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Based on the representations of the ideal of photonic structures, the non-ideal systems
of this class - polaritonic crystal, which is a set of spatially ordered cavities containing
atomic clusters, is considered in the paper. Moreover, the spatial distribution of cavities
(resonators) is translation invariant, and the atomic subsystem has randomly distributed
defects: impurity atomic clusters (quantum dots) or a vacancies. Numerical modeling of
dependence of the dispersion of polaritons in this imperfect superlattice of associated
microresonators on impurity concentration is completed. Using the virtual crystal approxi-
mation the analytical expressions for polaritonic frequencies, effective mass and group
velocities, as a function of corresponding quantum dots and vacancies concentrations, is
obtained.

Paccvorpenr moaApUTOHHBIN KPUCTAJLI, IIPEICTABIAIONIAN COO0M COBOKYIIHOCTEL IIPOCTPAH-
CTBEHHO YIOPAIOYECHHBIX JOBYIIEK-PE30HATOPOB, COAEPIKAIMX ATOMHBIE KJacTepsl. [Ipuuem
IIPOCTPAHCTBEHHOE PacCIpelesieHIIe PEe30HATOPOB - TPAHCISAIMOHHO WHBAPHMAHTHO, & aTOMHAas
[MOACHCTEMA HMEeT CJAYJYalilHO pacupeneieHHble Ne(EKTHI: IIPUMECHBLIE ATOMHbBIE KJACTEPHI
WOV BAKAHCUU. BBIMOJIHEHO YMCICHHOE MOIEJIUPOBAHIE 3aBHCHMOCTH AWCIEPCHH OT KOH-
eHTpamuy npumeceii. B paMrax mpubanKeHns BUPTYAJIbHOrO KPUCTAJIA HOJYUEHBl AHAJU-
THYECKU€e BBIPAMKEHUSA IJS HOASAPUTOHHBIX YacCTOT, 9PMEKTHBHON MAaCChl U I'PYIIIOBOM CKO-
POCTH B 3aBHCHUMOCTH OT KOHIleHTpauuu nedeKToB.

3axexHicTh qucHepcil MONIPUTOHIB BiJ KOHHmEHTpPAIii TOMIMIOK y HeTOCKOHAJIN Ha-
rpatii mnoB’A3aHuUX MikpopesoHatopiB. A.Jl.Anodwcanuv, B.B.Pymanuyes, C.A.@edopos,
M.B.Ilpocrypenio.

PosrnaryTto monapuTOHHUII KPUCTaJ, IO TPEACTABJAE COO0I0 CYKYMHICTH TTPOCTOPOBO-
BIIOPAAKOBAHUX TACTOK-PE30HATOPIB, IO MicTATHL aToMHi Kiaactepu. IlpocTopoBuit posmoain
pe3oHaTOpiB - TpaHCAANINHO iHBapiaHTHUM, a aToMHa MTificucTeMa Mae BUIIATKOBO DPO3-
nomineHi mederTm: goMimkoBi aToMHuI Kaactepm (KBaHTOBI Toukm) abo Baxancii. BukoHaHo
YyucJieHe MOJIETIOBAHHSA 3aJIeKHOCT] AMcHepcil MONAPUTOHIB Y Takiil HeTocKoHAMITT HaaATpaTITi
OB’ A3aHNX MiKpOpesoHATOPiB BiA KoHIeHTpalili gomimrok. ¥ pamMkax HabJIMKeHHS BipTy-
aJBHOTO KPHCTAJNIA OTPUMAHO AHAJNITUYHI BUpasU AJA HOJAPUTOHHUX YACTOT, ePeKTUBHOI
MacH i TpynoBoi IMIBUAKOCTI B 3aJIeKHOCTI BijJf KOHIEHTpPAIlil JOMINMIKOBUX KBAHTOBUX TOUOK
i BakaHci.

