SK-P1 0.92

SC-P2 2.82 SK-P2 1.99
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Table 2. Autocorrelation and partial autocorrelation coefficient of different models

Model AR(p) MA(q) ARMA(®p,q)
Autocorrelation coefficient tail truncation of order q tail
Partial correlation coefficient truncation of order p tail tail

where @,,0,,.. ,(pp is autoregresswe coefficient
and 91,02, 1s moving average coefficient.
Then {X} is re%erred to as ARMA( P>q), which
means autoregressive moving average model.
p,q are the orders of the model.

By introducing postpone operator B,

B'X, = X,, (k is positive integer)
B'a, =a,, 2)
B*c = ¢ (c is constant)

and let
o(B)=1-¢,B" —¢,B> —...— »,B” @)
6(B)=1-6,B' —6,B> —...— 0 B’

Then ARMA(p,q) can be expressed as Eq.
4).

@(B)X, = 0(B)a, (4)

When ¢ =0, then ARMA(p,0) can be
transformed into Eq. (5), denoted as AR(p) .

X, =0 X, ,+0X, ,+...+90,X, , +a, (5)

When p=0, then ARMA(O,q) can be
transformed into Eq. (6), denoted as MA(q) .

X, =a,—-0a, , —0,a, ,—..— Oqatfq (6)

In many practical fields, the observed data

sequence is nonstationary series, which needs

smooth processing. Then difference operator V
can be defined as follow,

VX, =X,-X,, (7)

The relationship between difference opera-
tor V and postpone operator B is shown in Eq.

®
‘=Q1-B) (8)
By using difference transformation of order
d (V?X, ), nonstationary series {X,} can be
transformed into stationary series. Then Eq.
(9) can be derived from Eq. (4),
@(B)(1 - B)'X, = 0(B)a, )

Eq. (9) is referred to as ARIMA(p,d,q)
, which means  autoregressive inte-
grated moving average model [12, 13].
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3.2 The establishment of ARIMA(p,d,q)

The ARIMA model takes three steps to es-
tablish: model recognition, model estimation
and model checking.

The key in pattern recognition is to deter-
mine the order of autoregression (p), difference
(d) and moving average (q). Parameter d can
be estimated by scatter chart. If no tendency
occurred, it shows that the time series is a sta-
tionary sequence and parameter d = 0. Oth-
erwise, the nonstationary sequence should be
transformed into stationary sequence by us-
ing difference transformation, and parameter
d equals to the difference order. Parameter p
and q can be initially estimated by the tail and
truncation properties of autocorrelation coef-
ficient and partial correlation coefficient, as is
shown in Table 2. Besides, BIC criterion is also
suitable for order estimation. Practices show
that smaller statistical magnitude is better.

Model estimation is based on mass observed
data and model parameter can be estimated
from these sample data. The most frequently
used parameter estimation methods include re-
lated moment estimation, least square estima-
tion and maximum likelihood estimation.

After the model recognition and estima-
tion, the time series forecasting model can be
established preliminary. Whether the model is
correct or not mainly depends on model check-
ing by correlation function test. If the time se-
ries forecasting model is correct, the residual
sequence generated by estimated and the ob-
served value should be white noise sequence
[14, 15].

3.3 The application of time series
analysis to forecast the pitting depth
in reinforcing bars

By using statistical software SPSS and test
data, the ARIMA(p,d,q) modelling process
of is discussed in detail. The pitting depth
sequence is plotted according to the observed
data covered the 100 mm corrosion length of
the specimen. As is shown in Figure 3(a), the
mean value of this sequence is significantly dif-
ferent from zero, which indicates that the pit-
ting depth sequence is a nonstationary series.
By first order difference transformation, a sta-
tionary series can be obtained, as is shown in
Figure 3(b). Therefore, parameter d is initially
estimated as 1.
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o

[ Pitting depth, mm

1.0

Measure position, mm

15 L L L L L L
0 10 20 30 40 50 60 70 80 90 100

a) Initiation sequence

5 Pitting depth, mm

Measure position, mm
1 1 1 1 1 1 1 1 1 1

25 125 225325 425 525625725 825 925

b) First order difference sequence

Fig. 3. Before and after difference sequence.