1. Introduction nected with "slow” light, which is one of
The important features of photonic band- the promising fundamental physical phe-
gap structures under discussion [1] are con- nomena that can be explored in the design

Functional materials, 21, 2, 2014 211



A.P.Alodjants et al. / Polariton dispersion dependence...

of various quantum optical storage devices.
In particular, the effective reduction of the
group velocity demonstrated in the associ-
ated optical waveguide resonators [2, 3] as
well as in the different types of solid-state
semiconductor multilayer structures [4].
Key role in reducing the group velocity in
these systems is played by so-called light
and dark polaritons, which are linear super-
position of photon states of the external
electromagnetic field and the macroscopic
(coherent) perturbations of two-level atomic
medium.

In atomic systems, the lifetime of polari-
tons limited by lifetime of the excited atoms
and is usually characterized by nanoscale
[6]. The present level of development of
nanotechnologies and nanophotonics makes
it possible to study the "slow™ light and the
phase transitions of polaritons by creating a
chain of coupled microcavities containing
two-level atoms [6—8]. Technologically, the
data structures can be obtained based on
photonic crystals with defects as microcavi-
ties doped with two-level atoms [9].

In the context of this class of problems
[10], a spatially periodic atomic structure
— polaritonic crystal formed by ensembles
of two-level atoms weakly interacting with
the optical field in a tunnel connected array
of microcavities is proposed in the paper. A
remarkable feature of this structure is the
possibility of localization of polaritons,
which is similar to the possibility of local-
ization of light in photonic crystals in non-
linear optics (see, eg, [9]) or the localization
of excitons in quasi-periodic structures in
solid state physics [11].

Based on the representations of the ideal
photonic structures developed previously
[12], the non-ideal system of this class —
the polaritonic crystal with the atomic sub-
system containing the impurity atom clus-
tersis considered in this paper. Moreover,
the spatial distribution of traps-resonators
remains, as before, translation invariant,
but the atomic subsystem contains randomly
distributed foreign (relative to the ideal
system) quantum dots and/or vacancies.
Each trap-cavity contains only one atomic
complex of a certain type, or free from it
(i.e, with a vacancy). Therefore, the pa-
rameters of the problem related to the
atomic subsystem are configuration-depend-
ent variables. Numerical modeling of such
systems can be made under certain approxi-
mation, in particular the virtual erystal ap-
proximation (VCA) [18]. The last is to re-
place the configuration-dependent parame-
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ters of the Hamiltonian problem on a con-
figuration-averaged their values. The ana-
lytical expressions for the polaritonic fre-
quency, the effective mass and group velocity
as a function of the impurity concentration of
the quantum dots and vacancies is obtained in
the paper in the framework of VCA. It turned
out that even with a small number of vacan-
cies in the lattice (one vacancy for a thousand
cavities) mass of polaritons increases by three
orders of magnitude.

2. Polaritons in nonideal coupled
microcavities lattice

One way to create a polaritonic erystal is
capture of two-level atoms in the photonic
structure consisting of an array of tunnel-
coupled microcavities (CROW) [2]. As in [6,
7], where the connected resonators doped
with atoms in them, this study discussed 1D
lattice microcavities containing one optical
mode, each of which interacts with a neigh-
bor in the chain. Thus, each resonator con-
tains the macroscopic cluster of ultracold
two level atoms of the same type with the
levels |a) and |p) interacting with the quan-
tized electromagnetic field directed (along
the axis) perpendicular to the chain, which
oriented along the X axis (see Fig. 1). In such
a configuration the overlap of optical field
and the wave functions of atoms is taken into
account and there is a possibility photon tun-
neling along the chain resonators.

The hamiltonian H of the system consid-
ered is:

Here H,; corresponds to an ensemble of
two-level atoms (quantum dots) in the trap-
resonator, H, , corresponds to the propaga-
tion of the light field, H;,; describes the
atom-optical interaction in the cavity.

Proceeding from the concepts developed,
for example, in [10], the hamiltonian H for

I 2 g

e

Fig. 1. A schematic model of polariton crys-
tal: microresonators lattice containing macro-
scopic ensembles of two-level atoms and in-
teracting with resonators electromagnetic
modes.
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ideal photonic structures can be reduced to
the form:

Hg = (2)

+ata +H.C.) -

n'’n n,at n n n-1 n n+l
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where the annihilation (creation) operators
a,(at), b,(bt) in equation (2) characterize
the dynamical properties of atomic ensem-
bles (atomic quantum modes) at the lower
la) and upper |b) levels in the n-site of array
(n =1,2,...M), and %io{@),, and %), charac-
terize the energy of atom sat the levels, respec-
tively. The coupling coefficients v, are the near-
est-neighbor hopping constants that depend on
overlapping in tegrals of the atomic cloud wave
function. Wave functions (these functions are real
Wannier functions) are responsible for spatial dis-
tribution of ultracold n-site atoms under the so-
called strong-bonding approximation [14].

The annihilation (creation) operators y,(y})

in (3) describe the temporal behaviour of a
single photonic mode with frequency w, ph lo-
cated at the n-th cavity. The parameter o char-
acterizes a spatial field overlapping between the
neighboring cavities. The interaction of two-
level atoms with the quantized electromagnetic
field in equation (4) is considered under the
rotating wave approximation and determined
by the constant g,. It is assumed in framework
of the polariton crystal model [12] that all the
cells are identical to each other and have the
same number of atoms N, = N, as well as the
coefficients of atomic-optical interaction in (4)
are the same in all cells, that is g = g; =g5 =
cee — g M-

Let’s consider the non-ideal system of this
class — polaritonic structure, atomic subsystem
that contains the impurity atom clusters. More-
over, the spatial distribution of traps resona-
tors remains, as before, is translation invariant
(with the lattice constant [), and the atomic
subsystem contains randomly distributed for-
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eign (relative to the ideal system) quantum
dots (each cavity contains only one atomic
complex of a certain sort). Therefore, the
parameters of the problem related to the
atomic subsystem are -configuration-depend-
ent variables. Numerical simulation of such
systems can be completed within the VCA
[15, 16], which is to replace the configura-
tion-dependent hamiltonian parameters H,,
on their configuration averaged values. In this
case, the configuration-dependent wvalues are

m%‘l’;{?, y(@b), g | their configuration dependence
is determined by the random variables:

d &)
o) = 3 olgdins
v=1
r
Vit = DAt
v,u=1
r
gn = YFLenny
A\
Here configuration-dependent random

unit 1), equals 1, if in node n there is v-type,
and it is zero in any other case (the number
of atomic complex sorts are equal to r) and

in any other case, besides Znn =

A%
After spending configuration averaging
of these quantities we obtain:

(o@D =Y o{hey, (6)
v

(e = Fyocvn,
V,u
(g,) = YgvCv.
\%

Here CV is the concentration of atomic
clusters (quantum dots) type v, which satis-
fies the equality ZC"= 1; (x)(,f\;,b(}t, yﬁ,‘ﬁb), gV

\%

are the characteristics telating to atomic
components of -type. The procedure for con-
figuration averaging (which indicated in (6)
by angle brackets) allowed to "restor [17],
the translational invariance of the hamil-
tonian and, therefore, to use the scheme of
calculations [12].

We emphasize that the polaritonic model
[12] atomic-optical interaction is valid only
in the case of ultracold atoms with a "fro-
zen" in a microcavity spatial degrees of
freedom. Thus, the characteristic frequen-
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cies {&:f), ®, ,;, dependent on the potential
traps in each cell. This approximation found
to be valid when the number of atoms in the
individual cells is relatively small (N < 10%)
[18]. Parameter g strong coupling of an atom-
optical interaction satisfies the condition:

g>> 21/ Toop » (7

i.e. g in each cell of the lattice is much
larger reverse atomic coherence time 7., of
optical system [19, 20]. Physically, 1., is
the necessary time to achieve a thermal
equilibrium for the atomic system under the
interaction withthe quantized optical field
in the polaritonic crystal (PolC) structure.
In this case (at low temperatures of about
mK) spectral line broadening can be ne-
glected. The result is a pure (thermody-
namic equilibrium) quantum states of
atomic-field systems.