Figure 4 plots the autocorrelation function
(ACF) and partial autocorrelation function
(PACF) diagrams of first order difference se-
quence. The value of delay order is [n/4] where
n is the number of sample and [ ] means round-
ing operation. As is shown in Figure 4, the
ACF and PACF of difference sequence present
damped sine waveform, which can be seemed
as tail or second order truncation. According
to the criterion presented in Table 2, two time
series forecasting models, ARIMA(2,1,0) and
ARIMA(2,1,2), are initially recognized.

The model parameters of ARIMA(2,1,0)
and ARIMA(2,1,2) are calculated by SPSS,
as is demonstrated in Table 3. In comparison,
BIC statistical magnitude of ARTMA(2,1,0) is
smaller than that of ARIMA(2,1,2). Therefore,
is more suitable for this case.

Figure 5 shows the white noise testing of
residual sequence of ARIMA(2,1,0). The au-
tocorrelation coefficients of residual sequence
are all located in stochastic intervals, which

Table 3. Parameters of ARIMA model

1.0 I ACF
051
051 H
Delay

1.0 [, ] L I L 1

1 3 5 7 9 11

a) ACF

1.0 PACF
05

0.0 Ej{}[][jcjtjcjtjtj__[j

10F . . Delay

1 3 5 7 9 11
b) PACF

Fig. 4. Autocorrelation and Partial autocorrela-
tion diagram.

indicate that there exists no significant dif-
ference with zero. The residual sequence is a
white noise sequence and the model can pass
the check.

The mathematical model can be expressed
as Eq. (10).

(1-¢B" ' —,B’)1-B)X, =a, +c (10)

By substituting the parameters shown in
Table 3 into Eq. (10), the time series forecast-
ing model of observed pitting depth can be ex-
pressed as Eq. (11). In order to verify the ra-
tionality of time series forecasting model, the
observed pitting depth covered the 100mm-
120mm corrosion length of the specimen is pre-
dicted by ARIMA(2,1,0) and ARIMA(2,1,2).
As 1s shown in Figure 6 and Figure 7, the pre-
dicted results of ARIMA(2,1,0) is more precise
than that of ARIMA(2,1,2).

AR(®1) AR(2) MAQ1) MA(2) Const
Parameter BIC
(¢,) (9,) (6) (6,) ()
ARIMA (2,1,0) -0.179 -0.561 0.005 -2.965
ARIMA (2,1,2) -0.032 -0.230 0.459 0.536 0.009 -2.854
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10| Residual ACF
0.5r
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Fig. 5. Residual autocorrelation function dia-

gram of ARIMA(2,1,0) model.

Pitting dept, mm

0.001 )
0258 AR A
050F W
-0.75F A Observed

" -~ Fitted
-1.00F { --+ Predicted
-1.25F . . \ . .
0 25 50 75 100

Measure position, mm

Fig. 6. Prediction of ARIMA(2,1,0) model.

0.00F Pitting dept, mm B
025} \([ A r\;«:X\ V' .
050
-0.75F | Observed

| --- Fitted
-1.00 ‘ == Predicted
425 A . .
0 25 50 75 100

Measure position, mm

Fig. 7. Prediction of ARIMA(2,1,2) model.
X, =0.821X, |, —0.382X, , +
+0.561X, , +a, +0.005

By using the modeling method mentioned
above, the time series forecasting models of
four specimens are established. As is demon-
strated in Figure 8, the model predictions agree
very well with experimental measurements.

(10)

4. Conclusions

Hot rolled plain steel bars were corroded by
accelerated wet-dry cycle corrosion test, and the
pitting depth of corroded steel bars was mea-
sured by using single cusp dialgauge. By intro-
ducing time series analysis into the research
field of reinforced concrete, the modeling meth-
od of time series analysis has been elaborated.
The autoregressive integrated moving average
model ARIMA(p,d,q) has been established to
forecast the pitting depth of reinforcing bars.
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Fig. 8. Time series prediction of pitting depth.

The model predictions agree very well with ex-
perimental measurements.
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