Let us proceed to the k-representation in
expressions (1) and (2). Taking into account
the periodical properties of the system we
can represent the operators v,, a,, v, in
the form:

(8)

where n is the lattice vector.

In the case of the investigated 1D PolC
structure: kn =nk,l, n=1,2, ..., M; [ is a
lattice constant. Substituting equation (8)
into equation (1) and taking into account

the relation %26"(1“1")“ = Jyy0» we obtain the
n
following expression for the hamiltonian (2):

H=n)y ((up KB + 9)
k
©g(F) + +
+ 2 (bkbk) - (akak) +

+

g tOpsg T+ 0
\/m %(Wﬂaq k+q i;+qaqwk) ’

where N,;,; = NM is the total number of
atoms for all sites; dispersion relations
w,p(k) and 0,4(k,{C")}) for the photonic and
atomic systems in the PolC structure de-
fined by the following expressions:

Wpp(R) = 0y oy — 20cos(kl), (10)
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0k, CY) = ECV(MV% - ms%) - a1
AY)

- 2) (Y(V‘ZL - Y(V?&)Cvcucoskl,
v,

Y =17Yp Y, is effective coupling coefficient of

atomic clusters lattice.
With the help of the Bogolyubov trans-
formations:

Bk = Vg — 9Py (12)
Bg k= 0Py + B0y

hamiltonian (9), which describes the light
and dark polaritons [4], is reduced to a di-
agonal form:

H-= ﬁZQl(k,CV)EJ{,kELk + (18)
k

+ hzgz(k,CV)Esz’kEz’k.
k

The annihilation operators El,k’ EZ,k in
equation (12) characterize two types of
quasi particles (due to the atom-field inter-
action) i.e. upper and lower branch polari-
tons, respectively. These quasi particles
propagate along the X-direction of the peri-
odical structure. Hopfield coefficients ¥; o
satisfy to the mnormalization condition

9} + 93 = 1.

We consider the limit of small perturba-
tions, when all of the atoms in the cell are
located on the lower level |a}, i.e.

Y(biby) < <D(agay) = Nyoy, [19]. In  this
q q
case, the operators P) and Pf of the atomic

polarization and operators Z; , Z,, satisfy
to the boson commutation relations:

1
(PoP=5—2 (aaaq - bﬁ+qbk+q) =1,0d4
tot q

= .85t | =
|:“1,k""1,q:| - 8ij6kq'

The characteristic frequencies Q; 5 in
(18) define an dispersion relations, as well
as the polaritonic band structure of the
crystal, they have a form:

Qy,9(k,CY) = (15)
_ %[wat(k,CV) + W) £ Op(R,CY]
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2 -1/2
where wp(k,CV) = 82=14 ZgVCV is the

v

Rabi
8 = w, (k) — w,y(k,CY) is the phase mismatch

splitting requency,

depending on the quasi-momentum k. The

expression for the effective mass m; o(%,{C")

of polaritons following from (15) is:

16

aZgl,z(k,cv) (16)
kT 0| =

)]’
el {3 o)

my o(k,CV) =

Besides My, = T/ 2002, My =
1/202y (ygﬂ - W‘Q)CVCH and maximal detun-
y,u

ing A, which is independent on the fre-
quency of the quasi-momentum is:

A 17
A = o= | 2000 - wscfz,t)}— an

A%
- z{a -3 (- vs%a)cch-
v, M

The parameter o characterizes the spatial
overlap between nearest resonators field
[12]. The concentration dependence of the
group velocities Vl’z(k,{CV}) is easily ob-
tained by using expressions (15) and (16):

00, o(k,CY) (18)
ok -
_ hsin(kl)[ 1- mphJ wph(k) _ mm(k’]cv\)‘|

m
=2t o) [ma({cw) o)

The concentration dependence of the ob-
tained values enables to expand the range of
possibilities of the numerical modeling and
creating a new class of polariton crystal
systems.

Vi,2(k,CY) =

3. Polaritonic crystal with the
atomic subsystem containing
vacancies

To concretize the non-ideal polaritonic
system, let’s consider the case of the system
containing only one type of atoms with the
concentration C; and vacancies with concen-
tration C,, besides equality C; + C,, = 1 exe-
cutes. At once variable C; is excluded from
expressions using the equality C; =1 - C,.
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In this case, according to (15), we obtain:
Q(k,C,) = Qy(k,C,) = (19)

= Lgk,Cy) + 0u(h) - wglk.C)L

Here the dispersion relations for the
atomic and photonic subsystems in a neigh-
borhood dot kIl = 0 defined as follows:

0,4k, C,) = [0P¢ + yE212] — C, [wb® + yk212],

be = ab),, - 0@, - 2y, (20)
w,p(k) = of, + k12, (21)
Wf, = 0y 5y~ 20,

and the Rabi frequency and atomic-optical
detuning are:

wgk,C,) = V4g%(1 - C,)? + &2, (22)
8 =3(k,C,) = 0, (k) — 0,,(k,C,).

In expression (20) appeared term C,w’?,
which is extremely large in comparison, for
example, with the average frequency of
transition for rubidium D-line which is
@b = 21 - 382 THz. This term, even for a
very small concentration of vacancies (C, ~
107%) amounts to several THz. For compari-
son, the parameter o characterizing the
photon tunneling, is from a few hundred
GHz to THz, and the parameter of atomic-
optic communication g consists of from tens
to hundreds of GHz. It are these parame-
ters, a and g, even in the absence of vacan-
cies are the main contributors to the fea-
tures of the dispersion curve.

The expression for the mass of polaritons
has the form:

mqy(C,) = (23)
B 2mat(CV)mp HORC,)

M (CV) + my0R(C, — (M (C) = m)AC,)

where

mR(Cv) = U)R(k’CV)|k=O = (24)
=V[AC,)P? + 48%(1 - C,)2.

In formulas (23) and (24):

A(C,) = 8(k,C)|p— = A + C, "4,
A = S(k’CV)|k=OC = (JJL - mba,

mph = 72/20(12,

ma(C,) =1/2y(1 — CI% = M,/ (1 - C,).
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Fig. 2 shows the dependence of the mass
mo of the polariton on concentration of va-
cancies C, introduced by the method de-
scribed above. In this case, we used the fol-
lowing numerical values of the parameters:
the size of the resonators is [ =3 um, the
effective mass of the atoms in the lattice
without vacancies is M, = 1.44-10°25 kg,
the effective mass of the photon is Mpp =
2.8:10736 kg, the atom-optical the detuning
is A =0 independent on the wave vector,
the average frequency of the rubidium
D-line is w?? = 21 - 382 THz, the parameter
of atomic-optic coupling is g = 2n-12.2 GHz.
In the case of a lattice without vacancies
the mass of polaritons is
my =2m,, ~5.6:10736,

Analysis of the graph my(C,) shows that
even for small number of vacancies C, in
the lattice (one vacancy on 1074 of resona-
tors) the mass of polaritons increases by an
order. The last circumstance testifies an es-
sential role vacancies in effectively reduc-
ing of excitation velocity jumping between
cavities.

4. Conclusion

Presented in the article study of the con-
centration dependence of the polariton pa-
rameters of imperfect 1D superlattice of
coupled microcavities shows the significant
role of admixtures included in the struec-
ture. In particular, the point defects in the
PolC structure leads to increasing of the
polariton effective mass, hence, to decreas-
ing of the polariton group velocity (it is
compared with the ideal polaritonic crystal
[12, 16]). This resume is illustrated by a
specific example of the polaritonic crystal
with the atomic subsystem containing va-
cancies. The results of the numerical simu-
lation allow to expand opportunities of
creatinga new class of functional materials
— polaritonic crystal systems.

The work was performed as part of a
joint project of the National Academy of
Sciences of Ukraine and the Russian Foun-
dation for basic research No0.0112U004002,
as well as the European project FP7-PEOPLE-
2013-IRSES No0.612600 "LIMACONA".

References

1. P.W.Milonni, Fast Light, Slow Light and
Left-Handed Light, Institute of Physics Pub-
lishing, Bristol (2005).

2. Z.8.Yang, N.H.Kwong, R.Binder, A.L.Smirl,
J.Opt. Soc. Am. B, 22, 2144 (2005).

3. H.Gersen, T.J.Karle, R.J.P.Engelen et al.,
Phys. Rev. Lett., 94, 073903 (2005).

216

m2x10'34
35r
3|
25

2L

1.5F

1F

05 1 1 1 1
0 0.2 0.4 0.6 038

1
1.0 Gy x10™*

Fig. 2. The dependence of polaritonic mass on
vacancies in the imperfect superlattice of
coupled microresonators.

4. A.V.Turukhin, V.S.Sudarshanam, M.S.Sha-
hriar et al., Phys. Rev. Lett., 88, 023602-1
(2002).

5. U.Vogl, M.Weitz, Phys.Rev.A, 78, 011401
(2008).

6. T.Aoki, B.Dayan, E.Wilcut et al., Nature,
443, 671 (2006).

7. M.J.Hartmann, F.Brandao, M.B.Plenio, Na-
ture, 2, 849 (2006).

8. L.Zhou, J.Lu, C.P.Sun,
012313 (2007).

9. J.D.Joannopoulos, S.G.Johnson, J.N.Winn et
al., Photonic Crystals. Molding the Flow of
Light, 2-nd Edition, Princeton University
Press, Princeton (2008).

10. E.S.Sedov, A.P.Alodjants, S.M.Arakelian et
al., Phys. Rev. A, 84, 013813 (2011).

11. E.L.Albuquerque, M.G.Cottam, Polaritons in
Periodic and Quasi Periodic Structures, El-
sevier, Amsterdam (2004).

12. A.P.Alodjants, I.0.Barinov, S.M.Arakelian,
Phys. B, 43, 095502 (2010).

13. R.H.Parmenter, Phys. Rev., 97, 587 (1955).

14. A.Smerzi, A.Trombettoni, P.G.Kevrekidis,
A.R.Bishop, Phys. Rev. Lett., 89, 170402-1 (2002).

15. V.V.Rumyantsev, S.A.Fedorov, K.V.Gumennyk,
Photonic Crystals: Optical Properties, Fabrica-
tion and Applications, ed. by William L.Dahl,
Nova Science Publishers, Inc. NY: (2011).

16. V.V.Rumyantsev, A.P.Alodjants, S.A.Fe-
dorov, Photonic and Electronic Excitations in
Nonideal Superlattices, LAP LAMBERT Aca-
demic Publishing, Saarbrucken, Germany:
(2013).

17. J.M.Ziman, Models of Disorder, John Willey
& Sons, New York (1979).

18. J.R.Anglin, A.Vardi, Phys. Rev. A, 64, 013605
(2001).

19. A.P.Alodjants, S.M.Arakelian, A.Yu.Leksin,
Laser Phys., 17, 1432 (2007).

20. V.A.Averchenko, A.P.Alodzhants, S.M.
Arakelyan et al., Quant. Electron., 36, 532
(2006).

Phys. Rev. A, 176,

Functional materials, 21, 2, 2014



